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1. Introduction
Consider the lattice formed by all points whose coordinates are integers in

d-dimensional Euclidean space, and let a point S j(n) perform a move randomly
on this lattice according to the following rules : At time zero it is at the origin and
if at any time n - 1 (n = 1, 2 . . . . ) it is at some point S then at time t it will be
at one of the 2d lattice points nearest S, the probability of it being at any specified
one of those being 1/(2d) . In 1921 G . Pólya [7] discovered the remarkable fact
that a point moving randomly according to the rules explained above will, with
probability 1, return infinitely often to the origin if d 2 while if d > 2 then it
will, again with probability 1, wander off to infinity.

While the random walk on the line has been very extensively studied there were
relatively few studies of random walk in the plane or in the space . In particular
many problems arising in connection with the above mentioned results of Pólya
have been completely neglected . This is somewhat unfortunate since these ques-
tions, besides being of intrinsic interest, also arise in certain physical and statistical
investigations. In the present paper we study two asymptotic problems concerning
random walk.

The first problem is concerned with the number of different lattice points
through which the random walk path passes ; it is studied in sections 2-5 . The
other problem is that of the rate with which a point walking randomly in d-space
(d >__ 3) escapes to infinity and is studied in section 6 . The treatments of the two
problems are independent .

We find that during the first n steps a random path in the plane passes in the
average through approximately an/log n different points, while in d-space (d z 3)
it passes through approximately ny d different points (with 0 < 'Yd < 1). We also
estimate the variance of the number of different points covered and show that not
only weak but even strong laws of large numbers hold. The proof of the strong
law in the plane (section 5) is considerably more difficult than in d-space for d z 3
(section 4). We deliberately refrain from applying our methods to the same prob-
lem in one dimensional random walls (for some remarks on this problem see
Erdős [2]) .

In section 6 we characterize all monotone functions g(n) having the property
that, with probability 1, 1

(1 .1)

	

g (n) N/n = o fllsd(n) III

	

d=3, 4. . . .
This research was sponsored, in part, by the Office of Naval Research .
o and 0 always refer to the relevant variable (usually n) tending to infinity .
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with (IS1f denoting the distance of S from the origin. A typical result of this
kind is that in ordinary 3-space g(n) = log-'-n satisfies (1 .1) for every c > 0 but
not for e = 0.

In section 7 we make some remarks concerning generalizations and extensions
of the preceding results .

2. Definitions and preliminary results
For d = 2, 3, 4, . . . , let Pt, . . . , Pd be d mutually orthogonal unit vectors

in d-dimensional Euclidean space . We denote by Xd the random vector which
can assume any of the values i P,	±Pd all with the same probability 1/(2d) .

Let
Xd (1), Xd (2), . . . , Xd (11) . . . .

be an infinite sequence of mutually independent random vectors each of which
has the same distribution as Xd . We put

Sd(n) = Xd(1)+Xd(2)+ . . .+Xd(1t),

	

1t = 1, 2, . . . .

The sequence

(2.1)

	

Sd (1 ), Sd (2), . . . , Sd (n), . . .

is called a random walk or path in d-space.
Let Ld(n), n = 1, 2, . . . , be the number of different vectors among the first 1t

terms of the sequence (2.1) . Ld(n) is a random variable representing the number
of different points through which the path (2.1) passed during the first 1t steps.
The random variable Ld(n) is studied in this and the following three sections .

Let -yd(n), n = 1, 2, . . . , be the probability that the n-th step take the path
to a point through which it did not pass in any of the preceding n - 1 steps. Due
to considerations of symmetry and independence we haves

'Yd (n)=P (Xd(1)+ . . .+Xd(i)9` Xd(1)+ . . .+Xd(n)

for i =1, . . .,n-1}

= P(Xd(n)+Xd(n-1) + . . . +Xd(i+1) 0

for i=1, . . .,n-1}
=P{Xd(1)+Xd(2)+ . . .+Xd(n-i)00

for i 1, . . .,n- 1)

=PfXd(1)+Xd(2) -}- . . .+Xd(j)00for j = 1, . . .,n- i}

=P{Sd(j) 5-1 0forj=1, . . .,n-1} .

That is, yd(n) is also the probability that the path does not pass during the first
n - 1 steps through the origin . From this we immediately have

(2 .2)

	

i = Id (1) > yd (2) 2: . . . z -td (n) > yd (n + 1) > . . . > 0,

s Throughout the paper P { ) denotes the probability oI the event within the braces . Similarly
E ( i is the expected value of the random variable within the braces .



and

(2 .3)

	

yd (2n - 1) = ya (2n) ,

	

n = 1, 2, . . . .

Let ud(n) = P(Sd(n) = 0(, that is, the probability that the n-th step take the
path to the origin . Clearly

Ud ( 1 ) = Ud (3) _ . . . = Ud (2n + 1) _ . . . = 0,

and it is not difficult to compute u d(n) for even n. We shall use the following easy
estimate [7],

d lads

	

1 l

	

1 l
(2 .4)

	

ud (2n) = 2 (4njr/ + °
_

(nd~/ - 0 (WO
Classifying the paths according to the last return to the origin, we have

n-t

(2 .5) 1:P 1 Sd (i) = 0, Sd (j) pé 0

	

for

	

j=i+1, . . . . n-11=1 .
+-o

Here and in the sequel we make the convention Sd(0) = 0 [similarly below
ud(0) = 1] . Since the summands in (2.5) may be written as

P(Sd(i)=0} •P (Sd(j)-Sd(i)96Oforj=i+1, . . .,n-1(

= P I Sd (i) = 01 -P I Sd (1)

	

0forj=1, . . .,n-i-11,
we obtain

(2 .6) Ud (0) yd (n) + ud (2) 'Yd (n - 2) + . . . + ud (2m) yd (n - 2m) = 1 ,

with m = n/2 - 1 for even n and m = (n - 1)/2 for odd n.
Next we estimate yd(n) . The method of estimation for d ? 3 differs somewhat

from the one for d = 2 .
When d >__ 3 we have from (2 .4)

(2 .7)

	

Ud=fud(2n)<o,

	

d=3,4, . . . .
n-0

Let us put

(2.8)

	

yd = limyd (n),

because of (2 .2) this limit exists and, indeed, yd

	

'd(n) for n = 1, 2, . . . . From
(2.6) and (2.2) we have for 1 5 k S m

Letting k -->

which gives

(2 . (»

RANDOM WALK IN SPACE

n-m

k

	

at

,yd (n--2k) ~ud(U) +

	

ud (2n) z 1 .
c-o

co so that n - 2k -+ co we get

'Yd (it - 2k) • Ud > i + °( 1)
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[It then follows from (2.2) that yd(n) z 1/Ud for all n.] Subtracting

Ud [ud(0) +ud( 2 ) + . . . +ud(2m)

from both sides of (2 .6), we have from (2.9)

rr,r ( 0 )(yd(rr) -
1

5 1 -
1

Eli)

	

Y~l
whence by (2.4) and (2 .9), we have

1
(2.10)

Together with (2 .12) this gives
(2 .15)

'Yd< yd(n) < yd+0(n`~d/Z)yd = Ud
for d

	

3 .
When d = 2, (2 .4) yields

(2.11)

	

u.(0) + . . . + u$(2m) = 1+0(1) log m

hence, by (2 .2),

(2 .12)

	

yz ir logn-51 +0(1) .

Similarly, for 0 < k < m, we have

(2 .13) ys (n - 2k) [us (0) + . . . + u s (2k) ] +

ua (2k + 2) + . . . + uz (2m) >_ 1 .

Thus, if k tends to infinity together with n, (2.13) yields

(2 .14)

	

y$(n-2k) • l+0(1) log k+
1+0a(1)

log
m
k - 1 .

Taking' k = m - [m/log m], we have

yq(n-2 k) 1 +0(1) log (n-2k)+o(1) >_ 1	 0 .

s+0 (1)
ys (n) - logn

`~ u,1(2i),

The estimate (2 .15) is not good enough for our purposes. In order to improve it
we use instead of (2.4) an estimate of (see, for example, [7] or [3, p. 298])

2n
us (2n) - 4~*1 kl k1(n ( k

2n)!		
I ) !(n - k) !

	

(2It \s

by Stirling's formula, that is,

(2 .16)

	

ua (2n) _ 1 +0(1irn

	

W)

Then the right side of (2 .11) can be replaced by r-' log cm + 0(1/n) with a suit-
able positive constant c. This immediately improves (2 .12) to

(2 .17)

	

'y' (n) s log cm +0 (n loge n) .
Throughout the paper ( I denotes the integral part of the number within the square brackets .
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Similarly (2.13) gives, instead of (2 .14), the inequality

Hence

yz (n-2 k) log (n -2 k)= i-logIn

	

i
loggI

	

k

	

(k)~ log k+0(1)

Taking for k the same value as led to (2.15), this and (2.17) yield

(2 .18)

	

yz(n) = loge
-{-0 (l lloglsnn) .

The expected number of different points covered in the first n steps is given by

(2 .19)

	

E(Ld(n) ) =yd(1) +yd (2) + . . .+yd(n) .

Thus (2.18) and (2 .10) give the following result .
THEOREM 1. The expected number Ed(n) of different points encountered during it

yz(n-2k) logck+O
Ck)l + - log k+0G)~ 1 .

(2 .23)

	

Ed (n) = nyd + Od + 0 (n"/z) for d = 5, 6 . . . .

with positive constants gd(d = 5, 6, . . .) .
Remark . (2.10) and (2.17) imply the result of Pólya that the probability of

returning to the origin infinitely often is 1 in the plane and 0 in d-space (d >= 3) .
Our derivation of this fact is similar to that of Feller [3, p . 298] who has to rely
on the theory of recurrent events.

3. Weak laws for Ld(n)

Our next aim is to estimate the variance

(3 .1)

	

Vd(n) =E {Lá (n) } -Eá (n)

of Ld(n) . Clearly
n

(3 .2)

	

E{Ld(n) } _ Eyd (i, j)
+ .i=1

where yd(i, j) is the probability that the d-dimensional path pass at the i-th step
through a point not passed during the preceding i - i steps and also pass at the
j-th step through a point not passed during the preceding j - 1 steps.

steps by a random path in d-dimensional space satisfies

(2.20)
n

	

log logE2 (n)

	

n) '
= logn+0(n

logznn

(2 .21) Es (n) =n-y9+0(-/n),

(2 .22) E4 (n) =n-Y4 +0(109n)
and
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For integers m, n with 1 5- m 5 n we have

7d (m, n) = P { Sd (i) 0 Sd (m) for i = 1, . . . . m - 1 ;

8d (i)

	

Sd(n)forj=1, . . .,n-11

S- P{Sd(i)

	

Sd(m)fori=1, . . . . m-1 ;
Sd(j)

	

S,,(n)forj=m, . . .,n-1~
•

	

P{Sd(i) Sd(m)fori=1, . . .,m-1}
XP{Sd(j)

	

Sd(11)forj=m, . . .,n-1}

•

	

P{Sd(i)0Sd(m)fori=l, . . .,m-1}
XP{Sd(j)0-Sd(n-m+1)forj=1, . . .,

or

(3.3)

	

7d (m,n)57d(m)7d(n - m +1),

	

1<m<n .

This relation merely expresses the fact that to pass through new points at both
the m-th and n-th step it is necessary (a) to pass through a new point at the m-th
step and (b) that if Sd(m) is identified with the initial step of a second path that
this second passes through a new point in the n - m + 1-st step . To obtain (3 .3)
it is only necessary to remark that the events (a) and (b) are independent .

From (3.1), (3 .2), (3.3) and (2.19) we have
n

	

n

	

n

	

n

V4 (n) _ I7d(i, j) - 17d(í) IINW _I {7d(i) j) - 7d(i)IN(j) }
i,i-1

	

i-1

	

i-1

	

i,i-1

5- 2Z {7d(i, j) -7d(i)7d(i) }
14iSi4n

:-5 2 'Y {,yd(i)7d(j-i+1) - 7d(i)7d(j) 1
l~i~i$w

=2 :,l7d(s)( :~ 7d(j-i+l) - :, 7a(j »)

52 :t yd(i) 1
m5(~ya(j-i+l)

	

(j))
{-1

	

i- i

	

i- i

Because of (2 .2) the max is attained for i = (n/21 + 1 . Hence we obtain

(3 .4)

	

Vd (n) 5-2Ed (n)
En

- [aj)-Ed (n) +E#fl )~ •
From this and theorem 1, we easily obtain :
THEOREM 2. The variance of Ld(n) satisfies

((3.5)
	 )

V2 (n) = O
n2 log log n

log$ n

	

'

(3 .6)

	

V3 (n) = 0 (n'%2 ) ,



This immediately leads to
THEOREM 3 . The random variable Ld(n) obeys the weak law of large numbers,
that is,

(3 .9)

	

imP{ ~Ld(n) -Ed (n) 1 >EEd (n) } =0
nsm

for every e > 0.
Indeed, applying Chebyshev's inequality to Ld(n) we obtain from theorems 1

and 2 not only (3 .9) but also that

lim PI I Ls ( n ) log n I > ~n nloga~s nog n

	

0 ,
nom

limPIILa(n) -nya I >0nna /4 } =0,
n-m

limPf JL4(n) -ny4 j >0.(n log 0 0 1 = 0,
n- OD

limPIILd(n) -nyd I >qb„n0I =0,

	

d=5, 6, . . .
nam

whenever the sequence of numbers ¢n satisfies
lira 0. = Co .

n- m

4. Strong laws for Ld(YI) when d >t 3

We proceed to improve on the last theorem by proving
THEOREM 4. The random variable Ld(n) obeys the strong law of large numbers,

that is,
Ld(n)(4.1)

		

P lira	. 1 = 1 .
n-m Ed (n)

The estimates of theorem 2 are sufficient to prove (4.1) for d z 3, (3.5) is,
however, not strong enough to imply (4.1) for d = 2. We therefore postpone the
treatment of the plane case to the next section .

We thus assume d Z 3 and shall prove a somewhat stronger result than (4.1) .
Let a be any number satisfying

(4.2)

	

1<a<1,

and take for 0 any number with

(4.3)

	

4a2
3 <#< 1 1 a '

such a choice of 0 is possible because of (4.2) .
Put

(4.4) nk = [kaj ,

	

k = 1, 2, . . . .
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(3 .7) V4 (n) = O (n log n)

and

(3 .8) Vd (n)=0(n) ford= 5,6, . . . .
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Using Vd(n) = 0(u'í2) for d ~_ :3 and applying Chebyshev's inequality we have
P( ILj (n k ) -nkydI >nk} =0(n'á./2-'-°) =0(k«á°

Since (3 - 4a)0/2 < - 1 by (4.3) it follows that
W

~P~~Ld(?ik) - ltkydl >4tk} < .
k-1

Hence, by the Borel-Cantelli lemma, there is probability 1 that

(4.5)

	

1 Ld (nk) - nkyd I S nk

hold for all sufficiently large k . But (4.5) implies

(4.6)

	

1 Ld (n) - nyd I < nk + nk+1 - nk

for nk S n < nk+, . By (4.4), nk+l- nk = 0(lá-1 ) ; since S - 1 < aA we have also
ká-1 = O(nk) . Thus the right side of (4.6) is O(nk) and hence, a fortiori, 0(n°) for
nk 5_ n < nk+ , . We have thus proved :

If d ? 3 then for almost all packs

(4.7)

	

Ld (n) = nyd + 0 (n°)

for every a > 5/6 .
This proves theorem 4 for d ? 3.
Remark . The variance estimates of theorem 2 suffice, of course, to obtain much

sharper results than (4.7) . Using more sophisticated methods it is possible to
deduce that, with probability 1, L 3 (n) = ny a + 0(n$/a+a) and Ld(n) = nyd +
0(nl 12+a) for d z 4 (ó being an arbitrarily small positive number) . It is even
possible to replace na in these estimates by a suitable power of log n. It is, how-
ever, possible that much stronger results hold . Hence it would seem reasonable to
gather further information about the variance and higher moments before apply-
ing the known but complicated arguments leading to the sharper estimates .

6. proof of the strong taw in the plane

if we could replace log$ n in the denominator in (3.5) by any larger power of
log n, then we could deduce from Chebyshev's inequality an estimate of

PI IL2(n) -'r `>e
n n ,

log

	

log

sharp enough to prove (4.1) for d = 2. Since we cannot improve the estimate of
the variance, we use a more laborious method to sharpen the probability estimate .

Let us first assume the validity of the estimate

(5 .1)

	

Pj ILt(n) --o L I >Elognj=0(1 1+a n)+

	

S>0,

for every e > 0 (the constant involved in 0 may, of course, depend on a but S is
fixed) .



Let B be any number satisfying

(, • 2)

	

0< 0< 1
I

,
and put

(5 .3)

	

nk = [ exp k9 ,

	

k = 1, 2, . . . ,

the brackets denoting again the integral part .
Because of (5 .1) and (5.2) we have

Hence it follows from the Borel-Cantelli lemma that for almost all paths

(5 .4)

	

ILz(nk) - lognk1 ;5
fnk

2 log nk

for all sufficiently large k .
But for nk n < nA,+1 we have

(5 .5)

	

Lz(nk) - log nk+l < L2 (n) log n L2 (14+0 - log
irnk

nk
•

(5.4) together with the same equation with k replaced by k + 1 implies that the
absolute value of the extreme members of (5.5) is at most

enk+i	nk+i _ nk(5.6)

	

2 log nk+i + (10g nk+i log nk~ .

Since B < 1 it follows from (5 .3) that, for sufficiently large k, (5 .6) is smaller than

(5.7)

	

Enk S en
log n it - log n

Combining (5.4), (5 .5) and (5.7) we see that for every e > 0 and for almost all
paths

I L2 (n) - lo nl : le ng

	

g n

for all sufficiently large n. But this is equivalent to (3 .9) with d = 2. Thus the proof
of theorem 4 will be achieved as soon as (5.1) is established .

PROOF of (5.1) . Let N = N(n) be a positive integer satisfying
(5.3)

	

limN=co,

	

log N = 0 (log n) .
n-co

Put now

RANDOM WALK IN SPACE

~P Lz(nk) - log7n"

	

~nk

	

CD
nk > 2 log j < .

361

_ [nil
n ' NN

For i = 1, . . . , N let A ; denote the event

L2(n ;) -Lz(n;-i) >(1-+- 2)Nlog n

L2(ni) - L2(ni-1) > e7ril
2 log n

'111(1 Bi the event.

for i=0, 1, 2 .. . . , N .
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From (3.5) and Chebyshev's inequality we have by (5.8)"

(5 .9)

	

P { A ; } < c, log log is
log n

where c, (and c2, cj, c, below) are finite positive constants which may depend on
e (bill not on ;c, N or i) . Also, since .1' --> -, the variance estimate gives

(5 . l U)

	

/' {/i,• j < e_ log lot; u
N 2 log n '

The inequality L2(n) > (1 + e),rn/log n cannot occur unless either at least
two of the events A,, . . . , AN occur or at least one of the events Bl, . . . , BN .
The probability that at least one of the events A,, . . . , AN occur cannot exceed
~~'P{A;j, and, since these events are mutually independent, the probability that
at least two of these occur is smaller than (NP{ A; j )'. Similarly the probability
that at least one of the events B; occurs is not greater than NP{B;j . Thus (5.9)
and (5.10) give

(5 .11) PIL2 (n) > (1 +E ) log n < cl C
N	

logngn)2+ c2 IN log n

Taking N = [(log n/log log n) 11'j the preceding inequality gives .

	 g g 	+a(5 .12)

	

P L2 (n) > ( 1+E) logo < ca (l°	log n n)

For i 0 j and 1 S_ i,j S_ N let M;; be the number of points which are common
to both part paths M; and M; where M; denotes the sequence of points

Sd (n;-1 + 1) ,

	

Sd (n;_ 1 + 2) , . . . , Sd (ni)

that is, the part covered by the path between the n ;_ I-th and n;th steps . (N is
again a function of n satisfying (5 .8) which will be specified later.) It is not diffi-
cult to deduce from (2 .20) that the expected value of M; ; satisfies

C
n log logn)(5.13)

	

E{M;;}
O N log' n

Hence, for every fixed 11 with 1 > n > 0 we have

(5.14)

	

P M;i > N logl+g n $ - O Clog' `~ n )

Let C ;; denote the event whose probability is evaluated in (5.14) . Then the prob-
ability that at least one of the events C;; (1 S i < j 5 N) occurs is O(N'/logl-n),
while the probability that two such events C ;; and C;- ;- with i, i', j, j' all different
from one another occur, is

N*
(5 .15)

	

O Clog'~n n)'

4 (5 .9) and all other similar assertions in this section involving log log n are assumed to apply
only for n Z 3.
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Let Di (i = 1, . . . , N) denote the event that Mi covers less than (1 - e/2)lrn/
(117 log n) different points . Then, exactly as in (5 .9), we have

P { D; } < Ca
log log n

log n '

and thus the probability that at least two of the events Di occur is smaller than

(5 .16)

	

Ga
N log log n 2

log n

But if not more than one of the events Di occurs and if there exist i', f with
1 < i' S f S N such that no Ci ; occurs unless at least one of the pair i, j coin-
cides with either i' or j', then it is easily seen that

L2 (n) > (N-3)C1-el
am _ (N-3) (N-2) nlog log n

2 N log n

	

2

	

N log'+ ,, n

Taking N = [log log n] this gives for large n
L2 (n) > (1 -e)I

n .
Hence (5 .15) and (5.16) yield

(5.17) P1L2 (n) < (1 -e) logn =0(ioga
2-'2v n")=0 (

l ogs_a
,
n) .

Together with (5 .12) this establishes (5 .1) and thus completes the proof of theo-
rem 4.
Remarks. 1 . (5.12) can be improved by repeating the argument which led to it.

Indeed, if we estimate (5.9) using (5 .12) the first summand on the right in (5 .11)
will become a constant multiple of

N2 Clog log n\s/3

log n /)
Taking N = [(log n/log log n)'/'] this improves the exponent in (5 .12) to 14/9 .
Generally, it is easily seen that if we estimate (5 .9) by c (log log n/log n)s and then
choose in (5 .11) N = [( log -n/log log n)#] with 0 _ (2a - 1)/3 then the exponent
in (5 .12) becomes 2(a + 1)/3 . Putting a c = 1, a i = 2(aí_1 + 1)/3 for i = 1, 2, . . .
it is easily seen that ai is increasing and tends to 2 as i -4 . Combining this
with (5 .17) we obtain

(5 .18)

	

Pj IL2(n) log nI >e log n =D Clog213n/

for every e > 0 and S > 0 .
2. The proof of this section can be adapted to yield L2(n) _ irn/log n +

D(n/log° n) with suitable a > 1 for almost all paths.

8. Rate of escape

It was mentioned in the introduction that for d z 3 there is probability 1 that
-5d(it) tend to infinity as a increases . In this section we study some quantitative
aspects of this fact .

Adopting a terminology of P. Lévy we say that a positive function g(n) of n
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belongs to the lower d-class, in symbols g

	

Rd ifh

(6 .1)

	

l' { JjSd (n) 11 < g (n) -/n for infinitely many ul = 0 .

Similarly g(n) is said to belong to the upper d-class, or g E *do if

(6.2)

	

P { JjSd (n) 11 < g (it)

	

n for infinitely many it) = i .

We shall give a characterization of lower and upper classes for monotone g(u) .
[Since increasing g(n) obviously belong to the upper d-class for all d, we may re-
strict ourselves to decreasing functions .]
THEOREM 5. A monotone function g(n) belongs to the lower class 2d or to the up-

per.-class Vd(d Z 3) according as the series
ao

(6.3)

	

'Z gd-2 (2 M)

converges or diverges.
It is a well known consequence of the central limit theorem (see, for example,

Kac [4]) that if the unit step in the random walk is replaced by h and the unit time
by 10, then as h-* 0 the random walk approximates more and more the Brownian
motion . Thus, if xd(t) denotes the position at time t of a point moving in Brownian
motion in d-space, if g(t) is defined for all t > 0 and if we put g E 2d or g E *d
according as the probability of the event jjxa(t)jj < g(t)vrl for some arbitrarily
large t is 0 or 1, then theorem 5 is equivalent to :

THEOREM 6 . For monotone functions g(t) we have

(6.4)

	

gE j Pd j

	

if

	

~ g4-2(2-) 1 <
M -1

ford= 3,4, . .
Remark . Since g(t) is monotone the convergence or divergence of the series in

(6.4) is not affected if 2- is replaced by aM with any a > 1. A similar observation
applies to (6.3) .

It is more convenient to prove theorem 6 . For the definition and relevant prop-
erties of Brownian motion, see, for example, [6], [5], [1] . First we give some lemmas .
LEMMA i . Let C(S, r) denote the sphere with center S and radius r (r 5 R =

11511) in d-space (d ~ 3) . Then the probability that xd(t) ever enter C(S, r) is given by

(6.5)

	

P { xa (t) EC (S, r) for some t > 0 }

	

.= GO
For r > R the probability in question obviously equals 1. For d = 3 this lemma

is stated in Kakatani [5] . For a proof of the general case, see Dvoretzky [1] .
LEMMA 2. For every T Z 0 and r z 0 put

Qd (r, T) = P { 11 xd (t) 11 5_ r for some t > T {

then we have for d Z 3

(6.6)

	

4a( T.~d~e-'A2r) S_Qd(r,T) _<_4a(

	

)ate ,

s For any point S in Euclidean d-space we denote by JI S11 the distance of S from the origin .
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with

(G.7)

	

Qd

	

d=2d/2r (d/2+I) .

PROOF. Let ul(t), . . . , ud(t) be the components of xd(t), then the distribution
of xd(T) has the density

1

	

u2 +. . . + u2
(6.8)

	

pd (x, T) _ (2rT) exp

	

2T

	

)'

On the other hand it follows from lemma 1, the temporal homogeneity of the
Brownian motion and its Markovian character that if x(T) = S then the condi-
tional probability that 1) x(t) 11 < r for some t > T is given by

min 1 ,

	

r d_2
[

	

(„S,,) J '
Therefore,

f

	

d-2
f(~~xii)

II

		

pd (x,T)du, . . .dud5Qd(r,T)
xII>r

5 f~ . .f

	

f~ r d-2m(11x11) pd(x, t)du, . . .du,, .

Putting cd for the (d - 1)-dimensional area of the unit sphere in d-space we have
from (6 .8)

ad rd-2

	

m

	

cd rd -2

	

°°
(2irT)dnf pe-°'/($T)dpSQd(r,T) 5 (2irT)dAf pe vl/(2T)dp

.

Integrating and substituting cd = d~rdl'/P(d/2 + 1) we obtain (6 .6) .
We also need the following

LEMMA 3. For every T Z 0, r > 0 and K > 1 put
Pd (r, T, K) = P f jjxd (t) 11 5 r for some T ;9 I < KT) .

Then we have for d z 3

(6.9)

	

Pd ( r, T, K) > Qd •

	

d__2
10 (_~=) '

provided that r 5

	

and K z 4 .
PROOF. We obviously have

(6.10)

	

Pd (r, T, K) z Qd (r, T) - Qd (r, TK) .

Applying (6.6) to (6.10) we obtain

(6.11)

	

Pd (r,T, K) k qd(~)d--2 ] e r!/(2T)-(V A)d~l .

Since r S 'IT-, K >_ 4 and d 3 the expression within the braces is at least

6-1/2 -+ >

	

.

Thus (6.9) follows from (6.11) .
PROOF of THEOREM 6 . First we assume the convergence of the series (6 .3) and

show that g E ed .
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Indeed,

(6.12)

	

P { II xd (l) II
< g (6) -/d for some 2"' < l 5 2-" I }

is, because of the monotonicity of g(l) and lemma 2, smaller than

P{Ilxd(1)115x(2 - )2tm+'ti'forsome I>2-) _Sq,rl-\12g(2'")]d_' .

Thus the series whose general term is given by (6.12), is convergent and it follows
from the Borel-Cantelli lemma that g E .2d .

Let us now assume the divergence of the series (6.3) and show that g E V d.
We assume,
(6.13)	lim g (t) = 0

t

this obviously entails no loss of generality .
Let

(6.14)

	

m'' ma ' . . .,m;, . . .

be an increasing sequence of integers satisfying
(6.15)

	

lim (m ;+i- m ;) _ - .
Y-m

Denote by A ; the event

11 xd (t) II

	

g (á) vri for some 4"i 5 t < 4'*i + '

The events A ; (i = 1, 2, . . .) are of course not independent. However, it can be
shown by studying P{A ;A;) - P{A;)P{A;} that the correlatíons between the
different events are so small that one may apply an extension of the Borel lemma
and deduce from

the occurrence, with probability 1, of infinitely many events A ;.
Thus the proof of the theorem will be achieved provided we can find a sequence

(6.14) satisfying (6 .15) for which (6 .16) holds.
By assumption (compare remark following theorem 6)

	

gd-2(4-) is a divergent
series. Hence, by a general result on infinite series, there exists a sequence (6 .14)
satisfying (6.15) for which

(6.17)
CO

b (4'i+') _ ao .

In view of (6.13), we may furthermore assume that m, has been chosen so large
that
(6.18)

	

g (4* , ) S 1 .

Since g(1) is a monotone function we clearly have

P) .4j) ZP111x<<(1)II=g(4-i+')2'"i for some 4''i 6t<4'" ;+'} .
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Thus, we have from (6.18) and lemma 3

P{A ;}
>ld

g4-2 (4'i+') .

Hence (6 .16) follows from (6 .17) and the proof is completed.

7 . Remarks
1. Our methods obviously extend to more general types of random walk . In

particular, all that was needed in section 6 was the fact that the random walk
approximates, in a suitable sense, the Brownian motion . Thus the result on the rate
of escape applies, roughly speaking, whenever the central limit theorem holds . It
is even unnecessary to restrict the consideration to the case of identically dis-
tributed individual steps .

The problem of sections 1-5 concerns only random walk in a lattice . But here
again the result can be generalized to the case of identically distributed individual
steps with zero mean and finite variance (and also to still more extensive cases) .
In simple special cases it is also easy to find the exact constants involved, for ex-
ample, for the triangular (6 possibilities for every step) and the hexagonal (3 pos-
sibilities for every step) random walk in the plane .

2 . Pólya [7) has shown that two points starting simultaneously and moving
randomly (as defined in section 1 or 2) in the plane will meet (that is, be at the
same place at the same time) infinitely often with probability 1. On the other
hand he has shown that in 3-dimensional space the probability of infinitely many
meetings is 0. Similarly it can be shown that there is probability 1 for three points
moving on the line meeting (all three together) infinitely often, but that in the
plane the probability of this event is zero . We can also show that the probability
of four points meeting together infinitely often is 0 even in the 1-dimensional case .

3. The problem of sections 2-5 is the discrete analogue of that of the Hausdorff
dimensionality of Brownian paths in d-space (d ? 2) .

4. For Brownian motion there is in the plane a problem similar to that treated
in section 6 for d Z 3. It is known that, with probability 1, x s (t) io 0 for t > 0 but
that lim inf 11X2(011 = 0. It would be interesting to characterize the rate with

r=m
which the "small" values of ~~ x2(011 approach zero.
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