ON SEQUENCES OF POSITIVE INTEGERS

By H. Davenport and P. Erdös

Let $a_{1}, a_{2}, \ldots, a_{m}$ be any finite set of distinct natural numbers, and let b_{1}, b_{2}, \ldots be the sequence formed by all those numbers which are divisible by any of $a_{1}, a_{2}, \ldots, a_{m}$. This sequence has a density in the obvious sense and we denote this density by $A\left(a_{1}, a_{2}, \ldots, a_{m}\right)$. In fact

$$
\begin{align*}
& A\left(a_{1}, a_{2}, \ldots, a_{m}\right)=\frac{1}{a_{1}}+\left(\frac{1}{a_{2}}-\frac{1}{\left[a_{1}, a_{2}\right]}\right) \\
& \tag{I}\\
& +\left(\frac{1}{a_{3}}-\frac{1}{\left[a_{1}, a_{3}\right]}-\frac{1}{\left[a_{2}, a_{3}\right]}+\frac{1}{\left[a_{1}, a_{2}, a_{3}\right]}\right)+\cdots,
\end{align*}
$$

where $[a, b, \ldots]$ denotes the least common multiple of a, b, \ldots. For the first term above represents the density of the multiples of a_{1}, the second represents the density of those multiples of a_{2} that are not multiples of a_{1}, and so on.

Now suppose we start from an infinite sequence a_{1}, a_{2}, \ldots (arranged in increasing order) instead of from a finite set. It is plain that $A\left(a_{i}, a_{2}, \ldots, a_{m}\right)$ increases with m, and is always less than I. We define

$$
\begin{equation*}
A=\lim _{m \rightarrow \infty} A\left(a_{1}, a_{2}, \ldots, a_{m}\right) . \tag{2}
\end{equation*}
$$

It is natural to expect that A should again be the density, in some sense, of the sequence b_{1}, b_{2}, \ldots formed by all numbers which are divisible by any of a_{1}, a_{2}, \ldots. This cannot be true for the ordinary density, since it was proved by Besicovitch [I] that the b sequence may have different upper and lower densities.

There is one specially simple case in which the conclusion does hold, namely when the series Σ_{I} / a_{n} converges. For, in this case, the number of b 's up to x which are not divisible by any of $a_{1}, a_{2}, \ldots, a_{m}$ is at most

[^0]$$
\left[\frac{x}{a_{m+1}}\right]+\left[\frac{x}{a_{m+2}}\right]+\cdots
$$
and this after division by x is less than $\sum_{n=m+1}^{\infty} I / a_{n}$. Hence the proportion of numbers that are b 's differs from $A\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ by an amount which tends to zero as $m \rightarrow \infty$, and the conclusion follows. Under these conditions, we can safely use the notation $A\left(a_{1}, a_{2}, \ldots\right)$ for A.

We proved some years ago [2] that, in the general case, the number A represents the lower density of the b sequence. We also proved that the b sequence has a logarithmic density, and that this also equals A. The logarithmic density is defined as

$$
\lim _{x \rightarrow \infty} \frac{\beta(x)}{\log x},
$$

where

$$
\begin{equation*}
\beta(x)={\underset{b_{i}}{ } \leqslant x} \frac{1}{b_{i}} . \tag{3}
\end{equation*}
$$

The proof of these two results was somewhat indirect, since it used Dirichlet series and appealed to a Tauberian theorem of Hardy and Littlewood. Our object in the present note is to give a direct and elementary proof.

Let us denote the upper and lower densities of the b sequence by d and D and the upper and lower logarithmic densities by δ and Δ. It is well known that

$$
d \leqslant \delta \leqslant \Delta \leqslant D
$$

for any sequence. In the present case, it is immediate that $d \geqslant A$. For the b sequence includes the multiples of $a_{1}, a_{2}, \ldots, a_{m}$, and so $d \geqslant A\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ for each m, whence $D \geqslant A$. To complete the proof of the two results just enunciated, it suffices to prove that $\Delta \leqslant A$, in other words that

$$
\begin{equation*}
\varlimsup_{x \rightarrow \infty} \frac{\beta(x)}{\log x} \leqslant A . \tag{4}
\end{equation*}
$$

The new proof of (4) is based on the consideration of what may be called the multiplicative density of a sequence. Let $p_{1}, p_{2}, \ldots, p_{k}$ be the first k primes. Denote by n^{\prime} the general number composed entirely of these primes; then $\Sigma \mathrm{I} / n^{\prime}$ converges, and

$$
\begin{equation*}
\mathrm{\Sigma}_{\frac{1}{n^{\prime}}}^{\mathrm{I}}=\prod_{i=1}^{k}\left(\mathrm{I}-\mathrm{I} / p_{i}\right)^{-1}=\Pi_{k} \text {, say. } \tag{5}
\end{equation*}
$$

Now denote by $b_{1}{ }^{\prime}, b_{2}{ }^{\prime}, \ldots$ those numbers of the b sequence that are composed entirely of $p_{1}, p_{2}, \ldots, p_{k}$. Let

$$
\begin{equation*}
B_{k}=\frac{\Sigma \mathrm{I} / b_{i}^{\prime}}{\Sigma \mathrm{I} / n^{\prime}}=\left(\Pi_{k}\right)^{-1} \Sigma \mathrm{I} / b_{i}^{\prime} . \tag{6}
\end{equation*}
$$

This fraction may be said to measure the density of the numbers b^{\prime} among the numbers n^{\prime}. If B_{k} tends to a limit as $k \rightarrow \infty$, we may call this limit the multiplicative density of the b sequence.

In the case under consideration here, where the b sequence consists of all multiples of a_{1}, a_{2}, \ldots, we can easily prove that the multiplicative density exists and has the value A. Let us denote by $a_{1}{ }^{\prime}, a_{2}{ }^{\prime}, \ldots$ those a 's which are composed entirely of the primes $p_{1}, p_{2}, \ldots, p_{k}$. Then the b^{\prime} consists of all numbers of the form $a^{\prime} n^{\prime}$, but without repetition. Hence we have

$$
\mathrm{\Sigma} \frac{\mathrm{I}}{b^{\prime}}=\frac{\mathrm{I}}{a_{1}^{\prime}}, \mathrm{\Sigma} \frac{\mathrm{I}}{n^{\prime}}+\left(\frac{\mathrm{I}}{a_{2}^{\prime}}-\frac{\mathrm{I}}{\left[a_{1}^{\prime}, a_{2}^{\prime}\right]}\right) \Sigma_{\frac{\mathrm{I}}{n^{\prime}}}+\ldots=\Pi_{k} A\left(a_{1}^{\prime} a_{2}^{\prime}, \ldots\right) .
$$

It follows that

$$
\begin{equation*}
B_{k}=A\left(a_{1}^{\prime}, a_{2}^{\prime}, \ldots\right) . \tag{7}
\end{equation*}
$$

By an earlier remark, since $\Sigma \mathrm{I} / a^{\prime}$ is convergent, we know that this is the density, in the ordinary sense, of the sequence formed by all multiples of $a_{1}^{\prime}, a_{2}^{\prime}, \ldots$. It is plain from (7) that B_{k} increases with k, and is always less than I. Hence

$$
B=\lim _{k \rightarrow \infty} B_{k}
$$

exists, and our next step is to prove that

$$
\begin{equation*}
B=A . \tag{8}
\end{equation*}
$$

In the first place, if k is sufficiently large in relation to m, the numbers $a_{1}^{\prime}, a_{2}^{\prime}, \ldots$ include $a_{1}, a_{2}, \ldots, a_{m}$. Hence $B \geqslant A\left(a_{1}^{\prime}, a_{2}^{\prime} \cdots\right) \geqslant A\left(a_{1}, a_{2}, \ldots, a_{m}\right)$, whence $B \geqslant A$. Next, since $\Sigma I / a^{\prime}$ converges, we have for fixed k (by an argument used earlier)

$$
A\left(a_{1}^{\prime}, a_{2}^{\prime}, \ldots\right) \leqslant A\left(a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{m}^{\prime}\right)+\sum_{n=m+1}^{\infty} \frac{1}{a_{n}^{\prime}} .
$$

Now, if we choose r so large that $a_{1}{ }^{\prime}, a_{2}{ }^{\prime}, \ldots, a_{m}{ }^{\prime}$ are all included in $a_{1}, a_{2}, \ldots, a_{r}$, we have

$$
A\left(a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{m}{ }^{\prime}\right) \leqslant A\left(a_{1}, a_{2}, \ldots, a_{r}\right) \leqslant A .
$$

Making $m \rightarrow \infty$, we obtain

$$
A\left(a_{1}, a_{2}^{\prime}, \ldots\right) \leqslant A \text {, }
$$

that is, $B_{k} \leqslant A$. Hence $B \leqslant A$, which proves (8).
After this preparation, we proceed to prove (4). We divide the numbers $b_{i} \leqslant x$ into two classes, placing in the first class those divisible by any of $a_{1}{ }^{\prime}, a_{2}{ }^{\prime}, \ldots$. Here $a_{1}^{\prime}, a_{2}^{\prime}, \ldots$ are again those a^{\prime} 's that are composed entirely of $p_{1}, p_{2}, \ldots, p_{k}$. For fixed k, the b 's in the first class have density B_{k}, by (7). Hence the sum $\beta_{1}(x)$ corresponding to the b 's in the first class satisfies

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{\beta_{1}(x)}{\log x}=B_{k} . \tag{9}
\end{equation*}
$$

To estimate the sum $\beta_{2}(x)$ corresponding to the b 's in the second class, we introduce a prime p_{b} defined by $p_{h} \leqslant x<p_{h+1}$. The b 's in the second class are composed entirely of $p_{1}, p_{2}, \ldots, p_{k}$, but are not divisible by any a composed entirely of $p_{1}, p_{2}, \ldots, p_{k}$. If we denote by b^{*} the b 's of this kind, whether less than x or not, we have

$$
\begin{equation*}
\beta_{2}(x) \leqslant \Sigma I / b^{*} . \tag{10}
\end{equation*}
$$

The numbers b^{*} can be obtained by taking all numbers b composed entirely of $p_{1}, p_{2}, \ldots, p_{k}$, say all numbers $b^{\prime \prime}$, and removing from them all numbers $b^{\prime} t$, where b^{\prime} is composed entirely of $p_{1}, p_{2}, \ldots, p_{k}$ and t is any number composed entirely of $p_{k+1}, p_{k+2}, \ldots, p_{k}$. Hence

$$
\Sigma \mathrm{I} / b^{*}=\mathrm{I} / b^{\prime \prime}-\left(\mathrm{\Sigma I} / b^{\prime}\right)(\mathrm{\Sigma I} / t)=\Pi_{k} B_{h}-\Pi_{k} B_{k} \mathrm{\Sigma I} / t,
$$

by two appeals to (6). Since

$$
\sum_{t}^{1}=\prod_{i=n+1}^{n}\left(1-\frac{1}{p_{i}}\right)^{-1}=\Pi_{n}\left(\Pi_{n}\right)^{-1}
$$

we have

$$
\begin{equation*}
\Sigma \Sigma / b^{*}=\Pi_{h}\left(B_{h}-B_{k}\right) . \tag{II}
\end{equation*}
$$

Now it is well known that Π_{h}, defined by (5) with h in place of k, satisfies [3, p. 22]

$$
\Pi_{h}<C \log p_{\hbar} \leqslant C \log x,
$$

where C is an absolute constant. Hence, by (io) and (ii), we have

$$
\begin{equation*}
\beta_{2}(x)<C\left(B_{k}-B_{k}\right) \log x . \tag{12}
\end{equation*}
$$

It follows from (9) and (12) that

$$
\varlimsup_{x \rightarrow \infty} \frac{\beta(x)}{\log x}<B_{k}+C\left(B-B_{k}\right) .
$$

Since $B_{k} \rightarrow B$ as $k \rightarrow \infty$, this proves (4).
It may be observed, in conclusion, that the density taken in any sense which is essentially stronger than the logarithmic sense, need not exist. For example, if $\alpha<1$, the density in the sense of

$$
\lim _{x \rightarrow \infty}(1-\alpha) x^{\alpha-1} \sum_{b_{i}<x}^{\sum} 1 / b_{i}^{a}
$$

need not exist. This follows from the example constructed by Besicovitch. If a function of b_{i} is used which increases very little less rapidly than b_{i}, for instance $b_{i} /\left(\log b_{i}\right)$, the density will exist in the sense that

$$
2(\log x)^{-2}{\underset{b_{i}<x}{ }}_{\sum_{i}\left(\log b_{i}\right) / b_{i} \rightarrow A .}
$$

But this is at once seen to be equivalent to $\beta(x) /(\log x)$ $\rightarrow A$, on applying partial summation; so that nothing essentially new is obtained.

Note added May 1951. It may be of interest to observe that results similar to those proved above about that b sequence can sometimes be proved for the sequence formed by those b 's which satisfy a supplementary condition. Consider, for example, those b_{i} for which $b_{i+1}-b_{i}=k$, where k is a given positive integer. It can be proved that these b_{i} have a logarithmic density; and that they have a density in the ordinary sense, provided that the whole b sequence has a density. The method of proof is to start from the case of a finite set $a_{1}, a_{2}, \ldots, a_{m}$, in which case the b 's form a periodic sequence.

REFERENGES

1. A. S. Besicovitch: On the density of certain sequences of integers, Math. Annalen, 110 (1934) 336-341.
2. H. Davenport and P. ERdös: On sequences of positive integers, Acta Arithmetica, 2 (1937), 147-151.
3. A. E. Ingham, The distribution of prime numbers, Cambridge, (1932).

University College, London and
The University, Aberdeen.

[^0]: Received January 31, 1951 .

