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1. We start by explaining two groups of theorems and we shall derive both 
from a common source. 

P. Bloch and G. P6lya’ investigated first the question of giving an upper 
estimation of the number R of real roots of 

(1.1) f(z) = UIJ + Olc?T + . * . + u,PT 

whenever 

I a0 I 2 P’, I a, I 2 d, I au I S cc, Y = 1,2, f. * ) (n - 1). 

They proved that the number of real roots is* 

< -41G, $1 
n log log n 

log n * 

A few years later Erhardt Schmidt3 proved the sharper inequality 

and the still sharper one 

RZ 6 A& /.~‘>n log F 

(1.2) R2 5 AS TX log ’ a’ ’ -&& ’ an ’ = A3 n log P, - 
0 n 

where as throughout the present paper, 

(1.3) p E I a0 I + . . * + I a% I 
dlaOanl ’ 

His detailed proof has never been published because I. Schur’ found shortly 
thereafter an elementary proof for it; his method furnishing at the same time the 
proof of the inequality 

(1.4) R2 5 4n log P 

with the best possible constant 4 and that of 

R2 - 2R 5 2n log 2 

(1.5) 
& = I a0 I2 + * . . + I an I?. 

I a0 a, 1 

1 proc. Lond. Math. Sot. (2) 33 (1931), 102-114. 
2 We explicitly designate the parameters on which the quantity A1 and, later, AZ , A z . . 

depend. If no dependence is indicated then the corresponding quantity is a numerical 
constant. 

3 preuss. Akad. Wiss. Sit.zungsber. (1932) 321. 
4 Ibid. (1933), 403428. 
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Further G. SzegG’ found refinements of (1.4), simplifications in the proof of 
(1.5), and discovered that Schur’s extremal-polynomials are essentially Jacobi- 
polynomials. A further very simple proof for (1.2) was given by Littlewood 
and Off ord”. 

2. R. Jentzsch’ first proved that if 

(2.1) g(z) = 1 + bl2 + . . . + b,zn + * * * 

has the the unit-circle as circle of convergence then every point of this circle 
is a cluster-point of zeros of the partial sums 

s,(x) = 1 + blZ + . * * + l&z?. 

G. Szegii’ found the interesting generalization of this theorem according to 
which there is an infinite sequence of indices 

nl < % < . . . < nk < -If 

such that the roots of sa,(z) in a fixed annulus 

1 - c 5 Iz/s 1+ E, E > 0 and arbitrarily small 

are uniformly dense in the sense of Weyl. This means, as is well known, that 
denoting the roots of s,~(z) by 

(k) = peikp 2, Y , Y = 1,2, *** ,?%k 

and given LY and fi with 
05i;(y<8<27r 

we have 

(2.2) 
,=@-a ~ . 

2r 

3. Now we are going to show how the theorems (1.2) and (2.2) which seem 
unrelated at the first glance, can be derived from a common source. We state 
the following 

THEOREM I. Ij the roots of the polynomial 

(3.1) f(z) = a0 + al2 + . - . + aRzn 

are denoted by 

(3.2) Zr = f-P k+. ) P = 1,2, *** ,n 

then for every 0 5 a: < p $ 2~ we have 

5 Ibid. (1934), 86-98. 
6 Proc. Cambridge Philos. Sot. 35 (1939), 133-148. 
7 Untersuchungen cur Theorie der Folgen analytischer Functionen. Inaug.-diss., Berlin, 

1914. 
6 Berlin Mat,h. Ges. Sitzungsber. 21 (1922)) 59-64, 
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The content of this theorem can be expressed by saying that the roots of a 
polynomial are uniformly distributed in the different angles with vertex at the 
origin if the coefficients “in the middle” are not too large compared with the 
extreme ones. In the case a~ = al = . . - = a, the uniform distribution is of 
course much more perfect than is expressed in our theorem and represents the 
ideal case; but our theorem shows that if all coefficients satisfy the condition 

(3.4) n --h 4 1 a, 1 5 n” 

Y = O,l, a-* ,?a 
then 

i.e. 
P j (n + 1)TP < (n + 1)2A+1, 

(3.5) I c Y 
( QSVP5B 

1 - q n 1 < 16dmz -l/n log (n + 1). 

Hence a rather radical change of the coefficients restricted only by (3.4) cannot 
“spoil” the uniformly dense distribution of the roots in angles very much. 

4. The idea of deducing the theorems of Erhardt-Schmidt and Jentzsch-Szeg6 
from a common source does not seem to be new. I. Schur delivered a lecture 
in the physical-mathematical section of the Prussian Academy on Marcha, 1934 
as a continuation of his papeP. The content of his lecture we know only from 
the following report? “ Es wird gezeigt dass der Satz von Robert Jentzsch iiber 
die Mullstellen der Abschnitte einer Potenzreihe mit endlichem Konvergenzradius 
aus einem allgemeinerem Satz folgt, der ohne Benutzung funktionentheoretischer 
Hilfsmittel bewiesen werden kann. Die zum Beweise erforderlichen AbschBt- 
zungen der Wurzeln einer algebraischen Gleichung werden mit Hilfe des 
Matrizenkalkiils abgeleitet.” The fact that the indicated more general theorem 
contains also the theorem of Erhardt-Schmidt we suspect only from the fact that 
the lecture was a continuation of his investigations in the paper4; nothing has 
been published about this more general theorem as far as we could find in the 
Zentralblatt and Math. Reviews. Since our method does not use the matrix- 
calculus, the method seems to be anyway different from that used by I. Schur. 

6. First we deduce from Theorem I Erhardt-Schmidt’s inequality (1.2), 
even in a slightly sharpened form. We apply Theorem I three times, to the 
angles 

respectively. If HI , H2 , HZ denotes respectively, the number of roots of f(z) 
in these angles we obtain 

IHI - y/nlogPl =< 16~‘53@7, I Hz - dn log P ) < 162/ni’i 

1 H3 - y/n log P [ < 16t/n log P, 

9 Preuss. Akad. Wiss. Sitzungber. (1934), 99. 
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i.e. we obtain for the number H* of the roots of f(z) in the angles 

1 arc z 1 < 27~ &og P/n and j a - arc z 1 < 2a dlog P/n 

(and ‘a fortiori for the number H of the real roots) the estimation 

HSH*<51-\/nlogP 

which is the theorem of Erhardt-Schmidt. 
6. Now we turn to Jentzsch-&ego’s theorem. Let 

63.1) f(z) = 1 + a12 + * . - + an.zn + * * * 

be regular for 1 z 1 < 1 and let the unit-circle be the circle of convergence. 
Then for an arbitrary small positive e we have an infinite sequence of indices, 

n1 < n.2 < --- 

such that 

62) I G, I > (1 - w, v = 1,2, **- ; 

furthermore there is an 44 = A4(t) such that for all n > Ad(c) we have 

(6.3) I a73 I < (1 + e2r. 

We apply our Theorem I simply to the sections 

(6.4) s,,(z) = % UjZj. 
j=o 

In this case from (6.2) and (6.3) we have 

if e is sufficiently small and n, > A&(t). For such &, denoting by GI(q p) the 
number of roots of s,,,(z) in the angle LY 5 arc x $ ,8, we obtain 

for every (Y, 0, with 0 $ cr < p s 25~. 

In order to complete the proof of the theorem of Jentzsch-Szegij we have only 
to show that the number of roots of s,,(z) outside the annulus 

l-E~;z/~l+t 

is < 7 tnV if Y > As(e). This is very simple. Let E be so small that 

(6.5) 
1 

1 - E2 
< 1 + 2e2 < P. 
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Since the polynomials s,,(z) converge uniformly in the circle 1 z 1 5 1 - z/Z, 
the number of roots in 1 z / 5 1 - E” (and thus a jortiori the number of roots 
in]xl I1 - c) for Y > AT(E) does not exceed 2&(t), where .48(e) denotes the 
number of roots of f(z) in the circle / z I h 1 - 36”. Further, since s*,(O) = 1, 
denoting by q(j = 1, . . . , n,) the roots of s,,(z) we have 

03.6) ,.,,g.2 1 zi 1 ’ Ag(E)- 
Kow from (6.2) for these n,‘s 

(6.7) (1 - E’)*’ =( ( a,,, ( = 2 1 .ZQ 1-l = nj JJj n . 
IZjlil-4 l-f~~~sj~~l+e /Z,/>lff 

Denoting by J, the number of roots of .sn,(z) in 1 z ( h 1 + B we obtain from 
(6.6) and (6.7) 

(6.8) (1 - f)“v 5 Ag($l 

Since for v > Ala(t) we have 

(6.9) 
1 1 

( > 

12. 
2As(t) < En” ) __ - 

A,(r) < 1 - fz2 ’ 

choosing 

AU(E) = max (-410(e), A(e), AT(E)) 

we have from (6.8), (6.9) and (6.5) for v > All(~) 

From this and (6.9) we have for the total number of roots of an,(z) outside 
of the annulus 1 - e 4 / z 1 r 1 + E the upper estimation 

< 6~ + 2A8(e) < 7m. Q.e.d. 

7. If we know something about the coefficients of the power series (6.1), then 
in a similar way we can obtain more exact information about the distribution 
of the roots of the sections. We formulate only 

THEOREM II. If for the coej%%ents of the power-series (6.1) we have 

(7-l) V --x 5 1 up ) I 2, v = 1,2, *-- 

then there is a AU = AI&) such that for the roots z1 , z2 , ’ - - z,, of the section s,(z) 
wehuvejorany0 I a! <b 5 21 
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The proof goes along the same lines as in 56 so we can omit the details. 
8. We shall prove our Theorem I combining the method of our joint paper” 

(suitably modified) with an artifice of Schur* in §§lO-14. In our paper” we 
used the mentioned method t,o prove the theorem t.hat if 

(8.1) w,(x) = 2% + * * ’ + a, 

has all its roots in - 1 s z 5 + 1 and satisfies here the inequality” 

@a I f-h(x) I 5 m)P, 

then, writing the roots in the form 

cos 6, , Y = 1,2, a** ,?I, 0 5 291 5 ZYZ 5 - - - 5 9, 5 a, 

we have for all OL, 6 with 0 $ Q < 0 s ?r 

We applied this estimation” to obtain rather exact results concerning the 
distribution of the roots of some polynomials which are defined by minimizing 
properties. More exactly, given a k > 0 and a function p(z) non-negative and 
L-integrable in - 1 5 CC s + 1 we have, as Dunham Jackson” proved, a sequence 
of polynomials 

63.4) cpob, h), Plh k), - * * , %A, k), * * * 
p&, k) = Zn + ’ * ’ + b, 

such that rpn(~, k), minimizes the integral 

s 

1 
(8.5) -l I ‘Rnk) lk P(X) f2-c 

among the polynomials ?m(~) = xn + . . . . If k = 2 the polynomials are 
identical with the orthogonal polynomials belonging to the weight function 
p(z) ; the properties of these polynomials have been extensively studied and one 
can find the whole theory e.g. in Szeg6’s13 book Orthogonal Polynomials. How- 
ever, for general k > 0 the corresponding theory does not exist; in our paper” 
we could settle one of the four main problems of the theory, the uniform dis- 
tribution of the roots on the segment - 1 s x 5 + 1 in the rather general case 
when the weight function P(X) satisfies the condition 

(8.6) p(x) 2 A13 > 0. 

lo Bnn. of Math. (2) 41 (1940), 162-173. We shall use this opportunity to correct a 
number of misprints in the paper. In the first chain of inequalities (between (1) and (2)) 
and in inequality (2) the quantity r is to be replaced by 2 a and in all occurrences on this 
page the sign =( is replaced by < . In the footnotepf ploy T63 the letter p i~~;epl~c~d by 1. 
On page 167 in the fourth line from the bott’om [Ev+z ,f, ] IS replaced by [Ep+1 ,[,” 1. 

11 hccording to the classical theorem of Chebyshev we have always B(n) 2 2. 
I2 Trans. Amer. Math. Sot. 22 (1921), 117-128; 320326. As he proved in another paper, 

ibid. 2.5 (1923), 333-338, in the case 0 < k < 1 t.he unicity can fail. 
13 Amer. Math. Sot. Colloquium Publications, Vol. 23, 1939. 
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We proved namely that in this case, denoting the roots of rp,(~, li) by cos 29,, with 

Kow in an Appendix we shall show by simple reasoning how from (8.7) we can 
obtain a partial solution of another main problem, the problem of ‘<outer”- 
asymptotic representation of the polynomials (~~(2, k). By this we mean an 
asymptotic representation valid on every point of the complex z-plane cut along 
the segment - 1 5 z =( +l. In the case of k = 2 Szegij14 proved, even in the 
more general case when instead of (8.4) we suppose only that log p(z) is L- 
integrable, t,he asymptotical representation 

( 

2 + y/z2 _ 1 n+J(z)+o(l) 
G”n(Z, 2) = 

2 > 

where the meaning of 4.3 - 1 is obvious, the function J(z) is determned by the 
weight function p(x), the o-sign refers to n + ~13 and holds uniformly in every 
domain not having a common point with the interval I-1, +l]. In the case of 
k > 0 and p(z) satisfying (8.6) we shall prove the asymptotical representation 

(8.8) 

where the O-sign holds again uniformly in every domain not having a common 
point with the interval [- 1, +l,]. Using a much more difficult argument 
P. Erdijs succeeded in improving the error-term in (8.7) to O(log2n)-which is 
certainly not far from the best possible and also that in the exponent in (8.8) to 
O(log%). The asymptotical representation (8.8) has the following consequence. 
If F(x) is regular along [ - 1, + 11, then expanding F(z) in a series 

the domain of convergence will be an ellipse with the points fl as foci. This 
was well-known in the case k = 2. 

9. Before turning to the proof of Theorem I, we consider the polynomials 

h(x) = c 2 
Psn 

where p runs over the prime numbers not exceeding n. These polynomials play 
an essential part in the additive theory of primes and recent investigations 
concerning Riemann’s famous hypothesis15 carried out by P. Tur&n attach some 

14 See e.g. his book’3 p. 290, theorem 12.1.2. 

15 Unpublished. 
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importance to any information one can obtain about their roots. Our Theorem I 
gives obviously the estimation 

V(or, 8, h) - ‘+ n < 16 dn log n 

where V(CY, 0, h) denotes the number of roots of h(z) in the sector 

10. Now we turn to the proof of our Theorem I. From (3.1) and (3.2) 
we have 

(10.1) f(z) = an Q (z - .%>. 

We introduce the polynomial g(z) by 

(10.2) g(z) = $$ (2 - e”‘). 

Let 2 = eiq be fixed on the unit-circle and let 5 = peig run on the ray arc z = 6, 8 
fixed. Then 

I.2 - E I2 = 1 + p2 - 2p cos (q - 8) 

12 - 4: I2 
IEI 

= p + l/p - 2 cos (9 - 19). 

But if p varies from 0 to + 00, the right side has its minimum at p = 1; hence 

Iz - f12 2 2 
IEI 

- 2 cos (p - 8) = 1 2 - e”’ 12. 

This is Schur’s previously mentioned remark. Applying this with 

.i- = Z”) P = 1,2, --- ,n 

and multiplying we obtain on the unit-circle 

i.e. 

or in the whole unit-circle 

(10.3) I g(z) I 5 p. 

Now we fix LY, /3 satisfying 

050!<@127r 
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and denote by H(oL, p, g) the number of C,G satisfying 

(10.4) CY s 4% 5 P. 

If we can prove 

(10.5) 
-16 dn log z I g(z) 1 S H(a, P, $7) 

B- 
P-a -- 

27r 
n 5 16 6 1% gz 9 (2) I’ 

then owing to (10.3) our Theorem I will be proved. Let us suppose we have 
proved the sharper upper estimation 

(10.6) 

for every 0 4 y < 6 S 2’~. Then applying it once with 

y=o, L3=01 

then with 

Y = P, 6 = 2?r 

we obtain 

i.e. also the lower estimation of (10.5) could be proved. Hence in order to 
prove our Theorem I it is sufficient to prove inequality (10.6). Obviously 
we may suppose without loss of generality y = 0. 

11. Fixing the number of roots of g(x) on the arc 

OSrpS’6 

of the unit-circle, the inequality (10.6) gives a lower estimation of max 1 g (z) 1. 
Hence we shall consider the following extremal problem of Tshebisheff-type: 

Using the abbreviation 

(11.1) 
6 

[ 1 -n 
2r 

= K, 

what is the minimal value M of the absolute maximum on I z 1 = 1 of those 
polynomials g(z) of the form 

which have exactly (K + 21 + 1) roots on the arc 0 5 cp 6 S? 



114 P. ERDiiS AND P. TURh 

12. As is well known, such a minimum exists. We shall call aU. polynomials 
of our class given in (11.2) whose absolute maximum is M, extremal-polynomials. 
Let go(x) be one such extremal-polynomial. First we assert the following: 

LEMIL4. go(z) assumes on ever3 arc [& , d,+l] of the unit-circle which lies inside 
the arc 0 =( rp =( 6 a value which is = M in absolute value. 

PROOF. Suppose the lemma is not true; we may suppose that on the arc 
& s cp $ & of the unit-circle we have 

(12.2) I go(x) I 5 J4 - Eo , Eo > 0 

(Of course the same holds if we replace ~0 by an arbitrary positive e1 4 EO.) 

Owing to the continuity of go(z) we can f?nd a positive t2 such that on the larger 
arc 

(12.3) 

we have 

Owing to the continuous dependence of the coefficients on the zeros we can 
choose e3 so small that for every positive 71 < ~3 the polynomial 

(12.5) Ql(d = 
90 (2) 

(2 - eiy(z - e”“2) 
cz _ ei’“‘-“‘)(z _ ,i(h+1)) 

should be absolutely 5 M - %/3 on the arc (12.3). Summarizing the restric- 
tions on q we have 

0 < 7j < min (& , 6 - &z, c2 , e3) 

and then g1 (z) belongs certainly to our class (11.3. 
We estimate gl(z) on the complementary arc I of (12.3) after we know that 

on the arc (12.3) itself 

I g,(z) I 6 M - ; * 

Since for small q on the 7 

we have here 

(12.7) glb) = g0(z> 1 + irlz - 
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But putting z = eir we have 

. rpz--1 sin ~ 
2 

ZZ l--11 2 sin 8-9 ’ sin 6--pp’ - 2 
2 2 

115 

Since the coefficient of 9 is on 1 greater than a positive quantity independent of q, 
choosing 7 sufficiently small, the bracketed expression in (12.7) is less than 1 in 
absolute value on 7 and hence on this arc 

I chb> I < M. 

But this and (12.6) constitute a contradiction in view of the fact that M was 
supposed to be the minimum of the absolute maxima of the polynomials of our 
class, and our lemma is proved. 

13. Next we apply the following theorem16 due to P. Turan. 
If an arbitrary polynomial of degree n assumes its absolute maximum on 

1 z 1 = I forz = eivo then the arc 

I CPO - arc 2 1 < z 

of the unit-circle is free of roots of this polynomial. 
The application of this theorem-taking into account our lemma-shows 

that the distance of any two consecutive roots inside the arc 0 5 arc z 5 6 
of the unit-circle is B 21/n; hence the inside of this arc can contain only 
1 + [(6/27r)n] = 1 + K roots at most. Owing to the definition of our class at 
least 21 roots must be at the end-points of the arc 0 5 (p 5 6 and thus the extremal- 
polynomials have at least one root with the multiplicity 1. Then without loss of 
generality 

(13.1) go(z) = 41 + .&2(4 

ICI = 1, gz(z) = P + d&--l--l + * * . + d,-l . 

Further, 

M2 2 2’ 

(13.2) 

~ l.i_, I go(z) I2 I dz I = & J;,,=I / 1 + 2 i2“ I dd I2 l dz 1 

1 
2 min - 

s G 27r jr14 
I 1 + 2 I=* I d4 I2 I dz I, 

where classGmeans the polynomials of degree (n - Z) with the leading coefficient 1. 
14. We now determine the last minimum exactly. According to a general 

theorem of SzegB” Dhe integral (13.2) attains its minimum for one polynomial 

16 Seeged Acta 11 (1946), 106-113. 
17 E.g. his Orthogonal Polynomials, p. 282, theorem 11.1.2, 



116 P. ERDijS AND P. TURh 

g&) of the class G which is characterised by the conditions 

04*1) J,,=l ga(2) 1 1 + 2 ~2z(z>" [ dz 1 = 0, v = O,l, *a* (?I 

or equivalently 

(14.2) v = O,l, *a* (n - 1 

- 1 - 11, 

- 1). 

Now we assert that 

(14-3) g&) = 
I n-l-1 
( > 

n-l-1 
(1 +&i -: s 

(2 - t)E-l(l + t)TQt = ;l +$ rl/(z). ( > 

For 0 S Y 5 1 - 1 we have 

(I - l)! E 
vm2) = (1 - y - 1) ! I 

1 (2 - t)l+(l + t)T dt 

i.e. 

(14.4) q/L’“‘{-1) = 0, v = 0, 1, * + * ) (I - 1). 

Further we have 

p(z) = (1 - l)!(l + Z)zZn--l, 

i.e. 

(14.5) lp’(--1) = 0, v = I, (I + l), *. * , (22 - 1). 

From (14.4) and (14.5) we see that G(z) has a zero of order 22 at least for z = - 1; 
hence g&z) defined by (14.3) is really a polynomial of degree (n - E). Further 

hence g&) really belongs to our class G. We have to verify (14.2). Using 
(14.3) we have only to verify 

s w - dz = 0, 
,a,=1 2E+“+l 

v=O,l **.,(n--Z-1) , 

i.e., 

coeffs z1 = ccg&s zz+l = . * . = cc)&&. g--l =: 0 
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in +(z). Writing G(z) in the form 

(14.6) J/(z) = 1; (2 - q-‘(l + t)Y at + SZ (2 - t)!-‘(l + t)Y dt, 
0 

we see that the first integral represents a polynomial of degree (I - 1) and the 
second can be written after the substitution t = zy in the form 

(14‘7) 2 
s 
o1 (1 - y>l-‘(1 + xy)ly”-” dy 

which is a polynomial in which the smallest exponent is n. Hence really g&) 
is the polynomial minimizing the integral (13.2) in the class G. 

We can calculate easily the value of this minimum. 

1 
1 

5i 1214 
I gd.4 I2 I 1 + z r6 I dz I = & J;a,=l g3(.4w--l J 1 + z l26 I dz I 

1 =- 
s 

g&)(1 + dZZ 
2ai 1214 p+1 

dz = &l(n; z)j-I~dz. 

Taking into account (14.6) and (14.7), the value of this minimum is 

n+l 

(1 - y)z-lyn--l dy = ( > ’ 
n ’ 

0 1 

i.e. from (13.2) 

and for all polynomials of our class (11.2) 

.z1.,(1+$+++: 2 

nfl 

l2 
2(n + 1) ’ 

I < 2 d(n + 1) log ?a’: I g(z) I 9 2 z/(n + 1) log P. 
. ,- 
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Hence, if P is fixed, the number of roots in the angle 0 S rp d 6 is 

(14.8) 

Since 

we have 

< ;* n + 4 l/(n + 1) log P + 1. 
1 1 

(a0 ( + **- + I a% I > I a0 I + I an I > 2 
dl aa a, I 

- = 
= d1aoq 

4 t/(n + 1) log P + 1 < 8 6~ log P 

which together with (14.8) proves the required inequality (10.6). 

APPENDIX 

As we mentioned we shah establish for the polynomials (8.4) minimizing the 
integral (8.5) under the restriction (8.6) the asymptotical representation (8.8). 

Designating the roots of the minimizing polynomials (8.4) (which all lie 
according to the theorem of Fejer” in the interval - 1 5 z 5 + 1) by cos 29, 
where 

0 =( 61 5 192 j - *. _I 6, g ?r, 

we first show that for Y = 1,2, . * * , n we have 

(15.1) 

(Al& p) defined in (8.7)). For if this were not true for v = vo we would have 

i.e. the interval 

0 I 29 I v t + 2n A14(k, p) j/@@ - - ?& 

would contain less than v. of the 6’s. But applying the inequality (8.7) with 
rw = 0, B = (2Yo - 1)/2n s + 2~&.@, p) l/log n/n gives 

210 - 1 cj 1 --- ___ 
0$9i~(2yo-l/2n)s+ZaA11(k,g)~ 2 

2-41&, p> dn log n 

< Al*&, p> y/n log n, 
i.e. 

18 Math. Ann. 85 (1922), 41-48. 
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which is a contradiction. Similarly we can show that 

(15.2) 

2v - 1 
rs,2-----lr 

2n - %41&, p> j& 

v = 1, 2, * . * ) ?a. 

From (15.1) and (15.2) if 

- D = - (?rA&, p)” + 27rA& p)) 5 X, $ D 

v = 1,2, a-- ,n 

we have 

with 18 1 S 1. Hence if 

min Iz-zt=E>O 
-1$+16+1 

then 

(15.3) 
R 

Pdn(Z, N = II( 
2v - 1 

z - cos 
-37 e > 

WD/rr)~ 
r-l 

with 18’ 1 S 1. But 
R 
DC 

2v - 1 z-&P n 
z r-l - cos 2n * > 

= T,(z) = 
( 

z+y/zp--in+ 
2 > ( 2 > 

= z+&?=i” 

( 2 > 
[l + (z - y’zz - ly] = 

( 
z + ;“Ji> (1 + V) 

with 1 t?*’ 1 6 1. This with (15.3) proves our assertion. 
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