
Some theorems and remarks on interpolation .
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Throughout this paper x"'), x-"1 , . . ., x~,' will denote the roots of the
n-th Chebyshev polynomial T„(x) [T„ (cosh) = cos nJ]. f(x) will denote a
function continuous in [-1, +1] and L,(f(x)) will denote the Lagrange
interpolation polynomial of f(x) taken at the points xi(" ) (i = 1, 2, . . ., n) ; in
other words, L,(f(x)) is a polynomial of degree not greater than (n-1) for
which')

L„(f(x+°I)) -f (x;°l)

	

(r	 1, 2, . . ., n) .

It is a well known result'-') that for every x„ there exists a continuous 3)
f(x) so that L„(f(x„)) does not converge to f(x„) . In fact I proved 4) that in
marked contrast to a well known theorem of FEJÉR on Fourier series, if

x0=cos
q

:r, p-q- I (mod 2), there exists a continuous f(x) so that

lim Ln (f(x,-,)) = oo, or there does not exist a sequence n, so that L„, (f (x„)) f (x„ ) .
n
Moreover4) for any - o I c < c and any such value of x„ there exists a
continuous f(x) so that L„(f(x0)),c, i . e . L„(f(x„)) can converge to any

prescribed value . TURÁN and 1 5 ) showed that if x„=--cos
q

	 -r, p-q - I (mod 2),

then for every continuous f(x) there exists a sequence n, so that L, (f(x„))->f(x„) .

Previously MARCINKIEWICZ6) has showed that, if the xi(" l are the roots of U„(x),

1) There will be no misunderstanding writing L,,(f(x('))) instead of L„(f(x)) -,
throughout this paper.

2) For x,0 =0 see L . FEJÉR, Über Interpolation, Göttinger Nachrichten, 1916, pp . 1-16 .
For every x0 this has been remarked apparently first by S . BERNSTEIN : see his paper
"Sur la limitation des valeurs etc.", Bulletin Acad. Sci. URSS, 1931, pp. 1025-1050 .

3) "Continuous" means throughout this paper "continuous in [- 1, + 1]" .
4) P. ERDÖS, On divergence properties of the Lagrange interpolation parabolas,

Annals of Math., 42 (1941), pp . 309-315 ; P. ERDÖS, Corrections to two of my papers,
ibidem, 44 (1943), pp. 647-651 .

5) P. ERDÖS and P. TURÁN, On interpolation . I., Annals of Math ., 38 (1937), pp . 142-155.
6) J. MARCINKIEWICZ, Sur l'interpolation, Studia Math ., 6 (1936), pp. 1-17.

11



12

	

P. Erdös

then to a given continuous f(x) and -1 < xL T l there always exists a sub-
sequence n,, with Ln; (f (xo')) -> f (x') . It follows from results of TURÁN and
myself) that for a general class of point groups [which include the roots of
both T„(x) and UU (x)], to every continuous f(x) there exists a sequence n, so

that L„.(f(x)) converges to f(x) almost everywhere .
GRÜNWALD and MARCINKIEWICZ7) showed that there exists a continuous

f(x) so that L„(f(x)) diverges for every x, in fact limsupL„(f(x))=cs for
every x. The analogous question for Fourier series is as well known still
unsolved and seems very difficult . MARCINKIEWICZ 6) and TURÁN 4) showed
that for every x1, there exists a continuous f(x) so that

lim sup

	

L; (f(x,,)) = .n 171

In other words the arithmetic means of the Lagrange interpolation polynomials
of a continuous function can diverge at a given point, again in marked
contrast to the celebrated theorem of FEJÉR for Fourier series . MARCINKIEWICZ6)

further showed that there exists a continuous f (x) so that- 2:L,(f(xo) )
n ,7 I

diverges in an arbitrarily given countable set, and lie raised the problem

whether there exists a continuous f(x) so that 1

	

L5(f(x(,)) should di-n f:=i

verge almost everywhere . In a paper written 12 years ago G. GRÜNWALD

and IS) proved that there exists a continuous f(x) so that t

	

LA (f(x))n k=1

diverges for every x . While writing this paper I made the unfortunate dis-
covery that our proof is erroneous . All that we prove is that there exists a
continuous f(x) so that for every x

(1)

	

lim sup I ~~Lk (f(x})	x.
R r-1

In a view of the strong convergence of the arithmetic means of the Fourier
series (1) seems not uninteresting, but of course it would be of interest to
know whether (1) holds without the absolute value . 'I just succeeded to show
that with a slight modification of our construction one can prove the existence
-of a continuous f(x) so that for almost all x

7 ) G. GRÜ NWALD, Über Divergenzerscheinungen der Lagrangeschen Interpolations-
-polynome stetiger Funktionen, Annals of Math ., 37 (1936), pp . 908-918 ; J . MARCINKIEWICZ,
Sur la divergence des polynomes d'interpolation, these Acta, 8 (1937), pp. 131-135 .

8) P. ERDÖS and G. GRÜNWALD, Über die arithmetischen Mittelwerte der Lagrangeschen
Interpolationspolynome, Studia Math ., 7 (1938), pp. 82-95. The error occurs in the last
formula of p . 92 .
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(2)	lim sup1 (±Li(f(x)))=oa .
R k_ I

The proof of (2) will be given at another occasion. At present I can not
decide whether (2) can diverge for every x .

1

	

1 .1It is easy to prove that if for every x, J f(x + h) -f(x) j = o (( log h) ) .

L n(f(x)) converges to f (x) . MARCINKIEWICZ 6) proved that there exists an f (x)

satisfying for every x the inequality If (x+h)-f(x)I=0((log lhl l ) such
that L„ (f(x)) diverges almost everywhere . This result is interesting since it
is easy to see that I Lnf(x) I is uniformly bounded in this case . By using the-
method Of GRÜNWALD') it is easy to construct an f(x) satisfying uniformly

i
the "logarithmic" Lipschitz-condition f(x+h)-f(x)I = 0 ((log Ihl~ ) and

L„ (f(x)) diverges for every x . The proof follows the GRÜNWALD-MARCINKIEWICZ
ideas closely, thus w3 do not give it .

In the present paper we prove the following

Theorem 1 . For almost all x

1

	

1 L,:(f(x)) = o (log log n),n k_I

if only f(x) is continuous in [- 1, + 1] .

As an easy consequence of Theorem 1 we deduce
i

Theorem 2. Let 1f(x+h)-f(x)j=o( (log log l)
)

uniformly in
[-1, + I]. Then for almost all x

1

	

(f(x)-Lk:(f(x)))y~0 .n h_1

The interest of Theorem 1 and 2 is that they show that taking arithme-
tical means improves to some extent the convergence-properties of the Lagrange-
interpolatorical polynomials .

It can be shown that Theorems I and 2 are best possible in the
following sense : Let g(n) -- arbitrarily slowly . Then there exists a conti-
nuous f(x) so that for almost all x there exists a sequence n,=n;(x) so that

(3)

	

n,

	

Lv(f(x)) I > l-°s1n~n'
V=1

	

~41

The same holds if We consider arithmetic means of higher order . (3) probably
remains true without the absolute value, but this I can not prove .

Also there exists an f (x) satisfying in - 1 <_ x < + I the condition
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II f(x+h)-f(x)1=O((log log
~hl J )

and so that

(4)

	

lim 1 5 (f(x)L,(f-(x)))9=0
n -i . n l=1

holds only in a set of measure 0. This is not without interest since in (4)
the Jim sup is finite for almost x . [This can be shown by the same method
as Theorem 2 .] The proof of (3) and (4) is fairly complicated but is similar
to the [correct part] of the argument of GRÜNWALD and myself .

MARCINKIEWICZ 6) proved that for every g(n)-mix there exists a conti-
nuous f(x) so that for almost all x there exists a sequence n;=n;(x), for
which

Ln ; (f(x)) >
log n ;

.
g(nz )

By using the method of GRÜNWALD') it is easy to replace "almost all" by
"all" in the result of MARCINKIEWICZ . Further for every x, there exists a
continuous f (x) so that

1

	

Ill

	

low n;
n, Z L, (f(x,,)) > g(n)

We do not give the proofs of these two theorems since they do not contain
any new idea .

P r o o f o f T h e o r e m 1 . It will be sufficient to prove that if f (x) is

bounded and e . g. lf(x) - a uniformly, then exists an absolute constant c

so that for almost all x and n > n„=n„(x)

(5) 2:1L,(f(x)) <cloglogn .
n 7 =1

Suppose (5) is proved . According to the theorem of WEIERSTRASS we find a
polynomial of degree 1, cp,(x) so that j f(x)-cp 1 (x)I < s . By applying (5) to
(f(x)-y,,(x)) and remarking that for k>I LA,((fl(x))=cq,(x) we obtain

1

	

~

	

1

	

n

	

1

	

1L

<
n k.I ILx(f(x))I

n 171
{LK( ~(x}}I ~- n

	

ILti(f(x)-~a(x))I
<celoglogn=, O(1)=o(loglogn),

which proves Theorem 1 . Thus we only have prove (5) .
In the proof of (5) our principal tool will be the following result of

MARCINKIEWICZ and ZYGMUND 9) : Let I f (x) ; -- 1, then there exists an absolute
constant 2 so that for every a < 2

+I

(6)

	

(exp JaL L.(f(x))l dx < A = A(7),

3) J. MARCINKIEWICZ and A. ZYGMUND, Mean values of trigonometrical polynomials,
Fundamenta Math., 28 (1937), pp. 131-166, see theorem 4 on p . 133 .



where A is independent of k. From (6) we obtain that there exists a constant
c, so that

(7)

	

M[x ; IL,(f(x))j >c,loglogk]<	1	
(log k) 10

(M[x ; . . .] denotes the measure of a set in x satisfying a certain condition) .
Further it is well known that
(8)

	

1 Lz.(f(x)) < c., lok,g
Now we prove the following

L e m m a. Let ;.(.j =0 be defined in [-1, ;-1] . Assume that

M[x ; bg (X) > C, log too, k] <	
1

(log k) I0
and
(10

	

gk (x) < c9 log k

	

(k = 2, 3, . . . , n) .
Then if c 3 is sufficiently large, we have for almost all x and sufficiently large
.n > n,, (x)

G. (x) _ -

	

g, (x) < c:; to log n .
n ,;-1

The sequence IL~: (f(x)),I satisfies (9) and (10) [since it satisfies (7) and (8)] .
Thus to prove Theorem 1 it will suffice to prove our lemma .

Proof o f the Lemma . Define S,(x) as the set in x for which
.gA (x) > C, log log k .

Let cgk(x) be I in S,,(x) and 0 elsewhere . It follows from (10) that if
G„(x)> c, log log n then x must be in S . (x) for at least c4 n/log n values of
k (1 < k < n) . Thus by (9)

M [x ; G n (x) > c, log log n] M [x ; FG (r z (x) > loc,
n

g n ] <
(11)

	

I

<
lognf

	

x dx <
log n X, 1 <

C4 n

	

k_'

	

1
J (2: cF~( ))	 c}n L (log k)'o

	

(log n) ,

(9)

0

Put m, .	[ebJ . We obtain from (11) that
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cc

M [x ; G>,;,.(x) > C, log log m,.] <

	

~ < ~.
r=1

	

.,~-,

Hence by a simple argument we obtain that for almost all x and large
enough r > r,,(x)
(12)

	

G„Ln (x) < C, log log m, . .
If m,. < n < m,.+, we have by (10)

mr I G„(x)I <n G„(x)I<m, .I G,,,r(x)I+c,(m,.+,-rn,)logn<m,!G..,(x)I-}- c ' m '- logn
~r
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i . e .

(13 )

	

IGn(x)I < I G ,
==r(x)I

+O(l) .
The Lemma now follows from (12) and (13) . Thus Theorem 1 is proved .
Sketch of the proof o f Theorem 2 . It is well known that there

exists a polynomial cp,(x) of degree < V' so that

1
( 1 4)

	

If(x)- ,Pr(x)I =o (,log loge)
We have

1
n [ (f(x) -Lk(f(x)))"]= n [I(f(x)-Lk(f(x)-~a(x))-Lk(~l', (x))) y ] ~

~t

	

n

(15)

	

(f(x)-Lk(~~(x)))?+ n

	

(f(x)-Lk(~Pa(x))) (Lk(f(x)-~~(x)))]+
tZ k=1

	

J-1

l + - Lk(f(x)- (pa(x))2 = 2 + 2 + 2 .n k-t

From (14) and (8) we obtain 2=o(1) since L,(T,(x))=q,(x) for k>Vn.
From (14) and (8) we have

n

2 < n logElogn 2: I Lk(f(x)-(P, (x))I +o(1) <

<

	

CI

	

(~ IL,(f(x))I+~ IL,(T,(x))I)+o(1) <n log og n x-1

	

1.-1

2E
< nlogloo, n

	

I L'.(f(x))I +o(1)=o( 1 )

for almost all x by Theorem 1 . Now we investigate -I. . Put sr =

	

It suffices,
to show that for almost all x

16)

	

L;. (f (x) - T (x))J= 0( 1 )-S,

For if (16) is proved, put s, < n < sr+1 . Clearly

2 J +
2

[
8 '+ 12: L.`(f(x)-T,(x))j] < Y {- 2(S +	s')

(c log n)' < ~; -E 0(1)

since (sr+1 -s,) < c ST < c	Sr	 ,
r-4

	

(log n) 3
or for almost all x 3 =0(1). Thus we have only to prove (16) .

The proof of (16) is similar to that of our lemma . Denote by ,'(x)
the set in x for Which Lk(f(x)-gq,(x))2 > E . By (14) and the theorem of

MARCINKIEWICZ-ZYGMUND9 ) the measure of SS (x) is less than (log k)10' Thus_

from (8) if -'(S ' ) > Es x has to lie in at least	c5 sr

	

' )
(log sr)' sets S,, (x , l

	

k <_ s r .



But then, as in the proof of the lemma,

I	 c6(logSr)	1	r,
M x ; > £ c, <

	

s

	

k<sr (log k)1° < ( l og s,.)e
or

m

	

a
~M[x;~3>ESr]<~ C < 0,
r-1

	

r=1 r2

which proves (16) and completes the proof of Theorem 2.

(Received July 9, 1949.)
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