MATHEMATICS

A THEOREM ON THE RIEMANN INTEGRAL

BY
P. ERDÖS
(Communicated by Prof. H. D. Kloosterman at the meeting of February 23, 1952)

Recently de Bruijn communicated to me the following conjecture: Let $f(x),-\infty<x<\infty$ be a real function. Assume that for all h

$$
\begin{equation*}
\int_{-\infty}^{\infty}|f(x+h)-f(x)| d x=0 \tag{1}
\end{equation*}
$$

where all integrals in this paper are understood to be Riemann integrals. Then for a certain constant c

$$
\begin{equation*}
\left.\int_{-\infty}^{\infty}|f(x)-c| d x=0 .{ }^{1}\right) \tag{2}
\end{equation*}
$$

De Bruijn and I proved this conjecture almost simultaneously. In fact de Bruisn proved a good deal more. But perhaps my direct and simple proof is not entirely without interest.

Capital letters will denote sets of real numbers, small letters will denote real numbers. $a \in B$ means that a is in B. \bar{A} will denote the complement of $A . A+x$ denotes the translation of the set A by $x, A \subset B$ means that A is contained in B and $A \cap B$ denotes the intersection of A and B.
$\bigcup_{k=1}^{\infty} A_{k}$ denotes the union of the sets A_{1}, A_{2}, \ldots
A set S is said to be of the first category if it is the union of countably many nowhere dense sets. A set not of the first category is called a set of second category. It is well known (theorem of Baire) that an interval is of second category.

First of all we make two remarks:

1) If $\int_{-\infty}^{\infty}|g(x)| d x=0$ then $g(x)$ must be 0 except in a set of first category. For if not then for some k the set in x satisfying $|g(x)|>1 / 2 k$ must be dense in some interval, which implies that $\int_{-\infty}^{\infty}|g(x)| d x \neq 0$.
2) Let $\int_{-\infty}^{\infty}|r(x)| d x \neq 0^{2}$). Then there exists a countable set $\left\{y_{n}\right\}$ so that if we define

$$
r^{+}(x)=\left\{\begin{array}{cc}
r(x) & \text { if } x=y_{n} \\
0 & \text { otherwise }
\end{array}\right.
$$

[^0]we have $\int_{-\infty}^{\infty}\left|r^{+}(x)\right| d x \neq 0$. This remark is evident from the definition of the Riemann integral as the limit of sums.

Denote by $E(a, b)$ the set in x for which

$$
a \leqslant f(x) \leqslant b
$$

Assume first that there are two disjoint intervals (a, b) and (c,d), $a<b<c<d$ so that $E(a, b)$ and $E(c, d)$ are both of second category. We then show that (1) can not be satisfied.

Let $\left\{y_{n}\right\}$ be an arbitrary countable set dense in some interval. First we show that there exists a $z \in E(a, b)$ so that for all $n z+y_{n} \in E(a, b)$. If this were not so

$$
\begin{equation*}
E(a, b) \subset \bigcup_{n=1}^{\infty}\left(\overline{E(a, b)}-y_{n}\right) \tag{3}
\end{equation*}
$$

But since $E(a, b)$ is of second category it follows from (3) that for some n

$$
E(a, b) \cap\left(\overline{E(a, b)}-y_{n}\right)
$$

is of second category, or $f\left(x-y_{n}\right)-f(x) \neq 0$ on a set of second category, which means by remark 1 that (1) is not satisfied for $h=-y_{n}$.

Similarly there exists $w \in E(c, d)$ so that for all $n, w+y_{n} \in E(c, d)$. But then

$$
\begin{equation*}
f(x+w-z)-f(x) \geqslant c-b \text { for } x=z+y_{n}, n=1,2, \ldots . \tag{4}
\end{equation*}
$$

(i.e. if $x=z+y_{n}, f(x)$ is in (a, b) and $f(x+w-z)=f\left(w+y_{n}\right)$ is in (c, d).

Since $\left\{z+y_{n}\right\}$ is dense in some interval (4) clearly contradicts (1) for $h=w-z$.

Let us next assume that there are no two disjoint intervals (a, b) and (c, d) so that both $E(a, b)$ and $E(c, d)$ are of second category. Then there clearly exists a sequence of nested interval $\left(a_{k}, b_{k}\right)$ with $b_{k}-a_{k} \rightarrow 0$, so that $\overline{E\left(a_{k}, b_{k}\right)}$ is of first category. Denote by t the intersection of these intervals, and by $E(t)$ the set of points by satisfying $f(y)=t$. Clearly

$$
\bar{E}_{t}=\bigcup_{k=1}^{\infty} \overline{E\left(a_{k}, b_{k}\right)}
$$

is of first category, or $f(x)=t$ except for a set of first category.
Now we use remark 2. If

$$
\int_{-\infty}^{\infty}|f(x)-t| d x \neq 0
$$

then there exists a countable set $\left\{y_{n}\right\}$ so that

$$
\begin{equation*}
\int_{-\infty}^{\infty}|F(x)| d x \neq 0 \tag{5}
\end{equation*}
$$

where

$$
F(x)=\left\{\begin{array}{cl}
f\left(y_{n}\right)-t & \text { for } x=y_{n} \\
0 & \text { otherwise }
\end{array}\right.
$$

Since \bar{E}_{t} is of first category $\bigcup_{n=1}^{\infty}\left(\bar{E}_{t}-y_{n}\right)$ is of first category. Thus there exists an h not in it, or $h \in\left(E_{t}-y_{n}\right)$ for all n. Thus $|f(x+h)-f(x)| \geqslant$ $F(x)$, or by (5)

$$
\int_{-\infty}^{\infty}|f(x+h)-f(x)| d x \neq 0 .
$$

This contradiction completes the proof of the conjecture.
The method of our proof was similar to that of P. LAx ${ }^{3}$) who proved that if S and \bar{S} have both power of the continuum and m is any cardinal less than that of the continuum, there exists an h so that $(\varphi+h) \cap \bar{\varphi}$ has power greater or equal m.

The same method would give the following result: Let S and \bar{S} both be dense in some interval (not necessarily in the same interval). Then for some $h(S+h) \cap \bar{S}$ is dense in some interval.

University College, London

[^1]
[^0]: ${ }^{1}$) The analogous statement for Lebesgue integrals is false, see N. G. de Brtijn, Nieuw Archief voor Wiskunde (2) 23, 194-218 (1951).
 ${ }^{2}$) This notation means: either the integral does not exist in the Riemann sense, or it does exist but is $\neq 0$.

[^1]: ${ }^{3}$) P. Erdös, Annals of Math. 44, 145-146 (1943).

