ON A TAUBERIAN THEOREM FOR EULER SUMMABILITY

by
P. ERDÔS

Let Σa_{n} be an infinite series. Put

$$
\begin{equation*}
a_{n}^{\prime}=\frac{1}{2^{n+1}}\left(\sum_{k=0}^{n}\binom{n}{k} a_{k}\right) . \tag{1}
\end{equation*}
$$

$\Sigma a_{n}{ }^{\prime}$ is said to be the Euler sum of $\Sigma a_{n},{ }^{1)}$ It is easy to see that $\Sigma a_{n}{ }^{\prime}$ converges if Σa_{n} converges, but the converse is not true. Euler summability was first studied by Knopp. ${ }^{2}$)
W. Meyer-König proved ${ }^{3)}$ that if Σa_{n} is Euler summable and $a_{n}=0$ except if $n=n_{i}, n_{t+1} / n_{t}>c>1$, then Σa_{n} is convergent. He also conjectured that the conclusion of the theorem would follow from the following weaker condition: $a_{n}=0$ except if $n=n_{i}$, where $n_{i+1}-n_{i}>c n_{i}^{1 / 2}, c>0$ any constant. In fact he proved ${ }^{4)}$ this conjecture under the further assumption that $\left|a_{n}\right|<n^{\alpha}$ where α is any constant. It is easy to see that this conjecture if true is best possible i. e. if $f(n)$ tends to infinity arbitrarily slowly there exists a series $\Sigma \omega_{n}$ which is Euler summable but not convergent and for which $a_{n}=0$ except if $n=n_{i}, n_{i+1}-n_{i}>n_{i}^{1 / 2} / f\left(n_{i}\right)$.

[^0]In the present note we are going to prove the following
Theorem. There exists a constant $A>0$ so that if Σa_{n} is a series which is Euler summable, and for which $a_{n}=0$ except if $n=n_{i}$

$$
\begin{equation*}
n_{i+1}-n_{i}>A n_{i}^{1 / 2}, \tag{2}
\end{equation*}
$$

then Σa_{n} is convergent.
At present I am unable to decide whether A can be any constant greater than 0 , in other words I am unable to prove Meyer-König's conjecture.

Let $\binom{n}{m} a_{m} / 2^{n+1}$ be the summand of greatest absolute value in (1). If there are several such terms we consider the one with the greatest index m. Put $m=f(n), \quad F(n)=\left|\binom{n}{m} a_{m} / 2^{n+1}\right|$.

Lemma 1. $f(n)$ is a non-decreasing function of n.
To prove lemma 1 it will clearly suffice to show that if

$$
\left.\left|\binom{n}{m} a_{m}\right| \geqslant \left\lvert\, \begin{array}{c}
n \\
l
\end{array}\right.\right) a_{l} \mid \text { for } m>l \text {, then } \left.\left|\binom{n+1}{m} a_{m}\right|>\binom{n+1}{l} a_{l} \right\rvert\, .
$$

This is true since

$$
\left|\binom{n+1}{m} a_{m} \cdot\left(\binom{n}{m} a_{m}\right)^{-1}\right|>\left|\binom{n+1}{l} a_{l} \cdot\left(\binom{n}{l} a_{l}\right)^{-1}\right|
$$

i. e.

$$
\frac{n+1}{n-m+1}>\frac{n+1}{n-l+1} \text { for } m>l .
$$

Lemma 2. Assume that $f(n)>n / 2$. Then $F(n+1) \geqslant F(n)$.
Put $f(n)=m>n / 2$. We obtain from $F(n+1) \geqslant \frac{1}{2^{n+2}}\left|\binom{n+1}{m} a_{m}\right|$

$$
F(\mathrm{n}+1) / F(n) \geqslant\binom{ n+1}{m} / 2\binom{n}{m}=\frac{n+1}{2(n-m+1)} \geqslant 1,
$$

which proves the lemma.
Lemma 3. Let α be arbitrary. Assume that $\left|a_{n}\right|<n^{\alpha}$ for all n, and $a_{n}=0$ except if $n=n_{i}, n_{i+1}-n_{i}>c n_{i}^{1 / 2}$, where $c>0$ is an arbitrary positive constant. Then if Σa_{n} is Euler summable it is convergent.

This is a theorem of Meyer-König., ${ }^{4}$
Because of lemma 3 we can now assume that, for infinitely many $n,\left|a_{n}\right|>n$. We shall show that if an infinite series satisfies (2) and
${ }^{4}$) Math. Zeitschrift 45 (1939), p. 479-494.
$\left|a_{n}\right|>n$ for infinitely many n then it cannot be Eules summable. This together with lemma 3 will complete the proof of our theorem. First we prove

Lemma 4. Let $c_{1}>0$ be suitable constant. Then there exist infinitely many integers n satisfying

$$
\begin{equation*}
n / 2 \leqslant f(n)=f(n+1)=\cdots=f(n+t), \quad t \geqslant \frac{A}{3} n^{1 / 2} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
F(n)>c_{1} n^{1 / 2}, F(n+1)>c_{1} n^{1 / 8}, \ldots, F(n+t)>c_{1} n^{1 / 2} . \tag{4}
\end{equation*}
$$

First of all it is easy to see that there exist infinitely many integers n_{i} satisfying

$$
\begin{equation*}
\left|a_{n_{i}}\right|>n_{i}, \quad\left|a_{k}\right|<\left|a_{n_{i}}\right| \text { for } 1 \leqslant k<n_{i} \tag{5}
\end{equation*}
$$

To prove (5) it suffices to choose $\left|a_{n}\right|>n$ and define $a_{n_{i}}$ as the a_{k} of largest absolute value for $1 \leqslant k \leqslant n$.

Put

$$
a_{2 n_{i}}^{\prime}=\frac{1}{2^{2 n_{i}+1}} \sum_{k=0}^{2 n_{i}}\binom{2 n_{i}}{k} a_{k} .
$$

By the second inequality of (5) we have $f\left(2 n_{i}\right) \geqslant n_{i}$, and by the first inequality of (5) for sufficiently large n_{i}

$$
\begin{equation*}
F\left(2 n_{i}\right) \geqslant\left|\binom{2 n_{i}}{n_{i}} a_{n_{i}} / 2^{2 n_{i}+1}\right|>n_{i}\binom{2 n_{i}}{n_{i}} / 2^{2 n_{i}+1}>c_{2} n_{i}^{1 / 2} . \tag{6}
\end{equation*}
$$

Assume first that for infinitely many n satisfying (5) we have $f\left(2 n_{t}\right)=n_{i}$. From lemma 1 we have for $x \geqslant 0$

$$
\begin{equation*}
f\left(2 n_{i}-x\right) \leqslant f\left(2 n_{i}\right)=n_{i} . \tag{7}
\end{equation*}
$$

Further, a simple argument shows that for $t \leqslant n_{i}-n_{i-1}$ and $j \geqslant 1$

$$
\begin{equation*}
\binom{2 n_{t}-t}{n_{i}} \geqslant\binom{ 2 n_{i}-t}{n_{i-j}} \tag{8}
\end{equation*}
$$

Therefore by the second inequality of (5)

$$
\begin{equation*}
\left|\binom{2 n_{i}-t}{n_{i}} a_{n_{i}}\right|>\left|\binom{2 n_{i}-t}{\cdot n_{i-j}} a_{n_{i-j}}\right| . \tag{9}
\end{equation*}
$$

(7) and (9) imply that for $0 \leqslant t \leqslant n_{i}-n_{i-1}$

$$
\begin{equation*}
f\left(2 n_{i}-t\right)=f\left(2 n_{i}\right)=n_{i} . \tag{10}
\end{equation*}
$$

A simple computation gives that for $t<A n_{i}^{1 / 2}$

$$
\begin{equation*}
\binom{2 n_{i}-t}{n_{i}}>c_{3}\binom{2 n_{i}}{n_{i}} / 2^{t} \tag{11}
\end{equation*}
$$

Therefore from (2) ${ }^{5}$ (6) and (11) we have for $t<A n_{i}^{1 / 2}$

$$
F\left(2 n_{i}-t\right) \geqslant \frac{1}{2^{2 n_{i}-t+1}}\binom{2 n_{i}-t}{n_{i}}\left|a_{n_{i}}\right|>c_{3} / 2^{2 n_{i}+1}\binom{2 n_{i}}{n_{t}}\left|a_{n_{i}}\right|>
$$

(10) and (12) prove our lemma.

$$
\begin{equation*}
>c_{2} c_{3} n_{i}^{1 / 2}>1 \tag{12}
\end{equation*}
$$

Assume next that for all sufficiently large n_{i} satisfying (5) we have $f\left(2 n_{i}\right)>n_{i}$. Put $n_{t}=n_{i_{0}}, f\left(2 n_{i_{0}}\right)=n_{i_{1}}, f\left(2 n_{i_{1}}\right)=n_{i_{2}} \ldots$ There thus exists an infinite sequence $n_{i_{0}}, n_{i_{1}}, \ldots$ satisfying

$$
\begin{equation*}
n_{i_{0}}<n_{i_{1}}<\ldots, 2 n_{i_{r}} \geqslant n_{i_{r+1}}, f\left(2 n_{i_{r}}\right)=n_{i_{r+1}} \tag{13}
\end{equation*}
$$

To simplify the notation we shall write n_{r} instead of $n_{i_{r}}$ whenever there is no danger of confusion. First of all we show that all the n_{r} satisfy (5). We use induction. By assumption n_{0} satisfies (5). Assume that n_{r} satisfied (5). A simple computation gives for sufficiently large A

$$
\binom{2 n_{r}}{n_{r+1}}<\binom{2 n_{r}}{n_{r}+A\left[n_{r}\right]^{1 / 2}}<\frac{1}{2}\binom{2 n_{r}}{n_{r}} .
$$

Thus

$$
\left|\binom{2 n_{r}}{n_{r+1}} a_{n_{r+1}}\right| \geqslant\left|\binom{2 n_{r}}{n_{r}} a_{n_{r}}\right|
$$

implies

$$
\left|a_{n_{r+1}}\right|>2 \mid a_{n_{r}}>2 n_{r} \geqslant n_{r+1}
$$

which is the first inequality of (5). Further since the binomial coefficients $\binom{2 n_{r}}{n_{r}+l}$ decrease as l increases, it follows from $f\left(2 n_{r}\right)=n_{r+1}$ that

$$
\left|a_{n_{r+1}}\right|>\left|a_{n}\right| \text { for } n_{r} \leqslant n<n_{r+1} .
$$

But then since n_{r} satisfied the first inequality of (5) it clearly follows that n_{r+1} also satisfied it, which completes our proof.

Next we prove that for all $n \geqslant 2 n_{0}$

$$
\begin{equation*}
F(\dot{n})>c_{4} n^{1 / 2} . \tag{14}
\end{equation*}
$$

${ }^{5}$) This is the only place where our assumption that A is sufficiently large is essential.

From (13) and lemma 1 it follows that for $n \geqslant 2 n_{0}, f(n)>n / 2$. Hence we have from lemma 2 that for $n \geqslant 2 n_{0} F(n)$ is an increasing function of n. Let

$$
2 n_{r} \leqslant n<2 n_{r+1} \leqslant 4 n_{r} .
$$

Since n_{r} satisfies (5) we have

$$
F(n) \geqslant F\left(2 n_{r}\right) \geqslant\left|\binom{2 n_{r}}{n_{r}} a_{n_{r}}\right|>c_{5} n_{r}^{1 / 2}>c_{7} n^{1 / 2} \quad \text { q.e.d. }
$$

Consider now the interval $2 n_{i_{0}} \leqslant n \leqslant 4 n_{i_{0}}$. Clearly $n_{i_{0}}<f(n) \leqslant 4 n_{i_{0}}$. Also $f(n)$ must be one of the $n_{j}{ }^{\prime} s$. But by (2) the difference of two consecutive $n_{j}^{\prime} s$ is greater than $A n_{i_{0}}{ }^{1 / 2},\left(n_{j}>n_{i_{0}}\right)$. Thus the number of $n_{j}{ }^{\prime} s$ in the interval $\left(n_{i_{0}}, 4 n_{i_{0}}\right)$ is less than $3 n_{i_{0}}^{1 / 2} / A$. Hence there must be at least

$$
2 n_{i_{0}} \left\lvert\,\left(3 n_{i_{0}} / A\right)=\frac{2 A}{3} n_{i_{0}}^{1 / 2}\right.
$$

integers in the interval $\left(n_{i_{0}}, 4 n_{i_{0}}\right)$ with the same $f(n)$ and by Lemma 1 they must be consecutive integers say $n, n+1, \ldots n+t \quad t>A / 3 n^{1 / 2}$. Thus (14) completes the proof of Lemma 4.

Now we can prove our theorem. Let n satisfy lemma 4 and choose

$$
t=\left[\frac{A}{3} n^{1 / 2}\right]+1 . \text { Put }\left[\frac{2 n+t}{2}\right]=M . \text { We have } a_{M}^{\prime}=\frac{1}{2^{M+1}} \sum_{k=0}^{M}\binom{M}{k} a_{k}
$$

We shall show that $\left|a_{M}^{\prime}\right|>c_{6} M^{1 / 2}$ where c_{6} is an absolute constant independent of n. This will of course show that Σa_{n}^{\prime} can not converge, hence Σa_{n} was not Euler summable and the proof of our theorem will be complete.

Put $f(M)=n_{j}$. 'Je have by (4)

$$
\begin{equation*}
F(I)=\frac{1}{2^{M+1}}\left|\binom{M}{n_{j}} a_{n_{j}}\right|>c_{1} n^{1 / 2}>c_{1} / 2 M^{1 / 2} \tag{15}
\end{equation*}
$$

We have

$$
\begin{align*}
\left|a_{M}^{\prime}\right| & \geqslant \frac{1}{2^{M+1}}\left[\binom{M}{n_{j}}\left|a_{n_{j}}\right|-\sum_{n_{r}>n_{j}}\binom{M}{n_{r}}\left|a_{n_{r}}\right|-\sum_{n_{r}<n_{j}}\binom{M}{n_{r}}\left|a_{n_{r}}\right|\right]= \tag{16}\\
& =\frac{1}{2^{M+1}}\left[\binom{M}{n_{j}}\left|a_{n_{j}}\right|-\Sigma_{1}-\Sigma_{2}\right]
\end{align*}
$$

For an estimate of Σ_{1} put $r-j=k$, then $n_{r}-n_{j}>A k n_{j}^{1 / 2}$. Put

$$
n+t=M+x, \frac{A}{6} n^{1 / 2} \leqslant x \leqslant \frac{A}{6} n^{1 / 2}+1 .
$$

We have by

$$
\begin{gathered}
f(n)=f(n+t)=n_{j} \leqslant x>\frac{A}{12} M^{1 / 2} \\
\left|\binom{M+x}{n_{r}} a_{n_{r}}\right| \leqslant\binom{ M+x}{n_{i}} a_{n_{j}}
\end{gathered}
$$

Hence

$$
\begin{aligned}
& \left|\binom{M}{n_{r}} a_{n_{r}}\right| \leqslant\left|\binom{M}{n_{j}} a_{n_{j}}\right| \frac{M-n_{r}+1}{M-n_{j}+1} \cdot \frac{M-n_{r}+2}{M-n_{j}+2} \cdots \frac{M-n_{r}+x}{M-n_{j}+x}< \\
& \quad<\left|\binom{M}{n_{j}} a_{n_{j}}\right|\left(1-\frac{k A n_{j}^{1 / 2}}{M}\right)^{x}<\left|\binom{M}{n_{j}} a_{n_{j}}\right|\left(1-\frac{k A(M / 2)^{1 / 2}}{M}\right)^{\frac{A}{12} M^{1 / 2}}< \\
& \quad<\binom{M}{n_{j}} a_{n_{j}}\left|\left(1-\frac{k A}{2 M^{1 / 2}}\right)^{\frac{A}{12} M^{1 / 2}}<\left|\binom{M}{n_{j}} a_{n_{j}}\right| e^{-k \frac{A^{2}}{24}}\right.
\end{aligned}
$$

since from $f(M)=n_{j}, n_{j} \geqslant M / 2$ (lemma 4). Thus for sufficiently large A^{5})

$$
\begin{equation*}
\Sigma_{1}<\left|\binom{M}{n_{j}} a_{n_{j}}\right| \sum_{k=1}^{\infty} e^{-k \frac{A^{2}}{24}}<\frac{1}{4}\left|\binom{M}{n_{j}} a_{n_{j}}\right| \tag{17}
\end{equation*}
$$

In the same way we can show

$$
\begin{equation*}
\Sigma_{2}<\frac{1}{4}\left|\binom{M}{n_{j}} a_{n_{j}}\right| \tag{18}
\end{equation*}
$$

Thus by (15), (16), (17) and (18)

$$
\left|a_{M}^{\prime}\right|>\frac{1}{2}\left|\binom{M}{n_{j}} a_{n_{j}}\right| / 2^{M+1}=\frac{1}{2} F(M)>\frac{c_{1}}{2} M^{1 / 2}
$$

which completes the proof of the theorem.

[^0]: ${ }^{1}$) (1) gives a series to series transformation method. The corresponding sequence to sequence method would be

 $$
 s_{n}^{\prime}=\frac{1}{2^{n+1}}\left(\sum_{k=0}^{n}\binom{n}{k} s_{k}\right)
 $$

 The two methods are equivalent, but for our present purpose the series to series transformation seems to be more suitable.
 ${ }^{2}$) Math. Zeitschrift 15 (1922), p. 226-253 and 18 (1923) p. 125-156.
 ${ }^{3}$) Math. Zeitschrift 49 (1943), p. 151-160.
 ${ }^{\text {t }}$) Math. Zeitschrift 45 (1939), p. 479-494.

