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5 1. Let $1 = 2, +, = 3, $s e 5, +,, . . . ##, . . . denote the 
sequence of primes. In what follows we shall be concerned with 
some problems regarding difference and quotient of consecutive 
primes. We put 

1c = 2,3, . * . . 

There are many unsolved problems regarding the sequences d, 
and Q,,, and the subject is full of peculiar difficulties. For instance 
it has been conjectured by many authors that d+, = 2 for in- 
finitiveIy many values of H, i.e. that the sequence of “twin primes”: 

3,5 5,7 Il.13 17,19 29,31 41,43 ‘ . . 

is infinite. Neither this, nor the more feeble conjecture that dn 
does not tend to infinity, has been proved up to now. Moreover 

at present we are unable to prove even that Z&t - = an 0 
W+COh.C~ 

. 

In this direction it has been proved by P. ERD& r) that 

Recently R. A. RANKIN 4) proved, that for C we can choose #+, 
and according to an oral communication of A. SELBERG he can 
improve this result by choosing for C the value #. This is all we 
know about the small values of &. In the opposite direction it 
can be proved by the method of V~GGO BRUN that twin primes 
and more generally pairs of consecutive primes the difference of 
which is equal to a fixed (even) integer 2R, are rather “few”. More 
precisely, we have the following result *): The number of solutions 
of 48 = k, $,, 5 x does not exceed 

(3) ** 1 

*) From the prime number theorem it follows only MI 
d 

A r; 1. 
n--too 1% n 

**) We denote by c,, c,, . . . positive constants, and by c a positive 
constant which is not always the same. 



116 

It follows from (3) that the sequence d,, is not bounded. As a matter 
of fact, this follows also from TCHEBYSHEFF’S estimation ‘) 

6 (x) = dz log sb, < c,x, 
h.6% 

and also from the trivial remark that no one of the consecutive 
numbersti!+2,7a!+3,n!+4,...n!+-+zisprime,andthus 
there are arbitrarily large “gaps” in the sequence of primes. From 
TCHEBYSHEFF‘S estimation, mentioned above, it follows also that 

F dn 1 
sly”, log 15, z X’ 

According to the primes number theorem we can 

choose c, = I + E for any E > 0, if x is sufficiently large and thus 
d, we obtain lim - 2 1. In his paper &) where previous results 

N-MO 1% h - 
are quoted, P. ERD& proved, that 

(4) 
dn 

nFa log &J . log log $H 
> 0. 

(1% 1% 1% %4* 

This has been still improved by RANK~N 8, by adding in the 
numerator of the denominator in (4) the factor loglogloglog fi= 

Q 2, If the conjecture regarding twin primes would be proved, it 
would follow that the sequence G?,, oscillates between 2 and arbitrary 
large values, thus it would be neither monotonically increasing 
nor decreasing, from some point onwards. This result has been 
proved without any hypothesis, by P. ERD~S and P. TURAN ‘). 

They proved also that the sequence q,, is also neither monotonically 
increasing nor decreasing. These results can be expressed also by 
saying that the sequences p,, and log p, are neither convex nor 
concave from some point onwards. A generalization of this result, 
regarding the sequence log fin, has brcn given recently by A. RE- 
NYI *). His result formulated in a geometrical terminology, runs as 
follows: Let us consider a finite polygonal line situated in the 
complex z-plane and having the consecutive vertices z,, z,, . . . zn. 
The total curvature of this polygonal line is defined by 

(5) 

where arg 2 denotes the argument of the complex number 2, i.e. 
if Z = r . &, r > 0; - 7~ < v I; 7t, we have arg Z = v. NOW let 
TZN denote the polygonal line with the vertices 2% = n + i. log &I, 
&+l SNandlet G N d enote its total curvature, It is evident, that 
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if the sequence log #+, would be convex or concave from some point 
onwards, Gn7 would be bounded. Rut RBNYI proved that GN tends 
to infinity, as a matter of fact he proved GN > c. logloglog N, 
thus giving a new proof of the theorem of ERI~S and TURAN 
mentioned above. In waht follows we shall prove a refinement of 
this result, giving the exact order of magnitude of GN: 

TIteorem 1. If GIV denotes the total curvature, defined by (5), 
of the polygonal line WV having the vertices zr, = it + i. log &, 
p,+l 5 N, we have 

(6) cg . log N < GN < c, , log N. 

It seems probable that GN lim - 
N i-CDlogN 

exists, but we are at prcscnt 

not able to prove this, The pro01 of Theorem 1 will be completely 
elementary. Besides the estimations of TCHEBYSHEFF 

(‘1 c -5 < 72 (x) < cg -q 
410gx log f *) 

and #,&+I < 2p,,, WC shall use only the method of BRUN. 

5 3. Proof of Theomn 1. Clearly we have 

(8) GN =+ 
n 

+4; N 1 arc tg log qH+l ----- arc tg log qn I. 

Using arc tg a -- arc tg b = arc tg G this gives 

(f-9 
log %!k! 

GN= X arc tg q* 
&+I 6 N 1 + log qn+1 . log pn ’ 

As according to (7) the sequence qn is bounded, we obtain from (9) 

(10) C,LN<GN<LN 
where 

As regards the upper estimation, it can be finished at once: we have 

Now, we obtain 

*) n (x) denotes the number of primes which are $ x. 
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Thus the upper estimation of (6) is proved. As regards the lower 
estimation it is somewhat more intricate. We proceed as follows: 

Let us neglect the terms log y of LN for those indices it for 
I I 

which either 4, or c&,+1 exceeds I Iog A,*) and denote the remaining 
sum by LN’; evidently GN > c LN > c LN’. As according to (7) 

p$- ) 1 <I, andwehavefor~xJ<l)log(l+x))>c,Ixl, 

further using the identity 

(14 9n-b1 -= * +a+14 k4lrtn 

9% ha --p- 

we obtain, by putting 

(where 2:’ denotes that the summation is extended only over 
such indices n for which both dn and &+I are < 1 log fi) we obtain 

(16) LN > c7 (DN - RN) 

Now we have 

Thus if we prove DN 2 c8 log N, GN > E% log N follows. To estimate 
DN we need the following lemma. 

Lemwuz I. The number of solutions of C = a, dn+r = b, P, < N, 
does not exceed 

In other words, the number of such primes p I; N for which both 
p + a and 9 + a + b are also primes, does not exceed (18). This 
lemma can be proved easily by the method of VIGGO BRUN (l.c.) 
by applying a ,,triple sieve”. We need further 

Lemma 2. Let us denote 

(19 w (4 =b,( 1 + f). 
----. 

*) The value of the constant .A shall be determined later on. 
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We have 

(20) c 
ASmsA+B 

W(m) $;B+log(A + B) + I. 

Proof of Lmma 2. Clearly 

2 
ASm6A-bB 

and thus 

ASdr5; A+B 

#?Y w (m) 5 
ASmSA+B 

Now we prove, using Lemmas I and 2, the following 

Lemmu 3. Let E, I and M denote positive constants, and let. k 
denote a positive integer, k 1 kO (M, c, A), The number of indices S, 
for which cl, < IM . (k -- I), k+i < XM (k -- - I) further 

eMk 

are valid, does not exceed 

cm. E . eMk 
Mk ’ 

Proof of Lemm 3. The number of primes P, for which 
CM (A--1) < p,, < eMk, further G!,, = a and &+I = b can be estimated 
by Lemma I. If this number is denoted by &,b, we have 

Zasb -= @jp C@Mk W (a) W (a + b). 

If Zb denotes the number of primes satisfying all conditions of 
Lemma 3, we obtain 

(22) Zk < 2 &,b. 
a<AM(R-l), b<hM(k-1) 

lb-al < 7 

Using Lemma 2 we obtain 

for R > k, (M, E, il). 
Let us proceed now to the proof of our theorem. According to 

(7) if we choose 
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C&Mk 
we have at least 2Mk - primes in the interval(eM(k-11, cMR), As we have 

,Wk-1) :b<&fk 
dN < eMk the number of primes P, in (@(k-1), e”) 

for which d, 2 AM (k--l), does not exceed 
,$A 

AM (k--l)’ 
and we have 

the same estimate for the number of primes P, in the same in- 
terval for which dn+l 2 ;uM (R - 1). Thus for at least 

primes in (&P-i), &k), WC have both dn 5 UM (k--l) and 
dpl+l < AM (k-l). According to (23) the number of primes in 
(#(k-l), eMk) for which di < AM (k--l), &+I < AM (k-l) and 

&kM 
p*+l--&tI < --j- does not exceed ‘g, Let us choose now R = 

32 c c eMk I . 
=- and E = &. We obtain, that for at least kk primes m 

(eMF:-11, eMk) we zve d, < ctM (k-i), &+r < AM (k-l), and 
EkM 

jdn+wZ+T. 

Thus from (15) we obtain 

(24) DN > 2C 2s’ 1 da-t1 --dn I> 5 
P* 4ilM 

L: I >c,, 1ogN. 
k D <k < W N ,Wk-1 1 <p,,<$fk 

-F 
k,<k<‘%$! 

As it has been remarked above, this proves our theorem. 

5 3. In connection with the above estimations there arises the 
question, how many times it occurs for P, 5 N that d~+i = dn, 
or more generally that &+l = 4, + h, where h is a fixed integer 
(positive, negative or zero}. In this direction we prove 

Theorem 2. The number of solutions of $+, I; N, u&+-r = & -t- h 
does not exceed 

(25) 

Proof of theown 2. We have according to Lemma 1 
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Applying the inequality of CAUCHY-SCHWARZ, we obtain 

(27) ca HN<- 
logs %s, (logs)%+* 

w (m). 

Row we need the following simple 

Lemma 4. 

(28) ,#;I wa W < crs-4. 

Proo/ 01 Lenama 4. We have 

I e 

n” 
( 1 I+$ 1 

P=S 1 + p 
( ) 

==z If 
p=a ( pr+ 2$ 1 =c11 

P 
and thus 

where V {d) is the number of different prime factors of d. Denoting 
by G (d) the number of divisors of d we have 

and thus 

Thus we obtain 

$Ws(m) <$A 
m-l 

which proves Lemma 4, As & 
4: 

(log IV)% can evidently occur (‘7 
not more than N (log iV)-‘h times, as it is seen from 2 dn 5 N, 
Theorem 2 is proved. ASN 

$ 4. We prove still some results concerning the sequence dn. 
Recently W. SIERPINSM proved the following theorem: *) 

For every positive integer K there exist an infinity of primes + 
with the property that all the numbers $ -f R, k = 1,2, . . . K are 
composite i.e. that there are an infinity of primes which are 
“isolated” from both sides from the next prime by an interval of 
arbitrary large length. Evidently the theorem of SIERPINSKI is 

= 0. The proof given by SIERPINSKI 
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is based on the application of the theorem of DIRICNLET, that in 
every arithmetic progression Dx + Y, x = 1, 2, . . . D,Y = I there 
are an infinity of primes. In what follows we shall show that a 
theorem which is stronger than that of SIERPRINSKI can be proved 
in an elementary way by using only BRUN’S method. We shall 
prove 

Theorem 3. For any integer N and any Y < &log N there is a 
prime &, I; N for which 

d H-i 2 
Cl6 1% N _____- j==O,1,2,,..(r-I). ra ' 

Proof of theorem 3. We need the following 

Lemma 5. 

(291 
2 W (m) < 3A1-A 

m=l d (I -a) 21 
for O<A< 1. 

We have namely 

which proves Lemma 5. Now WC Provo 

Lemma 6. 

(30) 

We apply the theorem of Vrcco RERUN mentioned in $ 1 (see (3)). 
We obtain using also (7) 

I 
(31) p$ a 5&N anA 

i+ 

hSN 
W (4 

-’ (,0&A n (N) ’ ,,& ,:g’N ’ 7 + (lo;N: +A’ 

Thus by Lemma 5 WC obtain from (31) 

(32) 
1 r; 3c N (log N)r-A 

pl:N ad - 
3c N --- 

logsNil{ -A) = qi-- a) (log N)‘+A’ 

which proves Lemma 6. Now Theorem 3 can be deduced easily. 
Let us put 
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T-l 

(33) 8(‘) = c 1 
n 

j=l dG’ 

We have by Lemma 6 with ,I= 4. 

(34) c 
hsN-r-i-1 

Thus if we put Atin 8:) = ,fi’,) 
hS N-r+1 

we obtain from (34) using 

(7) that 

(35) A:r’ < ;gN* 

Thus for an appropriate it we have 

(36) d w-j > 
Cl6 1% N 

Y3 
for i=O,l,...(r-.-1), 

which proves Theorem 3. For Y = 2 this thcorrm states, that there 
exists a constant C such that for every N there is a prime fi 5 N 
for which all the numbers 9 f k, k = 1, 2, , . [Clog N] are 
composite. This can be formulated also by saying, that the first 
prime having the propcrty required by the theorem of SIERPINSKI, 
i.e. for which all numbers + f k, k = 1, 2, . . I K are composite, 
does not exceed eCK. 

We still add some remarks on Lemma 6. As it has been used 

before, for more than 
CN 

- primes & 5 N we have d, < K log N, 
log N 

and thus we obtain 

(37) 

This means that the order of magnitude of the sum on the left of 
(30) given by Lemma 6 is exact. Now we can make the parameter A 
in this sum depend on N, for example we may choose 

A=l.-- 1 . 
loglog N’ 

We obtain from Lemma 6 that 

(38) cl, N logrog N c ‘< logsN--’ p*SN 46 
For the sum on the left of (38) we can give only the lower estimate 

(39) 
1 %l!DN 

’ z ’ (log N)” ArN fi 



124 

As amatter of fact, if we could prove 

with y(N) -+ 00, it wou1.d follow that dim 
a% 

- = 0, but at 
n-cc0 logfi 

present we ate unable to prove anything of this type. To give some 
idea for the random distribution of the sequence A, we add a tabel 
giving the values of ~6, for P, S, 4397, (n = 2,3, . . . 599). 

Budapest, January 30, 1949. 
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Table of the sequence d, for IZ = 2,3, , I . 599. 
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