SOME LINEAR AND SOME QUADRATIC RECURSION FORMULAS.

By

N. G. DE BRUIJN and P. ERDÖS

(Communicated by Prof. H, D. Kloosterman at the meeting of Novemver 24, 1951)

§ 1. Introduction

We shall mainly deal with linear recursion formulas of the type

$$
\begin{equation*}
f(1)=1 ; \quad f(n)=\sum_{k=1}^{n-1} c_{k} f(n-k) \quad(n=2,3, \ldots) \tag{1,1}
\end{equation*}
$$

and with quadratic formulas of the type

$$
\begin{equation*}
f(1)=1 ; \quad f(n)=\sum_{k=1}^{n-1} d_{n} f(k) f(n-k) \quad(n=2,3 \ldots) \tag{1,2}
\end{equation*}
$$

We assume that $c_{k}>0, d_{k}>0(k=1,2, \ldots)$. In a previous paper [1] we discussed (1.1) under the condition $\sum_{1}^{\infty} c_{k}=1$, and further special assumptions. Presently we deal with it more generally. We shall show that $\lim \{f(n)\}^{-1 / n}$ always exists, and we shall give several sufficient conditions for the existence of $\lim f(n) / f(n+1)$. Some of the results can be applied to (1.2) (see § 6), and some of the methods can be extended to recurrence relations with coefficients c depending on n also (see $\S 3$ and $\S 7$).

In [1] as well as in the earlier paper of Erdös, Feller and Pollard [3], referred to below, the condition on the c_{k} was $c_{k} \geqslant 0(k=1,2, \ldots)$, whereas the g.e.d. of the k 's with $c_{k}=0$ was assumed to be 1. For convenience we assume $c_{k}>0$ throughout. Consequently we have, both for (1, 1) and for (1.2), $f(n)>0(n=1,2, \ldots)$.

Dealing with the linear relation (1.1) we put formally

$$
\begin{equation*}
C(x)=\sum_{1}^{\infty} c_{n} x^{n} \quad, \quad F(x)=\sum_{1}^{\infty} f(n) x^{n} \tag{1,3}
\end{equation*}
$$

and we have formally

$$
\begin{equation*}
F(x)=x+C(x) F(x) . \tag{1,4}
\end{equation*}
$$

Furthermore, if ϱ is a positive number, and if we put

$$
\begin{equation*}
f(n)=\varrho^{-n+1} g(n), \tag{1,5}
\end{equation*}
$$

then we have

$$
\begin{equation*}
g(n)=\sum_{k=1}^{n-1} b_{k} g(n-k) \quad, \quad g(1)=1 \tag{1.6}
\end{equation*}
$$

where $b_{k}=c_{k} g^{k}$. Formula (1,6) is again of the type (1.1), and $b_{k}>0$ for all k.
§ 2. Linear recursions, different cases
We discern amongst 5 different cases with respect to the behaviour of the series $C(x)$ (see $(1,3)$). Let R be the radius of convergence $(0 \leqslant R \leqslant \infty)$ and let γ be the l.u.b. of the numbers α with $C(\alpha) \leqslant 1$.

Case 1. $\gamma=R=0$.
Case 2, $0<\gamma<R \leqslant \infty, C(\gamma)=1$.
Case 3. $0<\gamma=R<\infty, C(\gamma)=1,0<C^{\prime}(\gamma)<\infty$.
Case 4. $0<\gamma=R<\infty, C(\gamma)=1, C^{\prime}(\gamma)=\infty$.
Case 5. $0<\gamma=R<\infty, 0<C(\gamma)<1$.
Since the coefficients c_{k} are positive it is easily seen that all possibilities are listed here.
$\S 5$ will be specially devoted to case $1 ;$ nevertheless case 1 is not excluded in $\S \S 2,3,4$ unless explicitly stated.

In all cases we can show ($\S 3$)

$$
\begin{equation*}
(f(n))^{-\frac{1}{n}} \rightarrow \gamma, \tag{2.1}
\end{equation*}
$$

In case 1 we infer that also $F(x)$ has 0 as its radius of convergence. In the other cases we can transform by (1.5), taking $e=\gamma$. Apart from case 5 , this leads to $(1,6)$ with $\Sigma b_{k}=1$. Therefore we can apply the results of Erdös, Feller and Pollafd [3], and we obtain

$$
\lim _{n \rightarrow \infty} f(n) \gamma^{n} \begin{cases}=\left\{C^{\prime}(\gamma)\right\}^{-1} & \text { in cases } 2 \text { and } 3, \tag{2,2}\\ =0 & \text { in case } 4 .\end{cases}
$$

If the limit is $=0$, we have not yet an asymptotic formula for $f(n)$, and such a formula seems to be hard to obtain without introducing very special assumptions (see [1]).

In case 5 we have, just as in case $4, f(n) \gamma^{n} \rightarrow 0$. For, it follows from (1.4) that

$$
\begin{equation*}
\sum_{1}^{\infty} f(n) \gamma^{n}=\gamma /(1-C(\gamma)) ; \tag{2,3}
\end{equation*}
$$

hence the series on the left is divergent in cases $2,3,4$ but convergent in case 5.

In case 2 it can be shown that for some $\mathrm{C}>0$ and some $\delta>\gamma$ we have

$$
\begin{equation*}
f(n)=C \gamma^{-n}+O\left(\delta^{-n}\right) . \tag{2,4}
\end{equation*}
$$

For, the coefficients of $C(x)$ being positive, we have $C(x) \neq 1 \quad(|x| \leqslant \gamma$, $x \neq \gamma$) and $C^{\prime \prime}(\gamma) \neq 0$. Now (1.4) shows that $F(x)$ is regular in $|x| \leqslant \gamma$ apart from a simple pole at $x=\gamma$. This proves (2.4).

Apart from case 1 we have $\gamma>0, C(\gamma) \leqslant 1$ and so, by induction

$$
\begin{equation*}
f(n) \leqslant \gamma^{1-n} \quad(n=1,2,3, \ldots) \tag{2.5}
\end{equation*}
$$

In all cases we put

$$
\liminf _{n \rightarrow \infty} \frac{f(n)}{f(n+1)}=\alpha, \quad \limsup _{n \rightarrow \infty} \frac{f(n)}{f(n+1)}=\beta,
$$

and we have

$$
\begin{equation*}
0 \leqslant \alpha \leqslant \gamma \leqslant \beta \leqslant c_{1}^{-1}<\infty . \tag{2.6}
\end{equation*}
$$

For, (2.1) shows that $\alpha \leqslant \gamma \leqslant \beta$, and $\beta \leqslant c_{1}^{-1}$ follows from the inequality $f(n+1) \geqslant c_{1} f(n)$, which immediately follows from (1.1).
§ 3. Linear recursion; existence of $\lim \{f(n)\}^{-1 / n}$
We shall show (theorem 2) that $\{j(n)\}^{-1 / n}$ tends to a finite limit in all cases. Denoting the limit by L, it is easily proved afterwards that $L=\gamma$.

The existence of the limit will be shown for a slightly more general recursion formula.

Theorem 1. Let $0<c_{k, k+1} \leqslant c_{k, k+2} \leqslant c_{k, k+3} \leqslant \ldots \quad(k=1,2,3, \ldots)$.

$$
\begin{equation*}
f(1)=1 \quad, \quad f(n)=\sum_{k=1}^{n-1} c_{k, n} f(n-k) \quad(n=2,3, \ldots) . \tag{3.1}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
f(n+k-1) \geqslant f(n) f(k) \quad(k, n=1,2,3, \ldots) . \tag{3.2}
\end{equation*}
$$

Proof. We apply induction with respect to n. If $n=1,(3.2)$ is trivial. Now assume that (3.2) holds for $n=1, \ldots, N$. Then we have

$$
\begin{aligned}
f(N+k) & =\sum_{l=1}^{N+k-1} c_{l, N+k} f(N+k-l) \geqslant \\
& \geqslant \sum_{1}^{N} c_{l, N+k} f(N+k-l) \geqslant \sum_{1}^{N} c_{l, N+1} f(N+k-l) \geqslant \\
& \geqslant \sum_{1}^{N} c_{l, N+1} f(N+1-l) f(k)=f(N+1) f(k),
\end{aligned}
$$

and the induction is complete.
Theorem 2. Under the assumptions of theorem 1 we have, putting

$$
\inf \{f(n+1)\}^{-1 / n}=L \quad(0 \leqslant L<\infty)
$$

that

$$
\lim _{n \rightarrow \infty}\{f(n+1)\}^{-1 / n}=L .
$$

Proof. Clearly we have $f(n)>0(n=1,2, \ldots)$. Putting

$$
g(n)=-\log f(n+1)
$$

we infer from (3.2) that $g(n)$ is sub-additive:

$$
g(n+k) \leqslant g(n)+g(k) \quad(n, k=0,1,2, \ldots)
$$

It follows that

$$
-\infty \leqslant \inf \frac{g(n)}{n}=\lim _{n \rightarrow \infty} \frac{g(n)}{n}<\infty
$$

(See [4], vol. 1, p. 17 and 171. An extension of this theorem will be given in § 7).

We next show for the equation (1.1) that $L=\gamma$. We have $f(n) \geqslant c_{n-1}$ for all $n>1$; therefore the radins of convergence of $F(x)$ is $\leqslant R$, and so $L \leqslant R$. In case 1 this means $L=0=\gamma$.

In case 2 we have $L=\gamma$ by (2.4).
In the remaining cases we have $R=\gamma$, and so $L \leqslant \gamma$. On the other hand (2.5) gives $L \geqslant \gamma$.

§ 4. Linear recursion; existence of $\lim f(n) / f(n+1)$

If $\lim f(n) / f(n+1)$ exists, it equals γ (see (2.6)); In the cases 2 and 3 the limit exists (by (2.2)). In the other cases $f(n) / f(n+1)$ can be oscillating, and we can even have (with the notations of (2,6)) $\beta>\alpha=0$.

In cases 4 and 5 we construet an example as follows. Let σ be a number, $0<\sigma \leqslant 1$; and let $p_{1}+p_{2}+\ldots$ be a series of positive terms whose sum is $\frac{1}{1} \alpha$. We shall construct a series $c_{1}+c_{2}+\ldots$ with $c_{k} \geqslant p_{k}$, whose sum is σ, and such that $c_{n} / /(n)$ is not bounded.

Let $\varepsilon_{1}, \varepsilon_{2}, \ldots$ be a sequence with $\varepsilon_{k}>0, \varepsilon_{k} \rightarrow 0$. Take $c_{k}=p_{k}$ for $k=1,2, \ldots, K_{1}-1$, where K_{1} is the first k with $j(k)<\frac{1}{4} \varepsilon_{1} \sigma$. The existence of this k follows from the inequality

$$
\begin{equation*}
f(1)+\ldots+f(m)<\left\{1-\sum_{1}^{m-1} c_{k}\right\}^{-1} \tag{4,1}
\end{equation*}
$$

which is obtained by addition of the formulas (1.1) with $n=1,2, \ldots, m$, respectively.

Now take $c_{k}=\frac{1}{\frac{1}{2}} \sigma+p_{2}$ if $k=K_{1}$, which does not alter the values of $f(1), \ldots, j\left(K_{1}\right)$. If $k=K_{1}+1, \ldots, K_{2}-1$ we take $c_{k}=p_{k}$ again, where K_{z} is the first $k>K_{1}$ with $f(k)<i \varepsilon_{2} \sigma$. For $k=K_{2}$ take $c_{2}=\| \sigma+p_{k}$ etc. If $k=K_{1}, K_{2}, \ldots$ we have $c_{2} / f(k)>\varepsilon_{1}^{-1}, \varepsilon_{2}^{-1}, \ldots$, respectively. As $f(k+1)>c_{k}$ for all k, we also find that $f(k+1) / f(k)$ is not bounded. Therefore $\alpha=0$. On the other hand we have $\beta>0$ by (2.6), since γ is positive. It can be shown that $\gamma=1, C(\gamma)=\sigma$.

A sufficient condition for a to be positive is that $\Sigma c_{k} / f(k)<\infty$. For, writing down (1,1) with $n=N+1$ and $n=N$, respectively, we infer

$$
\frac{f(N+1)}{f(N)} \leqslant \max _{1 \leqslant k<N} \frac{f(k+1)}{f(k)}+\frac{c_{N}}{f(N)},
$$

whence $f(n+1)=O\{f(n)\}$.
In case 1 the series $\Sigma c_{k} / f(k)$ does not converge since it would lead to $a>0$. In cases 2 and 3 the series always converges (see (2,2)). In case 4 the condition may be useful, and we can show that it implies $\alpha=\beta$ (theorem 11). In case 5 however the condition never applies:

Theorem 3. In case 5 we have $\Sigma c_{2} / f(k)=\infty$.

Proof. We have $\Sigma_{1}^{\infty} c_{k} \gamma^{t}<1$. Assume $\Sigma c_{s} J(k)<\infty$.
Put $1-\sum_{1}^{\infty} c_{k} \gamma_{\lambda}^{k}=2 \varepsilon$. Choose l such that $2 \gamma \sum_{l+1}^{\infty} c_{k} l f(k)<\varepsilon$, and $\delta>0$ such that $e^{\Delta!} \Sigma_{1}^{l} c_{k} \gamma^{k}<1-\varepsilon, e^{d}<2$. Then we can show by induction

$$
\begin{equation*}
f(k) \leqslant 2 e^{-\Delta k} \gamma^{1-k} . \tag{4,2}
\end{equation*}
$$

If $k=1,(4.2)$ is trivial. Next assume (4.2) to be true for $k=1, \ldots, n-1$. Then by (1. 1)

$$
f(n) \leqslant \sum_{1}^{n} c_{k} f(n-k)+\sum_{\delta+1}^{n-1} \frac{c_{k}}{f(k)} f(k) f(n-k),
$$

where $s=\min (n-1, l)$, and the second sum is empty if $n-1 \leqslant l$. It follows that

$$
\begin{aligned}
& f(n) \leqslant \sum_{1}^{n} c_{k} e^{\delta k} \gamma^{k} \cdot 2 e^{-\delta n} \gamma^{1-n}+4 \sum_{s+1}^{n-1} \frac{c_{k}}{f(k)} e^{-\delta n} \gamma^{2-n} \leqslant \\
& \leqslant 2 e^{-\delta n} \gamma^{1-n}\left\{e^{\delta t} \sum_{1}^{1} c_{k} \gamma^{k}+2 \gamma \sum_{l+1}^{\infty} c_{k} f f(k)\right\}<2 e^{-\delta n} \gamma^{1-n} .
\end{aligned}
$$

This proves (4.2). However, (4.2) contradicts (2.1). Therefore our assumption $\Sigma c_{k} j f(k)<\infty$ is false.

We next discuss the condition $c_{k}=o\{f(k)\}$. We do not know whether this guarantees the existence of $\lim f(n) / f(n+1)$. On the other hand it is a necessary condition in cases 2,3 and 4 (theorem 4), but it is not necessary in case 5 .

In case 5 we can give an example where

$$
\begin{equation*}
\frac{f(n+1)}{f(n)} \rightarrow 1, \quad \frac{c_{n+1}}{c_{n}} \rightarrow 1, \quad \frac{c_{n}}{f(n)} \rightarrow \frac{1}{4} . \tag{4,3}
\end{equation*}
$$

In order to construct this example, require (1.1) and $c_{n}=\frac{1}{4} f(n)$ for all n. Then we have $F(x)-x=\frac{1}{4} F^{2}(x)$, and so

$$
F(x)=2\left\{1-(1-x)^{\}}\right\}, f(n)=\frac{4^{-n}}{2 n-1} \frac{(2 n)!}{n!n!} .
$$

We are in case 5 indeed, for the radius of convergence of $C(x)=\frac{1}{4} F(x)$ equals 1 , and

$$
\sum_{1}^{\infty} c_{k}=M \cdot F(1)=\frac{1}{2} .
$$

Theorem 4. If, in case 2,3 or $4, \lim f(n) / f(n+1)$ exists $\left.{ }^{1}\right)$, then we have $c_{n}=o\{f(n)\}$.

Proof. If the limit exists, we know that it equals γ. And, if $n>k+1$, we have

$$
\begin{equation*}
f(n+1) \geqslant c_{1} f(n)+\ldots+c_{k+1} f(n-k)+c_{n} . \tag{4.4}
\end{equation*}
$$

Dividing by $f(n)$ and making $n \rightarrow \infty$, we infer

$$
\begin{aligned}
& \gamma^{-1} \geqslant c_{1}+c_{2} \gamma+\ldots+c_{k} \gamma^{k-1}+\lim \sup c_{n} / f(n), \\
& \lim \sup c_{n} / /(n) \leqslant \gamma^{-1}\left\{1-c_{1} \gamma-c_{2} \gamma^{2}-\ldots-c_{k} \gamma^{k}\right\} .
\end{aligned}
$$

This holds for every k. Since $\Sigma c_{k} \gamma^{k}=1$ we infer $c_{\mathrm{n}}=o\{f(n)\}$.
${ }^{1}$) In case 2 or 3 the limit exists automatically.

Theorem 5. If, in case 2, 3, or $4, \lim c_{n+1} / c_{n}$ exists, then we have $c_{\mathrm{n}}=o\{f(n)\}$.

Proof. The limit of c_{n+1} / c_{n} equals γ^{-1}, of course. If $n>k$, we have

$$
f(n) \geqslant c_{n} f(1)+c_{n-1} f(2)+\ldots+c_{n-k} f(k) .
$$

Dividing by c_{n} and making $n \rightarrow \infty$, we infer

$$
\lim \inf f(n) / c_{\mathrm{n}} \geqslant f(1)+f(2) \gamma+\ldots+f(k) \gamma^{k-1}
$$

The theorem follows from the fact that $\Sigma j(k) \gamma^{k-1}=\infty$ (see (2.3)).
The following simple theorem applies to the cases $2,3,4,5$ (in case 1 the condition is never satisfied).

Theorem 6. If, for some fixed k, we have $c_{n}=O\left(c_{n-1}+c_{n-2}+\ldots+\right.$ $\left.+c_{n-k}\right)$, then $f(n+1)=O\{f(n)\}$, that is $\alpha>0$.

Proof. For $n>k$ we have

$$
\frac{c_{n-k} f(k+1)+\ldots+c_{n} f(1)}{c_{n-k} f(k)+\ldots+c_{n-1} f(1)} \leqslant \max _{1 \leqslant 1 \leqslant k} \frac{f(j+1)}{f(j)}+\frac{O\left(c_{n-k}+\ldots+c_{n-1}\right)}{c_{n-k} f(k)+\ldots c_{n-1} f(1)}<B,
$$

B not depending on n. Furthermore, if $n>k$,

$$
\begin{aligned}
f(n+1) & =\sum_{1}^{n} c_{y} f(n+1-j) \leqslant \\
& \leqslant \sum_{1}^{-=k_{1}-1} c_{i} f(n-j) \cdot \max _{1 \leqslant l<n} \frac{f(l+1)}{f(l)}+B \sum_{n-k}^{n-1} c_{j} f(n-j) \leqslant \\
& \leqslant f(n) \max \left(B, \max _{1 \leqslant l<n} \frac{f(l+1)}{f(l)}\right) .
\end{aligned}
$$

It follows by induction that $f(n+1) \leqslant B f(n)$ for all n.
We shall give a necessary and sufficient condition for the existence of $\lim f(n) / f(n+1)$ in the cases $2,3,4,5$. That is, we assume

$$
\begin{equation*}
\gamma>0, \sum_{1}^{\infty} c_{k} \gamma^{k} \leqslant 1 ; 1<\sum_{1}^{\infty} c_{k} x^{k} \leqslant \infty \text { if } x>\gamma . \tag{4,5}
\end{equation*}
$$

Put, if $1 \leqslant k<n$,

$$
\begin{equation*}
\left\{\frac{\gamma\left\{c_{k} f(n-k+1)+\ldots+c_{n} f(1)\right\}-\left\{c_{k} f(n-k)+\ldots+c_{n-1} f(1)\right\}}{f(n)}=S_{n, k} ;\right. \tag{4,6}
\end{equation*}
$$

Theorem 7. In the cases $2,3,4,5$ a necessary and sufficient condition for the existence of $\lim f(n) / f(n+1)$ is that $\varphi(k) \rightarrow 0$ when $k \rightarrow \infty$. Proof. We have, if $1 \leqslant k<n$,

$$
\begin{equation*}
\gamma f(n+1)-f(n)=\gamma \sum_{1}^{k-1} c_{j} f(n+1-j)-\sum_{1}^{k-1} c_{j} f(n-j)+f(n) S_{n, k} \tag{4.7}
\end{equation*}
$$

If $f(n) / f(n+1) \rightarrow \gamma$, it easily follows by making $n \rightarrow \infty$ that $\varphi(k)=0$ for all k.

We next show that $\varphi(k) \rightarrow 0$ is also sufficient. We have (see (2, 6))
$0 \leqslant \alpha \leqslant \beta<\infty$. First we prove that $\alpha>0$. We have $f(l+1) \geqslant c_{1} f(l)$ for all l. Hence, dividing (4.7) by $f(n)$ we obtain

$$
\gamma \frac{f(n+1)}{f(n)} \leqslant 1+\sum_{1}^{k-1} c_{i} c_{1}^{1-1}+\left|S_{n, k}\right| .
$$

Choose k such that $\varphi(k)<\infty$, and make $n \rightarrow \infty$. It follows that $f(n+1)=$ $=O(f(n))$, that is $\alpha>0$.

Let $\left\{n_{i}\right\}$ be a sequence for which

$$
\begin{equation*}
f\left(n_{i}\right) / f\left(n_{i}+1\right) \rightarrow a \quad(i \rightarrow \infty) . \tag{4,8}
\end{equation*}
$$

Then we have, for any fixed $l \geqslant 0$, also

$$
\begin{equation*}
f\left(n_{i}-l\right) / f\left(n_{i}+1-l\right) \rightarrow \alpha \quad(i \rightarrow \infty) \tag{4.9}
\end{equation*}
$$

The same holds if α is replaced by β both times. We only prove it for the lower limit; the other case can be proved analogously.

Assume (4.9) false for some $l>0$. Then there is a subsequence $\left\{m_{i}\right\}$ and a number $\delta(\delta>\alpha)$ such that

$$
f\left(m_{i}-l\right)>\delta f\left(m_{i}+1-l\right) \quad(i=1,2, \ldots)
$$

Further, if $\varepsilon>0$ and $i>i_{0}(\varepsilon, k)$ then we have

$$
j\left(m_{i}-j\right)>(\alpha-\varepsilon) f\left(m_{i}+1-j\right) \quad(1 \leqslant j<k)
$$

It follows, if $k>l, i>i_{0}(\varepsilon, k)$, that

$$
\begin{aligned}
\sum_{j=1}^{2-1} c_{j} & \left\{\gamma f\left(m_{i}+1-j\right)-f\left(m_{i}-j\right)\right\}< \\
& <\sum_{j=1}^{k=1} c_{j}(\gamma-\alpha+\varepsilon) f\left(m_{i}+1-j\right)-c_{l}(\delta-\alpha) f\left(m_{i}+1-l\right)< \\
& <(\gamma-\alpha+\varepsilon) f\left(m_{i}+1\right)-c_{i}(\delta-\alpha) f\left(m_{i}+1-l\right)
\end{aligned}
$$

and so, by (4, 7),

$$
(\alpha-\varepsilon) f\left(m_{i}+1\right)+c_{l}(\delta-a) f\left(m_{i}+1-l\right) \leqslant f\left(m_{i}\right)\left\{\left|S_{m_{i}, k}\right|+1\right\}
$$

If $i \rightarrow \infty$, we have $f\left(m_{i}\right) / f\left(m_{i}+1\right) \rightarrow \alpha, \liminf f\left(m_{i}+1-l\right) / f\left(m_{i}+1\right) \geqslant \alpha^{l}$. Therefore

$$
\alpha-\varepsilon+c_{l}(\delta-\alpha) \alpha^{t} \leqslant \alpha+\alpha \varphi(k)
$$

which holds whenever $k>l, \varepsilon>0$. Making $k \rightarrow \infty, \varepsilon \rightarrow 0$ we obtain $\delta=\alpha$, and a contradiction has been found. This proves (4.9).

We can now show that $\alpha=\gamma$. Assume $a<\gamma$, and let the sequence $\left\{n_{i}\right\}$ satisfy (4.8). Now write down (4.7) with $n=n_{i}$, divide by $f\left(n_{i}+1\right)$ and make $i \rightarrow \infty$ (k is fixed). We obtain

$$
\left|\gamma-\alpha-\sum_{1}^{t-1} c_{j}\left(\gamma a^{j}-a^{j+1}\right)\right| \leqslant \alpha \varphi(k)
$$

which leads to

$$
\left|1-\sum_{1}^{k-1} c_{j} a^{2}\right| \leqslant \frac{\alpha \varphi(k)}{\gamma-\alpha} .
$$

Making $k \rightarrow \infty$ we infer $C(a)=1$, which is impossible since $a<\gamma$.

In the same way the assumption $\beta>\gamma$ leads to $C(\beta)=1$. Thus the proof of theorem 7 is completed.

For some applieations we can better deal with $T_{n, k}$, where, if $n>k \geqslant 1$,

$$
\begin{equation*}
T_{n, k}=S_{n, k}-\gamma \frac{c_{k} f(n-k+1)}{f(n)}=\frac{1}{f(n)} \sum_{j=k}^{n-1} f(n-j)\left\{\gamma c_{j+1}-c_{j}\right\}, \tag{4,10}
\end{equation*}
$$

and put $\limsup _{n \rightarrow \infty}\left|T_{n, k}\right|=\psi(k) \leqslant \infty$.
Theorem 8. In the cases $2,3,4,5$ a necessary and sufficient condition for the existence of $\lim f(n) / f(n+1)$ is that $\psi(k) \rightarrow 0$ as $k \rightarrow \infty$.

Proof. In the first place, if $f(n) / f(n+1) \rightarrow \gamma$ is given, then we deduce

$$
\lim _{n \rightarrow \infty}\left|T_{n, k}-S_{n, k}\right|=c_{k} \gamma^{k},
$$

and $c_{k} \gamma^{k} \rightarrow 0$ since $\Sigma c_{k} \gamma^{k}$ converges. Hence $\varphi(k) \rightarrow 0$.
Next assume $\psi(k) \rightarrow 0$. As in the beginning of the proof of theorem 7 we deduce $f(n+1)<C f(n)$ for some C and all n. Therefore we have, if $n>2 K$

$$
\min _{K \leqslant k \leqslant 2 K} \frac{\gamma c_{k} f(n-k+1)}{j(n)} \leqslant \frac{\gamma}{K j(n)} \sum_{K}^{2 K} c_{k} f(n-k+1) \leqslant \frac{\gamma O}{K},
$$

and hence

$$
\begin{equation*}
\lim _{K \rightarrow \infty} \lim _{n \rightarrow \infty} \sup _{\mathbb{K} \leqslant n \leqslant 2 K} \min _{n, k}\left|S_{n}\right|=0 . \tag{4.11}
\end{equation*}
$$

It is easily seen that with this condition, instead of $\varphi(k) \rightarrow 0$, we are also able to give the remaining part of the proof of theorem 7 .

Theorem 9. In all cases the condition $c_{n} / c_{n+1} \rightarrow \gamma$ implies

$$
f(n) / f(n+1) \rightarrow \gamma
$$

Proof. We exclude case 1 here; the proof for case 1 will be given in $\S 5$. If $\varepsilon>0$, then for $j>A(\varepsilon)$ we have

$$
\left|\gamma c_{j+1}-c_{j}\right|<\varepsilon c_{j} .
$$

Hence, for $k>A(\varepsilon), n>k$, we have by $(4,10)$,

$$
f(n)\left|T_{n, k}\right|<\sum_{k}^{n-1} \varepsilon c_{j} f(n-j)<\varepsilon f(n) .
$$

Therefore $\psi(k) \rightarrow 0$ as $k \rightarrow \infty$, and theorem 8 can be applied.
Theorem 10. In the cases 2, 3, 4, 5, the condition

$$
\sum_{2}^{\infty} \frac{\left|\gamma e_{n}-c_{n-1}\right|}{f(n)}<\infty
$$

implies $f(n) / j(n+1) \rightarrow \gamma$.

Proof. By (4.10) and by theorem 1 we have, if $n>k>1$,

$$
f(n)\left|T_{n, z}\right|<\sum_{k}^{n-1} \frac{f(n)}{f(j+1)}\left|\gamma c_{j+1}-c_{j}\right|<f(n) \sum_{k=1}^{\infty} \frac{\left|\gamma c_{j}-c_{j-1}\right|}{f(j)} .
$$

Consequently $\psi(k) \rightarrow 0$ as $k \rightarrow \infty$, and theorem 8 can be applied.
Theorem 11. If $\Sigma c_{n} / f(n)<\infty$, then $f(n) / f(n+1) \rightarrow \gamma$.
Prooj. As, was remarked before, the convergence of the series implies $f(n+1)=O\{j(n)\}$, and it excludes case 1. Thus we may apply theorem 10 , since

$$
\sum_{i}^{\infty} \frac{c_{n-1}}{f(n)}=\sum_{1}^{\infty} \frac{c_{n}}{f(n+1)}<\sum_{1}^{\infty} \frac{c_{n}}{c_{1} f(n)}<\infty .
$$

Possibly the condition

$$
\begin{equation*}
\sum_{1}^{\infty}\left|\frac{c_{n+1}}{f(n+1)}-\frac{c_{n}}{f(n)}\right|<\infty \tag{4.15}
\end{equation*}
$$

is also sufficient for $f(n) / f(n+1) \rightarrow \gamma$, but we could not decide this.
A sufficient condition which applies to all cases, is
Theorem 12. If $c_{n+1} c_{n-1} \geqslant c_{n}^{2}(n>1)$, then $f(n) / f(n+1) \rightarrow \gamma$.
Proof. It was proved in [1] that $c_{n+1} c_{n-1} \geqslant c_{n}^{2}(n>1)$ implies $f(n+1) \cdot f(n-1) \geqslant f^{2}(n)(n>1)$. (The proof did not depend on the assumption $\Sigma c_{k}=1$ which was made throughout that paper). Consequently $f(n) / f(n+1)$ is non-increasing, and its limit exists.

REFERENCES

1. N, G. de Broisn and P. Erdös. On a recursion formula and on some Tauberian. theorems. Submitted to J. Research Nat. Bur. Standards.
2. P. Erdös, W. Feller and H. Pollard. A property of power series with positive coefficients. Bull. Am. Math. Soc. 55, $201-204$ (1949).
3. G. Pólya and G. Szegö. Aufgaben und Lehrsätze aus der Analysis, vol. 1, (New York, 1945).
