
98

	

MATHEMATICAL NOTES

	

[February,

- c 2 + 11.5866485c - 20 .1285 = 0 .

cI = 2 .128067661 .

C2 = 11 .5866485 - cl = 9 .458580839,

or

C2 = 20 .1285 = cI = 9 .458580838 .

The case of two angles and one side is handled by the Law of Sines, with the
sines of the three angles found by series .

9. Solution of triangles with machine and tables . For the quickest possible
method of solving triangles, use both tables and machine . Follow the methods
of Section 8, and whenever it is necessary to find a trigonometric function of a
given angle, or to find the value of the angle from one of the trigonometric func-
tions, use the tables . The machine will be found helpful in the interpolation .

With the necessary multiplying, squaring, extracting the square root, and
other computation done on the machine, every triangle can be solved with 3
applications to the tables . In some cases, this includes the check, in other cases,
a fourth reference to the tables will be required for a check . This contrasts with
8 applications to the tables, when the computation is done by logarithms instead
of machine .

MATHEMATICAL NOTES

EDITED BY E . F. BECKENBACH, University of California

Material for this department should be sent to F. A . Ficken, Institute of Mathematics
and Mechanics, New York University, 45 Fourth Ave ., New York 3, New York .

ON A CONJECTURE OF KLEE

PAUL ERDÖS, University of Michigan

1 . Introduction . Klee1 denotes by Sk(m) the number of solutions of c5(x) = m,
where x has exactly k prime factors which appear to the first power in the
factorization of x . Lampek1 observed that

(n!)2
~

	

= n! .
0(n!)

Klee1 remarks that except for the prime 2, all prime factors of n!/q(n!) are

multiple. Thus So(n!) >0 . Klee1 conjectures that for all n, SI(n!) >0 . Gupta 2

recently proved this conjecture, in fact he proved that lim n Si (n!) = Co . In the
present note we prove that lim n=. Sk(n!) = w for every k, and state without

1 This MONTHLY, vol . 56 (1949), pp . 21-26 .
2 Ibid ., vol . 57 (1950), pp . 326-329,
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proof a few other problems and results .

2. Lemmas. First we prove three lemmas .

Lemma 1 . Let b I a, and assume that a/b has the same prime factors as a (that is,
all the prime factors of b occur in a with a higher exponent) . Then

(A~a)
b

This follows immediately from the definition of the function .

Lemma 2 . The number of primes q, n < q < 2n, q =-1 (mod 6), is greater than
c 1n/log n for a suitable constant c l and sufficiently large n .

This follows immediately from the prime number theorem for arithmetic
progressions (or also from a more elementary result) .'

Lemma 3. Let n be sufficiently large . Put

n!
AgL42, . . .,gk -

	

1II (p

	

(qi - 1) (q2 - 1) . . . (qk - 1)

where p runs through the primes _<_ n and n < q < 2n, q---1 (mod 6) . Then
A g1 , . . . , gk is an integer, and p I A, 1 , . . . , gk, for p < n .

First of all from Lemma 2, for sufficiently large n the number of q's is
> cln/]og n > k ; thus A,,,. . . , gk is defined. Let t be a prime . For n/2 < t <n,n,
tI Ag1, . . . , g k since tI n! while tip-1, qi-1 ~40 (mod t) (since qi-1=0 (mod 6)) .
Let next 3 < t < n/2 . The denominator of A,,, . . . , gk can be written as

2vH p-1 k q2 -1~
2

	

i- 1

	

2

and here all the factors are distinct integers <_n . But t and 2t are never of the
form (q i -1)/2 (since (qi-1)/2=-0 (mod 3)) . Further not both t and 2t can be
of the form (p-1)/2, since either 2t+1 or 4t+1 is a multiple of 3 . Thus any
3 <t<n/2 occurs with a higher exponent in n! than in the denominator of
A q,, . . .,4k • If t= 3 and n_>_ 12, then 31A,,, . . ., gk , since 12 ~ (p-1)/2, 12 s (qi -1)/2 .
Let now t=2. The even numbers 6u+2 are clearly not of the form p-1 (6u+3
f=0 (mod 3)) . Thus n!/IT(p-1) is a multiple of 2[(n-2)I6] . If ~,is a
multiple of 21, we clearly have 21 < 2knk and, for sufficiently large n,

2 [(n-2)/6] > (2n) k

Thus 21 A,,, . . . , Hk, and Lemma 3 is proved .

3. Theorem. We shall establish the following result .

I R. Breusch, Math . Zeitschrift, vol . 34 (1932), pp . 505-526 ; see also P . Erdös, ibid ., vol . 39
( 1 9.35), ppl 473-491 .
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THEOREM . For sufficiently large n, we have

nk

(log n) k

Proof : We have, by Lemmas 1 and 3, with

~k

	

(n ! )2
B41 ."' .4k = 11 qi

	

k

	

1i=1

Sk(n!) > c2

~(n!)

	

(qi - 1)

k
`l'(B91	9k) =

	

P II qi
p-<n

	

i=1

2[(n-2)/61+2

(P - 1 )II (qi - 1)

n!
k

psn

	

i=1

k
(HPqiAql . . . .qk)H

	

.= n!.
p<n i=1

It follows from Lemma 2 that there are more than c2nk/(log n)'- choices for
q1, . . . , qk ; also, by Lemma 3, B 41 , . . ., 4k contains exactly k prime factors which
appear to the first power in the factorization of B41, . . •, 4k. This completes the
proof of the Theorem .

4. Further questions . One can ask the question how large has n to be in order
that Sk(n!) >0 . Our proof gives that n has to be greater than c3k log k . By a
more complicated argument we can show that for a suitable constant c4, we
have Oki [c4 k ] ! I >0. It is probable that for every e > 0 and sufficiently large n
we have Ok([(1+E)k]!) >0 . It is easy to see that Sn(n!) =0 for n>2.

We can also show that lim n Sk(n!) 1In=1 . On the other hand there exists an
absolute constant c5 so that the number of solutions of O(x) =n! is greater than
(n!) '5 . Previously it was known that there are infinitely many integers m, so
that the number of solutions of 0(x) =m is greater than m'5 . It is an open ques-
tion whether c5 can be chosen arbitrarily close to 1 .

It seems a difficult question to decide whether 0(x) =n! is always solvable in
squarefree integers x. Similarly it seems difficult to decide whether for suffi-
ciently large n, the equation a(x) =n! is solvable (a (x) denotes the sum of the
divisors of x) .

If one wants to prove Gupta's 2 result, SI(n!) > 0 for all n, it suffices to remark
that for n>=4 there always is a prime q==-1 (mod 6) in the interval (n, 2n) . 3 Also
that for n >= 8,

n!

l

[February,

11 (p- 1)

(since 8 contains 2 with exponent 3) . Further since q<2n, q-=1 (mod 6), if
2n I (q-1) we have 2n < 2n/3 . Thus if
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21(n-2)161 > n/6,

then Sl(n!) > 0, and this holds for n >_ 14 . For n < 14, the relation SI(n!) > 0 can
be shown by a short computation. By a slightly longer computation We can
show that S2 (n!) > 0 for all n >_ 2 .

PERFECT SQUARES OF SPECIAL FORM*

VICTOR THÉBAULT, Tennie, Sarthe, France

1 . Introduction . This note carries further** the determination of systems of
numeration in which there exist pairs of perfect squares having the form

aabb = (cc) 2 ,

	

bbaa = (dd) 2 .

2 . Necessary and sufficient conditions. It is easy to show]' that necessary
and sufficient conditions for the above are :

(1)

	

a+b=B+1,

	

(2)

	

1=<a,b,c<B,

(3)

	

c2 = a(B - 1) + 1,

	

(4)

	

d2 = b(B - 1) + 1,

where B, a, b, c are positive integers .

3 . Special cases . The form of (3) suggests an examination of the special cases
where

(5) c=ma± 1,

with m an arbitrary positive integer.
From (1), (3) and (5), the following equations result immediately :

(6)

(7)

B = m(ma ± 2) + 1,

b=(m±1)[(m-T-1)a±2] .

Now (4), (6) and (7) combine to give

(8)

	

d2=m(m±1)(ma±2)[(m±1)a±2]x-1 .

This equation is satisfied by a=0, d = 2m ± 1, and by a=4, d =4m 2 ± 2m -1 .
Hence, since the coefficient of a2 is not a square, there will be infinitely many
solutions for each positive integer m (and for many fractional values of m as
well) .

* Translated (and abridged) from the French by E . P. Starke, Rutgers University.
** See V. Thebault, Mathesis, 1936 (Supplement) ; This MONTHLY, Two Classes of Remarkable

Perfect Square Pairs, 1949, pp . 443-448 .
t Or see V . Thebault, Mathesis, loc . cit.
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