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Tchebycheff T proved that the greatest prime factor of I? (1 +A+) 
k=l 

tends to infinity faster than any constant multiple of x. Later Nagell$ 
proved the following sharper and more general theorem : 

Let f(x) be any polynomial with integer coe#cients which is not fhe 
product of linecr~ factors with integral coe$icients. Denote by P, the 

greatest prime factor of fi f(k). Then 
k=l 

P, > clx logx. (1) 

Throughout this paper ci, c2, . . . will denote positive constants depending 
only on the polynomial, p, q will denote primes, and x will be sufficiently 
large. In the present paper we shall obtain the following improvement 
on Nagell’s result : 

THEOREM. There exists a cg = G, (f) such that 

P, > z(logx)e,loglogW (2) 

Clearly we can assume without loss of generality that f(z) is irreducible 
in the rational field and of degree 1~ 1. (2) is very far from being best 
possible. I can prove in a much more complicated way that 

p z > x @3 W” (3) 

* Received 3 October, 1951; read 15 November, 1951. 
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559-561. 
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.&t&i de Mat. (4), 12*(1934), 295-303. 
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(3) will not be proved in the present paper. It seems likely that 
P, > caf, but this if true must be very deep. 

Denote by p(k) the number of solutions of f(u) E 0 (modk), 0 <U < k, 
and by p,(k) the number of solutions of Jp(zl) z 0 (mod k), 0 < u < x. We 
evidently have, for k <x, 

(4) 

We shall make use of the prime ideal theorem in the form* 

‘r, P (21) = (1+0(l)) Y/l%Y. 
PGY 

(fd 

Prom (5) and p@) ,<I [I is the degree off(x)] it follows that 

(1+0(l)) Y/l%Y 2 ,<F<2, 1 > (1+0(l)) y/Zlogy, 
P&l 10 

Hence %‘/l% Y I== u<;<2u VP > %/l% Y. (6) 
P(P)>0 

Denote by a,<a, < . . . the integers of the interval (x/log logx, x) of the 
form pq, where 

P >xr, exp C(logx)h] < q <x% p(aJ > 0. (7) 

[The condition p(aj) > 0 means p(p) > 0. p(q) > 01. d+(n) denotes the 
number of divisors of n amongst the a’s. 

LEMMA 1. The number of integers t < x for which f (t) is divisible by one 
of the a’s is greater than 

cg x (log log x)(log log log 2) /log x. 

We prove Lemma 1 in several steps. We have by (4) 

We evidently have 

where in Z1 exp t(logx)*] < q < XT:“, in 22, x/(q loglogx) < p < x/q and 
p(p) > 0, p(q) > 0. Prom (6) we obtain 

c, l/q > C6 log log x, z& l/p > CT log log log x/log x. 

* If p does not divide the discriminant of f(z), the number p(p) of solutions of 
f(z) z 0 (mod p) is the same as the number of prime ideal factors of 2, of the Grst degree 
in the field generated by a zero off(s) (see Dedekind, Abh. K. okc+. Wiss. Cfiit&gen, 18’18). 
Thus the sum in (5) is essentially the same as the number of prime ideals u with Np ( y, 
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Is l/q > cs log log z log log log x/log 2. (9) 
i 

Hence, from (8) and (9), 

g +w)) > &c* x log log x log log log x/log x. (10) 
k=l 

Next we show that the number N(x) of integers k <x satisfying 

cl+ (f(k)) > 201 is 0 (z/(log x)3) . 

First of all, for k < x, f(k) < ca x2 ; thus f(k) can have at most 21 prime 

factors greater than x4. Thus it follows from (7) that if d+( f(k)) > 201, 
then f(k) must have at least 10 factors pq3; satisfyjng 

since pqi, being an 
the integer defined 

X 

p log log x < qj < 5 , JJ > Sk, exp [ (log x)*1 < qj < +“, 

(11) 

u,, must lie in the interval (x/loglog x, x). Let s be 

bY 
p-1 < x 

p log log x 
< 25. 

Then, by (ll), f(k) h as at least 10 distinct prime factors in the interval 
(2”1, 2s loglogx). Further*, by (ll), 

(log x)* < s < +u log 2. (12) 

The number of integers k < x for which f(k) has at least 10 distinct prime 
factors in (2$-r, 2S log log x), s satisfying (12), is clearly less than 

(13) 

where (logx)* < s < $n log z and, in I&, 2+l< qi < 28 loglogx and the q’s 
are distinct.. 

Clearly N(x) is not greater than the sum (13); thus to prove 

N(x) = 0 (z/(log x)3) 

it will suffice to prove that the sum (13) is o (x/(logx)3). We have, by (7), 

q1q2*‘.qlo<x’1”<2’o~? 

Thus by (4) and p(q) < 2 we have 

N(z)~ZX,p;(p,...q,,)<2P0zr,X31 
I 8 q1 *..%o’ 

* z is aticiently lsrge. 
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From (6) we have 

x3 --L 
1 10 

Q1-*-Q10 
-=c “37 

( ) 
< cl* (log log log x)10/81*. 

i 

Thus &ally 

~~3PJ41” Pm) < ClOX 8 az(zgz)* (1% 1% 1% 4101@o = CJ ((&q) , 

as was to be proved. 
Since, for k \cx, f(k) < c9ti, f(k) has less than cI1 Iogx prime factors. 

Thus we have 

@(f(k)) < +(log x)“. (14) 

From (14) and N(x) = o(x/(logx)3), we have 

x*/Ef (f(Q) = d~/~%X), (15) 

where in C,, k <x and d+(f(k)) 3 ZOE. From (10) and (16) we have 

z,fll+ (f(k)) > 92 x log log x log log log x/log 2, (1’3) 

where in I;,, k < x and d+ (f(k)) < 201. From (16) we finally obtain 

Is 
kQz 

1 > $i x log log x log log log x/log x, 

&+-f(k) >o 

which proves Lemma 1 with c, = c,,/202. 
Denote by u,<u,<.., the integers of the interval (x/logx, a) for 

which f(ui) has no prime factor p satisfying 

Denote by U(x) the number of the U’S not exceeding x. 

LEMMA 2. U(2) > x-cl* 2 log log x/logx. 

Clearly 

as stated. 
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Assume now that the greatest prime factor P, of l? $(A) is less than 
%=l 

x(log x)C, log log low. This assumption will lead to a contradiction. Put* 

f(k) = A, &, where 4 = 9a~fcsj~“y 4 =f @Wk. 
Pa 

LEMMA 3. A, > x/(log z)cztlOg’“g logs. 

Since by definition xJlogx < ui <x, we have 

Cl5 xl/(log x)” < f(Ui) < cg xl. (17) 

Further, by the defkition of the uj, f(q) has-no prime factor in the interval 
(x, Cl3 x loglogx). Therefore: by (17), BWj (=f(u,)ik,) can have at most 
I- 1 prime factors? multiple factors counted multiply. By assumption all 

prime factors of f(zcJ are less than s(log x)e, l”glOglogz. Thus 

BUj < &-1 (log ~)(l4C, k% log lws, 

Hence by (17) 

as stated. 

LEMMA 4. The number of u’s jofor which f(q) is a multiple of an q is 
greater than cl6 x log log x log log log x/log x. 

From Lemmas 1 and 2, the number of these U’S is greater than 

c($ x log log x log log log x/log x- ( x - u (x)) > Cl6 x log log x log log log x/log x, 

as stated. 

LEMMA 5. Let u, be such that f (ug) is a multiple of one of the a’s, Then 

A, > x% 

By detition of the u’s all prime factors of BUj are greater than 
c13x loglogx. Thus since f (21j) E 0 (modaJ we have from (17), 

B,,. < cg d/(x/log log x) = cg x+-l log log x < (Cl3 x log log q-1 

if cbr > c9. Thus BUJ can have at most Z-2 prime factors, multiple factors 
counted multiply. Thus by (17) and our assumption on 9, 

88 stated. 
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LEMMA 6. 5 log& < x logx+c,,s. 
k=l 

This is a result of Nagell’. 

Proof of the theorem. From Lemmas 2, 3, 4 and 5, 

fi log& > I?I log& 
k-l i 

> (x- $4 I(: log log x/log x) (log x-b.?, log log 5 log log log x) 

+ ($6 x log log CC log log log x/log 55) (g log x) . ( 18) 

The first summand of (18) is given by Lemmas 2 and 3, the second summand 
is given by Lemmas 4 and 5, i.e. by the u’s satisfying f (uj) s 0 (mod ai). 
Thus from (18) 

,” log& > zlogx-c,,z loglogP--zc,x loglogx logloglogx 

+ s&l6 x log log 2 log log log 2. 

But this contradicts Lemma 6 for cz < ct6/2E. This contradiction proves 

P, > x(log Z)Ca *Os log~ogz, 

and so completes the proof of the theorem. 

Department of Mathematics, 
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* Ibid. (footnote $, p. 379), 180-182. Nag41 does not state the result explicitly, but 
proves it on the above-mentioned pages [see in particular equation (7), p. l&32]. 
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