ON A THEOREM OF RÅDSTRÖM

1

P. ERDÖS

The purpose of this note is to give a new and simplified proof of the following theorem.

THEOREM. Let $f(z) = \sum_{\nu=0}^{\infty} a_{\nu} z^{\nu}$ be an entire function. Denote $M(r) = \max_{|z| \leq r} |f(z)|$. Assume that $\limsup \log M(r)/r = \infty$. Then there exists ω_{ν} , $\nu = 0, 1, \dots, with |\omega_{\nu}| = 1$, so that the origin is a limit point of the roots of the derivatives of $k(z) = \sum_{\nu=0}^{\infty} \omega_{\nu} a_{\nu} z^{\nu}$.

In other words the theorem holds if the order ρ of f(z) is greater than 1 or if $\rho = 1$ and f(z) is of maximal type.

This theorem is due to Rådström and was proved by him for the case $\rho > 1$ in a recent note.¹ The result as announced here is best possible with respect both to order and to type, as is shown by the example e^{cz} , where c is a constant (cf. footnote 1, p. 400).

We need the following two lemmas.

LEMMA 1. Let $\sum_{\nu=0}^{\infty} a_{\nu} z^{\nu}$ be a power series with radius of convergence $R \leq \infty$ and such that $|a_0/a_1| < R$. Then it is possible to find $\omega_0, \omega_1, \cdots$ with $|\omega_{\nu}| = 1$ so that $\sum_{\nu=0}^{\infty} \omega_{\nu} a_{\nu} z^{\nu}$ has a zero z_0 with $|z_0| \leq |a_0/a_1|$.

PROOF. We put $\omega_0 = \omega_1 = 1$ and $a_0 + a_1 z = P_1(z)$. Obviously $P_1(z)$ has a zero with the required property. We proceed by induction. Suppose that we have succeeded in determining $\omega_0, \omega_1, \cdots, \omega_{n-1}$ such that the polynomial $P_{n-1}(z) = \sum_{r=0}^{n-1} \omega_r a_r z^r$ has a zero z_0 with $|z_0| \leq |a_0/a_1|$. Consider $P_{n-1}(z) + \omega a_n z^n$, $|\omega| = 1$. Three cases may occur: 1. The equation $|P_{n-1}(z)| = |a_n z^n|$ has a solution on $|z| = |a_0/a_1|$.

- 2. $|P_{n-1}(z)| > |a_n z^n|$ for all z with $|z| = |a_0/a_1|$.
- 3. $|P_{n-1}(z)| < |a_n z^n|$ for all z with $|z| = |a_0/a_1|$.

In case 1, it will obviously be possible to choose ω so that $P_{n-1}(z) + \omega a_n z^n = 0$ on the circle $|z| = |a_0/a_1|$. In case 2, $P_{n-1}(z) + \omega a_n z^n$ has by Rouché's theorem as many zeros inside the circle $|z| = |a_0/a_1|$ as $P_{n-1}(z)$, that is, at least one, by the induction hypothesis. In case 3, again by Rouché's theorem, $P_{n-1}(z) + \omega a_n z^n$ has as many zeros in $|z| = |a_0/a_1|$ as $a_n z^n$, that is, *n* zeros. In all these cases we can therefore choose $\omega = \omega_n$, $|\omega_n| = 1$ so that $P_{n-1}(z) + a_n \omega_n z^n$ has a zero in the circle $|z_0| = |a_0/a_1|$. Consider now the power series $\sum_{\nu=0}^{\infty} \omega_{\nu} a_{\nu} z^{\nu}$. We know that all its partial sums have zeros in or on the circle $|z| = |a_0/a_1|$. As this circle is strictly inside the circle of convergence

Received by the editors January 30, 1950.

¹ H. Rådström, Proc. Nat. Acad. Sci. U.S.A. vol. 35 (1949) pp. 399-404.

the same must hold for the infinite series, which proves the lemma.

LEMMA 2. Let $\sum_{\nu=0}^{\infty} a_{\nu}z^{\nu}$ satisfy the conditions of Lemma 1, and let ϵ be a positive number. Then there exists an integer n and numbers $\omega_0, \omega_1, \cdots, \omega_n$ with $|\omega_{\nu}| = 1$ such that the series $\sum_{\nu=0}^{\infty} \omega_{\nu}a_{\nu}z^{\nu}$ has a zero in the circle $|z| \leq |a_0/a_1| + \epsilon$, irrespective of the choice of the numbers ω_{ν} for $\nu \geq n+1$.

PROOF. Let r be a number with $|a_0/a_1| < r < \min(R, |a_0/a_1| + \epsilon)$ and such that the series $f(z) = \sum_{\nu=0}^{\infty} \omega_{\nu} a_{\nu} z^{\nu}$ constructed in Lemma 1 has a positive minimum m on the circle |z| = r. Put $\delta_{\mu} = \sum_{\nu=\mu+1}^{\infty} |a_{\nu}| r^{\nu}$. We have $\delta_{\mu} \rightarrow 0$ monotonically. Choose n so large that $2 \cdot \delta_n < m$, and let g(z) be any series which coincides with f(z) in the first n+1 terms whereas in the rest of the terms arbitrary changes of the arguments are allowed. Obviously $|g(z) - f(z)| < 2 \cdot \delta_n$ for $|z| \leq r$. Therefore, by Rouché's theorem, g(z) has as many roots in $|z| \leq r$ as f(z), that is, at least one (since $r > |a_0/a_1|$). This proves the lemma.

In order to prove the theorem we first observe that if lim sup log $M(r)/r = \infty$, it follows that lim inf $|a_n/(n+1)a_{n+1}| = 0$, for otherwise there would exist a k > 0 such that for all sufficiently large n, $a_{n+1} < ka_n/(n+1)$. Iterating this we would get, for sufficiently large n, $a_n < ck^n/n!$, which as is well known implies lim sup log M(r)/r $\leq k$, an evident contradiction. Therefore there exists a sequence n_r of integers such that $a_{n_{\nu}}/(n+1)(a_{n_{\nu}+1}) \rightarrow 0$. We also observe that $f^{(n)}(z)/n! = a_n + (n+1)a_{n+1}z + \cdots$ Now choose a sequence ϵ_p of positive numbers with $\epsilon_{\nu} \rightarrow 0$. According to Lemma 2 we can find numbers $\omega_{n_1}, \omega_{n_1+1}, \cdots, \omega_{n_1+p_1}$ so that if in $f^{(n_1)}(z)/n_1!$ we multiply each coefficient with the corresponding ω , we shall get a function which has a zero in $|z| < |a_{n_1}/(n_1+1)a_{n_1+1}| + \epsilon_1$, and we shall still be able to choose ω_{μ} arbitrarily if $\mu > n_1 + p_1$ without destroying this property. Therefore we can repeat this process, now starting with the smallest $n_{\nu} > n_1 + p_1$. Call that number m_2 and put $m_1 = n_1$. Then we get a new set of ω 's, ω_{m_1} , \cdots , $\omega_{m_2+p_2}$, and if $\mu > m_2 + p_2$ we still have the free choice of the ω_{μ} . Iterating this process we shall obtain a sequence of nonoverlapping blocks of ω 's and we complete it if necessary by choosing ω_{ν} arbitrarily for those ν which do not correspond to an ω in a block. In this way we get a sequence $\omega_0, \omega_1, \cdots$ and we construct the corresponding power series $k(z) = \sum_{\nu=0}^{\infty} \omega_{\nu} a_{\nu} z^{\nu}$. From the construction and Lemma 2 it is then obvious that k(z) will have the property: $k^{(m_p)}(z)$ has a zero z_p satisfying $z_p < |a_{m_p}/(m_p+1)a_{m_p+1}|$ $+\epsilon_{\nu}$. As the sequence m_{ν} is a subsequence of n_{ν} and $\epsilon_{\nu} \rightarrow 0$, it is clear that $z_{\nu} \rightarrow 0$, which proves the theorem.

PRINCETON, N. J.