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Theorems 1, 3 and 4 of this paper were announced in a previous paper 
of one of us [l]. Ss relat(ed problems were discussed there, and references 
were given, we present our theorems without any introduction. 

The Axiom of Choice is adopted throughout the paper. 

5 1. A graph G is called 6-colourable if to each vertex one of a given 
set of k: colours can be attached in such a way that on each edge the two 
end-points get different colours. 

Theorem 1. Let lc be a positive integer, and let the graph G have the 
property that any finite subgraph is k-colourable. Then G is k-colourable itself. 

Our original proof was simplified by SZEKERES. Later, a simple proof, 
based on TychonofI’s theorem that the Cartesian product of a family 
of compact sets is compact, was indicated by RABSOX and A. STONE. We 
suppress these proofs here, since t’heorem 1 can be considered as a special 
case of a theorem of R. RADO which appeared meanwhile [3], and a 
topological proof for Rado’s theorem was given by GOTTSCHALK [2]. 

Theorem 2 (RADo). Let M and M, be arbitrary sets. Assume that 
to any v E MI there corresponds a finite subset A, of M. Assume that to any 
finite subset N C M, a choice function xN(v) is given, which attaches an 
element of A, to each v E AT : 

xr;(v) E A,. 

Then there exists a. choice function x(v) defined for all v E MI (x(v) E A, if 
v E M,) with the follow&g property. If K is any finite subset of MI, then 
there exists a finite subset N(K C S C M,), such that, as fur as K is con- 
cerned, the function x(v) coincides with xX(y): 

x(v) = xn(v) (v Em 

We now deduce theorem 1 from theorem 2. Let ih! be the set of k 
colours, and let fM, be the set of all vertices of G. We always choose 
A, = M. To any finite 2\T(I?\T C M,) there corresponds a finite subgraph 
of G, consisting of the vertices belonging to N, and all connections between 
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these vertices as far as these belong to G, This subgraph is assumed to 
be k-colourable, and so we have a function x~(Y), defined for Y E ,N, taking 
it’s values in M. Now the function X(V) defines a colouration of the whole 
graph G. In order to show that opposite ends of any edge get different 
colours, we consider an arbitrary edge e, and we denote the set of its two 
end-points yl, y2 by K. Let N be a finite set satisfying K C N C M,, 
X(Y) = Z&J) (Y E K). To AT there corresponds a finite graph G, which is 
k-colourable by the function +(Y); G, contains e. Therefore z&Q + 
# P+(v~), and so x(Y~) f x(YJ. This proves theorem 1. 

As to Rado’s theorem one could raise the following question, In the 
statement of theorem 2 the words “finite subset” occur four times. Is 
it allowed to replace these simultaneously by “subset of power < m”, 
where nz is an infinite cardinal? Naturally we may take m = N,,, but we 
may not take m = or. A counterexample is readily obtained from the 
ingenious counterexample which SPECRER [4] gave to a problem of 
SIKORSKI. 

p 2. We shall apply theorem 1 to a problem in the theory of relations. 
Let S be a set, and assume that to every element b ES a subset f(b)CS-b 
is given. If(b)\ d enotes the number of element’s of f(b). Two elements b 
and c (b E S, c ES) are called independent if b E S - f(c) and c E S - f(b) 
both hold. A subset S, of S is called an independent set if any two elements 
of S, are independent. Ss, is also called independent if IS’,\ = 0 or 1. 

Theorem 3. Let k be a non-negative integer, and as.sume that j f(b) 1 < k 
for each b ES. Theta S is the union of 21c -+- 1 independent sets. 

Proof. First assume S to be finite. We proceed by induction with 
respect to IS[. The case (S1 = 1 is trivial. Assume the theorem to be true 
for ISI = m- 1; next consider \S = m. 

Construct a graph G whose vertices are the elements of S. The vertices 
b and c are connected in G if b E f(c), and also if c E f(b). 

The number of edges is at most km, and so there exists a vertex d 
which is connect,ed with less than 2k + 1 vertices. By the induction 
hypothesis, S - d is the union of 2k -+ 1 independent sets. It follows that d 
is independent of all elements of at least one of these independent sets; 
hence d can be added to that set’ without disturbing independence. This 
proves the theorem for finite (S(. 

The division of S into 2k -t- I independent sets can be interpreted as 
(2E + I)-colourability of the graph G, and vice versa. Now theorem 1 
immediately shows that theorem 3 holds true if S is infinite. 

Theorem 4. If f(b) is finite for each b ES, then S is the union of o 
countable number of independent sets. 

Proof. Define S, as the set of all b E S for which 1 f(b) 1 = k. Then 
S=So+S,+S2+ . ..) and to each S, we can apply theorem 3. 
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