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E an' is said to be the Euler sum of E an .') It is easy to see that- 'ZS' a,'
converges if : an converges, but the converse is not true. Euler summa-
bility was first studied by K n o p p .3

W. M e y e r- K ö n i g proved') that if E a„ is Euler summable and an = 0
except if n=n i , n ; +1/n, >c> 1, then Ean is convergent. He also conjec-
tured that the conclusion of the theorem would follow from the following
weaker condition : a,, = 0 except if n = n1 ; where nit,-n, > c n,'h2 , c > 0
any constant. In fact he proved 4) this conjecture under the further assumption
that I a„ < n" where a is any constant . It is easy to see that this conjec-
ture if true is best possible i . e . if f(n) tends to infinity arbitrarily slowly
there exists a series Ew„ which is Euler summable but not convergent and
for which a,,=0 except if ti= n ; , n ; +1 - o f > n;'/2 / f (n) .

1 ) ( 1) gives a series to series transformation method. The corresponding sequence to
sequence method would be

1
Snr =

2nfi (E( n
k)Sk)

The two methods are equivalent, but for our present purpose the series to series transfor-
mation seems to be more suitable .

4*

2) Math. Zeitschrift 15 (1922), p. 226-253 .and 18 (1923) p. 125-156 .
3) Math. Zeitschrift 49 (1943), p . 151-160.
1 ) Math. Zeitschrift 45 (1939), p . 479-494 .
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In the present note we are going to prove the following
Theorem. There exists a constant A > 0 so that i f E an is a series

which is Euler summable, and for which an = 0 except i f n = n ;

ni+1 - n; > Ani' i2 ,

	

(2)
then Zan is convergent .

At present I am unable to decide whether A can be any constant
greater than 0, in other words I am unable to prove Meyer-König's
conjecture .

Let (nn)am/2n+1 be the summand of greatest absolute value. in (1) . If
there are several such terms we consider the one with the greatest index

m. Put m = f(n), F(n)- (m) am/2"+1 ,

Lemma l . f (n) is a non-decreasing function of n .

To prove lemma 1 it will clearly suffice to show that if

(m") am > (1) a,
This is true since

i. e .
( n

m 1) am
((n) am

for m > 1, then

) -
I

(n + 1
m ) am

(n
1
1) al . ((1) a l )

- ~

n+1 > n+1 form > 1 .
n-m+1

	

n-1+1

4) Math. Zeitschrift 45 (1939), p . 479-494.

Lemma 2. Assume that f (n) > n/2. Then, F(a+ 1). > F(n) .

Put f (n) = m > n/2. We obtain from F (n+ 1) > 2n1, z (n
m

1 ) am

F(n+ 1)/F (n) > (
n+1) /2 (n	 n+1	> 1,
m

	

m

	

2(n-m+l)
which proves the lemma.

Lemma 3. Let a be arbitrary . Assume that I a„ I < n« for all n, and
a n = 0 except if n = ni , n ; +1 - n; > cn;'r2 , where c > 0 is an arbitrary posi-
tive constant. Then if E an is Euler summable it is convergent .

This is a theorem of Meyer-König . 4)
Because of lemma 3 we can now assume that, for infinitely many

n, I an I > n . We shall show that if an infinite series satisfies (2) and



an I > n for infinitely many n then it cannot be Euler summable. This
together with lemma 3 will complete the proof of our theorem . First
we prove

Lemma 4. Let c, > 0 be suitable constant. Then there exist infinitely
many integers n satisfying

n/2<f(n)-f(n+1).= . . .=f(n+t), i> A .n'i2

	

(3)

and

F(n) >c,n"', F(n+1)>c,n11', . . .,F(n+t)>c,nlt' .

	

(4)

First of all it is easy_ to see that there exist infinitely many integers
n i satisfying

I an .
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> n i , ak ~ <

To prove (5) it suffices to choose I a„ > n and define an , as the ak of
largest absolute value for 1 < k < n .

Put
	 1		(2nt ~

a Zni - 22n
t•+

1

	

k

	

Cig
k=o

By the second inequality of (5) we have f (2 n) > n i , and by the first
inequality of (5) for sufficiently large nt

F (2 ni )> 1(2 n
') an . / 2

2n ` + 1

ni

ant I for 1 -k < ni .

2 n

	

2n .+1
>nt~ `)/.2

	

>c2ntr' .n i

(S)

(6)

Assume first that for infinitely many n satisfying (5) we have 1(2n)=n, .
From lemma 1 we have for x > 0

f i(2 n i - x)

	

f (2 nt ) : ni .

	

(7)

Further, a simple argument shows that for t < n i - n t_1 and l ~1

(2n,-t)>(2nt-t)
(8)ni

	

nt_j

Therefore by the second inequality of (5)

(2 n i - t
an

) > (2 n t - t)
an[-j (9)

17i

	

t ni-j

(7) and (9) imply that for 0C t C n, - n i_,

f (2 n i - t) = f (2 n i ) = n i .

	

(1.0)
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A simple computation gives that for t < A n ; '/'2

(2n i - t) >c (2n,) /2f .

	

(11)

n;

	

3
n;

Therefore from (2) 5 j (6) and (11) we have for t <A nil'12

F(2 n ; - t)

	

2ni_
1
t+1

	 (2n1_t)i
n,

	

+1

2		an, I > c3/22ni

	

(2flz)n, I an, I >

> c2 c3
n;112
> 1

	

(12)
(10) and (12) prove our lemma .

Assume next that for all sufficiently large n ; satisfying (5) we have
f (2n,) > n1 . Put n,=n ; o , f (2n ; a )=n ; 1 , f (2n ; 1)=n ; 2 . . . There thus exists
an infinite sequence n ; o , n, 1 , . . . satisfying

n,,)< n;, < . . ., 2n;,' nir+1 , f(2nir)= nir+1 .

	

(13)

To simplify the notation we shall write nr instead of n+ r whenever there
is no danger of confusion . First of all we show that all the nr satisfy (5) .
We use induction . By assumption n p satisfies (5) . Assume that nr satisfied
(5) . A simple computation gives for sufficiently large A

(

2nr

	

2nr	 1 (2nr

nr+1) < (nr + A [nr] 'IZ } < 2 nr } .

Thus

implies

n r + 1

(2nr

nr--1 ) am
+l

(2nr
n}

Cl nr
r

am > 2nr > nr+i

which is the first inequality of (5) . Further since the binomial coefficients
( 2nr decrease as I increases, it follows from f (2nr) = nr+1 that

anr+j
I > an I for nr

	

n < nr+,

But then since nr satisfied the first inequality of (5) it clearly follows
that nr+1 also satisfied ii, which completes our proof .

Next we prove that for all n > 2 no

F(n) > c4 n 'tz .

	

(14)

5 ) This is the only place where our assumption that A is sufficiently large is
essential .
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From (13) and lemma 1 it follows that for n > 2 n o , f (n) > n/2 . Hence
we have from lemma 2 that for n_>2 no F(n) is an increasing function
of n . Let

2n,<n<2n,+1<4n, .

Since n, satisfies (5) we have

F (n) > F(2 nr) > (2 nr) am > c 5 nr112 > c, n'IZ q. e. d .nr

Consider now the interval 2 n;o C n < 4 n, o . Clearly n ; o < f (n) < 4 n ; o .
Also f(n) must be one of the n;' s . But by (2) the difference of two conse-
cutive ni's is greater than A nj 0'/2 , (n j > n ; 0 ) . Thus the number of n/s in
the interval (n ; 0 , 4n;.) is less than 3n, 0 '2 /A . Hence there must be at least

2 n, ! (3 n; lA) =2 A n, =/2
0

	

0

	

3

	

0

integers in the interval (n ; 0 , 4n t0) with the same f(n) and by Lemma 1
they must be consecutive integers say n, n + 1, . . . n + t t > A/3 n'12 . Thus
(14) completes the proof of Lemma 4 .

Now we can prove our theorem. Let n satisfy lemma 4 and choose

t
= C 3

nit. + 1 . Put

	

2
	 tl = M. We have a'M = 2M+1

M

m (M) ak .J

	

k=o

We shall show that I a'M I > cB M'/2 where co is an absolute constant inde-
pendent of n. This will of course show that E a'n can not converge, hence
E an was not Euler summable and the proof of our theorem will be
complete .

Put f(M)=nj . ` le have by (4)

F( 1)-2M+,
( M )anf c1n312> cl/2M '12,

	

(15)

We have

a,M I > + [( M) an, I
n r>n j( M)

am

	

n rCnj(M) I
am

]

21
[( M

an, - E1 - 22
m+1

	

,)

	

I -n

For an estimate of El put r - j = k, then n r - n; > A k nj '12 . Put

n+t=M+x, 6 nil, <x< 6	 ni/2 + 1 .
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We have by

Hence

(M ) amn r G

f(n)=f(n+t)=nj<x> A12 M'l2

Mnj ) an .
J

(

M+x

R
)
amr C (M+x

Rj
) ant

M-nr +1 M-n,+2

	

M-n r +x
IM-nj+1 M-nj+2

	

M-nj +x
kAMj '12 )X

<
M)

a nf.n .
	 A )A M'12< .

2 M'l2

since from f (M) = nj , nj > M/2 (lemma 4) . Thus for sufficiently large A 5)

ao

	

A2-( M) an ; El e -k 4 <41

In the same way we can show

2:
1

( M )ana ~
- 4 ni 1

M

	

I -k 2-an1j e
nj

(M
~.) anj

nj f

	

1

Thus by (15), (16), (17) and (18)

IM
I > 2 ( M ) a n~ /2 M+1 -2 F (M) > 2 M' 12

which completes the proof of the theorem .

(1

-

kA(M/2)'12\

2

Ml/2

<M

University of Aberdeen .
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