ON A DIOPHANTINE EQUATION

P. Erdös*.

[Extracted from the Journal of the London Mathematical Society, Vol. 26, 1951.]

Throughout this paper the letters n, k, l, x, y denote positive integers satisfying $l>1, x>1, y>1, n \geqslant 2 k$, and p denotes a prime. In a previous paper \dagger I proved that the equation $\binom{n}{k}=x^{l}$ has no solutions if $k \geqslant 2^{l}$; I also proved that $\binom{n}{k}=x^{3}$ has no solutions. Obláth§ proved that

* Received 26 April, 1950; read 18 May, 1950.
\dagger Journal London Math. Soc., 14 (1939), 245-249.
+ The assumption $n \geqslant 2 k$ is not a loss of generality since we have $\binom{n}{k}=\binom{n}{n-k}$.
§ Ibid., 23 (1948), 252-253.
$\binom{n}{k}=x^{4}$ and $\binom{n}{k}=x^{5}$ have no solutions. On the other hand it is well known that $\binom{n}{2}=x^{2}$ has infinitely many solutions and that the only solution of $\binom{n}{3}=x^{2}$ is $n=50, x=140$.*

In the present paper we prove the following
Theorem. Let $k>3$; then $\binom{n}{k}=x^{l}$ has no solutions.
Remark. The cases $k=2$ and $k=3$ are left open, and it will be clear that our method cannot deal with these cases.

For the sake of completeness we repeat some of the proofs from my previous paper.

A theorem of Sylvester and Schur \dagger states that $\binom{n}{k}$ always has a prime factor greater than k. Denote one of these primes by p. If $\binom{n}{k}=x^{l}$, we must have for some i with $0 \leqslant i<k$,

$$
n-i \equiv 0\left(\bmod p^{l}\right),
$$

since only one of the numbers $n-i$ can be a multiple of p. Hence

$$
\begin{equation*}
n \geqslant p^{l}>k^{l} \tag{1}
\end{equation*}
$$

Write now $n-i=a_{i} x_{i}^{l}$, where all the a 's are integers which are not divisible by any l-th power and whose prime factors are all less than or equal to k. First we prove that all the a 's are different. Assume $a_{i}=a_{j}$, $i<j$. Then

$$
k>a_{i} x_{i}^{l}-a_{i} x_{j}^{l} \geqslant a_{i}\left[\left(x_{j}+1\right)^{l}-x_{j}^{l}\right]>l a_{i} x_{j}^{l-1} \geqslant l\left(a_{i} x_{j}^{l}\right)^{\frac{1}{2}} \geqslant l(n-k+1)^{\frac{1}{2}}>n^{\frac{1}{2}},
$$

which clearly contradicts (1).
Next we prove that the a 's are the integers $1,2, \ldots, k$ in some order. To prove this it will clearly suffice to show (since the a 's are all different) that

$$
\begin{equation*}
a_{1} a_{2} \ldots a_{k} \mid k! \tag{2}
\end{equation*}
$$

From $\binom{n}{k}=x^{l}$ we have

$$
\frac{a_{1} a_{2} \ldots a_{k}}{k!}=\frac{u}{v^{u}}, \quad(u, v)=1
$$

[^0]Let $q \leqslant k$ be any prime. The number of multiples of q^{a} among the a 's is clearly not greater than $\left[\frac{k}{q^{a}}\right]+1$ (since the number of multiples of q^{a} among the integers $n-i, 0 \leqslant i<k$, is at most $\left[\frac{k}{q^{\alpha}}\right]+1$). Also since no a is a multiple of $q^{l}, a_{1} a_{2} \ldots a_{k} / k$! is divisible by q to a power which is not greater than

$$
\sum_{a=1}^{l-1}\left(\left[\frac{k}{q^{\alpha}}\right]+1\right)-\sum_{a=1}^{\infty}\left[\frac{k}{q^{\alpha}}\right] \leqslant l-1 .
$$

Thus $u=1$, and (2) is proved.
Hence if $l=2$ and $k>3,\binom{n}{k}=x^{2}$ is impossible, since 4 being a square cannot be an a, and thus $a_{1} a_{2} \ldots a_{k}>k!$, which contradicts (2).

So far our proof is identical with the one contained in my previous paper*. Now we can assume $l>2$. Since $k \geqslant 4$, we can choose i_{1}, i_{2}, i_{3} $\left(0 \leqslant i_{\nu}<k\right)$ so that

$$
\begin{equation*}
n-i_{1}=x_{1}^{l}, \quad n-i_{2}=2 x_{2}^{l}, \quad n-i_{3}=4 x_{3}^{l} . \tag{3}
\end{equation*}
$$

Clearly $\left(n-i_{2}\right)^{2} \neq\left(n-i_{1}\right)\left(n-i_{3}\right)$. For otherwise put $n-i_{2}=m$; then

$$
m^{2}=(m-x)(m+y), \text { or }(y-x) m=x y .
$$

$x=y$ is clearly impossible. On the other hand, if $x \neq y$ we have, by (1),

$$
x y=m(y-x) \geqslant m>n-k>(k-1)^{2} \geqslant x y(\text { since } x<k, y<k),
$$

an evident contradiction. Hence $x_{2}^{2 l} \neq x_{1}{ }^{l} x_{3}{ }^{l}$. We can assume without loss of generality that $x_{2}{ }^{2}>x_{1} x_{3}$; then

$$
\begin{aligned}
& 2(k-1) n>n^{2}-(n-k+1)^{2}>\left(n-i_{2}\right)^{2}-\left(n-i_{1}\right)\left(n-i_{3}\right) \\
& \quad=4\left[x_{2}^{2}-\left(x_{1} x_{3}\right)^{l}\right] \geqslant 4\left[\left(x_{1} x_{3}+1\right)^{l}-x_{1}{ }^{l} x_{3}^{l}\right]>4 l x_{1}^{l-1} x_{3}^{l-1} .
\end{aligned}
$$

Hence, since $n>k^{3}>6 k$ and $l \geqslant 3$,

$$
2(k-1) x_{1} x_{3} n>4 l x_{1}^{l} x_{3}^{l} \geqslant l(n-k+1)^{2}>l\left(n^{2}-2 k n\right)>\frac{2 l n^{2}}{3} \geqslant 2 n^{2} .
$$

Thus, since by (3) $x_{i} \leqslant n^{\frac{1}{2}}$,

$$
k n^{2} \geqslant k x_{1} x_{3}>(k-1) x_{1} x_{3}>n, \text { or } k^{3}>n,
$$

which contradicts (1). Thus our theorem is proved.

> University of Miehigan, U.S.A.

[^1]
[^0]: * I cannot find a reference to this fact.
 \dagger Ibid., 9 (1934), 232-288.

[^1]: * Ibid., 14 (1939), 245-249.

