ON THE GREATEST PRIME FACTOR OF $\prod_{k=1}^{x} f(k)$

P. ERDös*.

[Extracted from the Journal of the London Mathematical Society, Vol. 27, 1952.]

Tchebycheff \dagger proved that the greatest prime factor of $\prod_{k=1}^{x}\left(1+k^{2}\right)$ tends to infinity faster than any constant multiple of x. Later Nagell \ddagger proved the following sharper and more general theorem :

Let $f(x)$ be any polynomial with integer coefficients which is not the product of linear factors with integral coefficients. Denote by P_{x} the greatest prime factor of $\prod_{k=1}^{x} f(k)$. Then

$$
\begin{equation*}
P_{x}>c_{1} x \log x \tag{1}
\end{equation*}
$$

Throughout this paper c_{1}, c_{2}, \ldots will denote positive constants depending only on the polynomial, p, q will denote primes, and x will be sufficiently large. In the present paper we shall obtain the following improvement on Nagell's result:

Theorem. There exists a $c_{2}=c_{2}(f)$ such that

$$
\begin{equation*}
P_{x}>x(\log x)^{c_{2} \log \log \log x} \tag{2}
\end{equation*}
$$

Clearly we can assume without loss of generality that $f(x)$ is irreducible in the rational field and of degree $l>1$. (2) is very far from being best possible. I can prove in a much more complicated way that

$$
\begin{equation*}
P_{x}>x e^{(\log x)^{\epsilon_{3}}} . \tag{3}
\end{equation*}
$$

[^0](3) will not be proved in the present paper. It seems likely that $P_{x}>c_{4} x^{l}$, but this if true must be very deep.

Denote by $\rho(k)$ the number of solutions of $f(u) \equiv 0(\bmod k), 0 \leqslant u<k$, and by $\rho_{x}(k)$ the number of solutions of $f(u) \equiv 0(\bmod k), 0<u \leqslant x$. We evidently have, for $k \leqslant x$,

$$
\begin{equation*}
\frac{x}{2 k} \rho(k) \leqslant\left[\frac{x}{k}\right] \rho(k) \leqslant \rho_{x}(k) \leqslant\left[\frac{x}{k}\right] \rho(k)+\rho(k) \leqslant \frac{2 x}{k} \rho(k) . \tag{4}
\end{equation*}
$$

We shall make use of the prime ideal theorem in the form*

$$
\begin{equation*}
\sum_{p \leqslant y} \rho(p)=(1+o(1)) y / \log y . \tag{5}
\end{equation*}
$$

From (5) and $\rho(p) \leqslant l[l$ is the degree of $f(x)]$ it follows that

$$
(1+o(1)) y / \log y \geqslant \sum_{\substack{y \leq p \leqslant 2 y \\ \rho(p)>0}} 1 \geqslant(1+o(1)) y / l \log y .
$$

Hence

$$
\begin{equation*}
c_{5}^{\prime} / \log y>\sum_{\substack{y \leqslant p \leqslant 2 y \\ p(p)>0}} 1 / p>c_{5} / \log y \tag{6}
\end{equation*}
$$

Denote by $a_{1}<a_{2}<\ldots$ the integers of the interval $(x / \log \log x, x)$ of the form $p q$, where

$$
\begin{equation*}
p>x^{\frac{1}{2}}, \quad \exp \left[(\log x)^{\frac{1}{2}}\right]<q<x^{\text {rbons }}, \quad \rho\left(a_{i}\right)>0 . \tag{7}
\end{equation*}
$$

[The condition $\rho\left(a_{i}\right)>0$ means $\left.\rho(p)>0, \rho(q)>0\right] . \quad d^{+}(n)$ denotes the number of divisors of n amongst the a 's.

Lemma 1. The number of integers $t \leqslant x$ for which $f(t)$ is divisible by one of the a's is greater than

$$
c_{6} x(\log \log x)(\log \log \log x) / \log x
$$

We prove Lemma 1 in several steps. We have by (4)

$$
\begin{equation*}
\sum_{k=1}^{x} d^{+}(f(k))=\sum_{i} \rho_{x}\left(a_{i}\right) \geqslant \frac{x}{2} \sum_{i} \frac{\rho\left(a_{i}\right)}{a_{i}} \geqslant \frac{x}{2} \Sigma \frac{1}{a_{i}} . \tag{8}
\end{equation*}
$$

We evidently have

$$
\Sigma_{i} \frac{1}{a_{i}}=\Sigma_{1} \frac{1}{q} \Sigma_{2} \frac{1}{p}
$$

where in $\Sigma_{1} \exp \left[(\log x)^{\frac{1}{2}}\right]<q<x^{1^{1+5}}$, in $\Sigma_{2} x /(q \log \log x)<p<x / q$ and $\rho(p)>0, \rho(q)>0$. From (6) we obtain

$$
\Sigma_{1} \mathrm{I} / q>c_{6} \log \log x, \quad \Sigma_{2} 1 / p>c_{7} \log \log \log x / \log x
$$

[^1]\[

$$
\begin{equation*}
\text { ON the greatest prime factor of } \prod_{k=1}^{x} f(k) \text {. } \tag{9}
\end{equation*}
$$

\]

Thus $\quad \sum_{i} 1 / a_{i}>c_{8} \log \log x \log \log \log x / \log x$.
Hence, from (8) and (9),

$$
\begin{equation*}
\sum_{k=1}^{x} d^{+}(f(k))>\frac{1}{2} c_{8} x \log \log x \log \log \log x / \log x \tag{10}
\end{equation*}
$$

Next we show that the number $N(x)$ of integers $k \leqslant x$ satisfying $d^{+}(f(k))>20 l$ is $o\left(x /(\log x)^{3}\right)$.

First of all, for $k \leqslant x, f(k)<c_{9} x^{l}$; thus $f(k)$ can have at most $2 l$ prime factors greater than $x^{\frac{1}{2}}$. Thus it follows from (7) that if $d^{+}(f(k))>20 l$, then $f(k)$ must have at least 10 factors $p q_{j}$; satisfying
$q_{1}<q_{2}<\ldots<q_{10}, \frac{x}{p \log \log x}<q_{j}<\frac{x}{p}, p>x^{\frac{1}{2}}, \exp \left[(\log x)^{\frac{1}{2}}\right]<q_{j}<x^{\text {rin }}$,
since $p q_{j}$, being an a_{i}, must lie in the interval $(x / \log \log x, x)$. Let s be the integer defined by

$$
2^{s-1}<\frac{x}{p \log \log x} \leqslant 2^{s} .
$$

Then, by (11), $f(k)$ has at least 10 distinct prime factors in the interval $\left(2^{s-1}, 2^{s} \log \log x\right)$. Further*, by (11),

$$
\begin{equation*}
(\log x)^{\frac{1}{2}}<s<\frac{1}{10} \log x . \tag{12}
\end{equation*}
$$

The number of integers $k \leqslant x$ for which $f(k)$ has at least 10 distinct prime factors in $\left(2^{s-1}, 2^{s} \log \log x\right), s$ satisfying (12), is clearly less than

$$
\begin{equation*}
\sum_{s} \Sigma_{3} \rho_{x}\left(q_{1} q_{2} \ldots q_{10}\right), \tag{13}
\end{equation*}
$$

where $(\log x)^{\frac{1}{2}}<s<\frac{1}{10} \log x$ and, in $\Sigma_{3}, 2^{s-1}<q_{j}<2^{s} \log \log x$ and the q 's are distinct.

Clearly $N(x)$ is not greater than the sum (13); thus to prove

$$
N(x)=o\left(x /(\log x)^{3}\right)
$$

it will suffice to prove that the sum (13) is $o\left(x /(\log x)^{3}\right)$. We have, by (7),

$$
q_{1} q_{2} \cdots q_{10}<x^{\frac{1}{10}}<2^{\log x}
$$

Thus by (4) and $\rho(q) \leqslant l$ we have

$$
N(x) \leqslant \sum_{s} \Sigma_{3} \rho_{x}^{\prime}\left(q_{1} \ldots q_{10}\right)<2 l^{10} x \sum_{8} \Sigma_{3} \frac{1}{q_{1} \ldots q_{10}}
$$

* x is sufficiently large.

From (6) we have

$$
\Sigma_{3} \frac{1}{q_{1} \ldots q_{10}}<\left(\Sigma_{3} \frac{1}{q_{i}}\right)^{10}<c_{10}(\log \log \log x)^{10 / s^{10}}
$$

Thus finally

$$
\sum_{s} \Sigma_{3} \rho_{x}\left(q_{1} \ldots q_{10}\right)<c_{10} x \sum_{s>(\log x)^{\frac{1}{2}}}(\log \log \log x)^{10} / s^{10}=o\left(\frac{x}{(\log x)^{3}}\right),
$$

as was to be proved.
Since, for $k \leqslant x, f(k)<c_{9} x^{l}, f(k)$ has less than $c_{11} \log x$ prime factors. Thus we have

$$
\begin{equation*}
d^{+}(f(k))<c_{11}^{2}(\log x)^{2} \tag{14}
\end{equation*}
$$

From (14) and $N(x)=o\left(x /(\log x)^{3}\right)$, we have

$$
\begin{equation*}
\Sigma_{4} d^{+}(f(k))=o(x / \log x), \tag{15}
\end{equation*}
$$

where in $\Sigma_{4}, k \leqslant x$ and $d^{+}(f(k)) \geqslant 20 l$. From (10) and (15) we have

$$
\begin{equation*}
\Sigma_{5} d^{+}(f(k))>c_{12} x \log \log x \log \log \log x / \log x \tag{16}
\end{equation*}
$$

where in $\Sigma_{5}, k \leqslant x$ and $d^{+}(f(k))<20 l$. From (16) we finally obtain

$$
\sum_{\substack{k \leqslant x \\ d+f(k)>0}} 1>\frac{c_{12}}{20 l} x \log \log x \log \log \log x / \log x,
$$

which proves Lemma 1 with $c_{6}=c_{12} / 20 l$.
Denote by $u_{1}<u_{2}<\ldots$ the integers of the interval $(x / \log x, x)$ for which $f\left(u_{i}\right)$ has no prime factor p satisfying

$$
x \leqslant p \leqslant c_{13} x \log \log x, \quad c_{13}^{l-1}>c_{9} .
$$

Denote by $U(x)$ the number of the u 's not exceeding x.
Lemma 2. $\quad U(x)>x-c_{14} x \log \log x / \log x$.

Clearly

$$
\begin{aligned}
U(x) & \geqslant x-\frac{x}{\log x}-\sum_{x \leqslant p \leqslant c_{13} x \log \log x} \rho_{x}(p)>x-\frac{x}{\log x}-l \pi\left(c_{13} x \log \log x\right) \\
& >x-c_{14} x \log \log x / \log x,
\end{aligned}
$$

as stated.

Assume now that the greatest prime factor P_{x} of $\prod_{k=1}^{x} f(k)$ is less than $x(\log x)^{c_{2} \log \log \log x}$. This assumption will lead to a contradiction. Put*

$$
f(k)=A_{k} B_{k}, \quad \text { where } \quad A_{k}=\prod_{\substack{p^{\alpha} \| f(x) \\ p \leqslant x}} p^{\alpha}, \quad B_{k}=f(k) / A_{k} .
$$

Lemma 3. $\quad A_{u_{j}}>x /(\log x)^{c_{2} l \log \log \log x}$.
Since by definition $x / \log x \leqslant u_{j} \leqslant x$, we have

$$
\begin{equation*}
c_{15} x^{l} /(\log x)^{l}<f\left(u_{i}\right)<c_{9} x^{l} \tag{17}
\end{equation*}
$$

Further, by the definition of the $u_{j}, f\left(u_{5}\right)$ has-no prime factor in the interval $\left(x, c_{13} x \log \log x\right)$. Therefore, by (17), $B_{u_{j}}\left(=f\left(u_{j}\right) / A_{u_{j}}\right)$ can have at most $l-1$ prime factors, multiple factors counted multiply. By assumption all prime factors of $f\left(u_{i}\right)$ are less than $x(\log x)^{c_{2} \log \log \log x}$. Thus

$$
B_{u_{j}}<x^{l-1}(\log x)^{l-1) c_{2} \log \log \log x} .
$$

Hence by (17)

$$
A_{u_{j}}=\frac{f\left(u_{j}\right)}{B_{u_{j}}}>\frac{c_{15} x^{l}}{B_{u_{j}}(\log x)^{l}}>\frac{c_{15} x^{l}}{x^{l-1}(\log x)^{l+(l-1) c_{2} \log \log \log x}}>\frac{x}{(\log x)^{l c_{2} \log \log \log x}},
$$

as stated.
Lemma 4. The number of u^{\prime} 's for which $f\left(u_{j}\right)$ is a multiple of an a_{i} is greater than $c_{16} x \log \log x \log \log \log x / \log x$.

From Lemmas 1 and 2, the number of these u 's is greater than $c_{6} x \log \log x \log \log \log x / \log x-(x-U(x))>c_{16} x \log \log x \log \log \log x / \log x$, as stated.

Lemma 5. Let u_{j}, be such that $f\left(u_{j}\right)$ is a multiple of one of the a 's. Then

$$
A_{u_{j}}>x^{\frac{3}{2}} .
$$

By definition of the u 's all prime factors of $B_{u_{j}}$ are greater than $c_{13} x \log \log x$. Thus since $f\left(u_{j}\right) \equiv 0\left(\bmod a_{i}\right)$ we have from (17),

$$
B_{u_{j}}<c_{9} x^{l} /(x / \log \log x)=c_{9} x^{l-1} \log \log x<\left(c_{13} x \log \log x\right)^{l-1}
$$

if $c_{13}^{l-1}>c_{9}$. Thus $B_{u_{j}}$ can have at most $l-2$ prime factors, multiple factors counted multiply. Thus by (17) and our assumption on P_{x}

$$
A_{u_{j}}=\frac{f\left(u_{j}\right)}{B_{u_{j}}}>c_{15} \frac{x^{d}}{(\log x)^{l}}\left(x^{l-2}(\log x)^{(l-2) c_{2} \log \log \log x}\right)^{-1}>x^{\frac{1}{2}},
$$

as stated.

[^2]Lemma 6. $\sum_{k=1}^{x} \log A_{k}<x \log x+c_{17} x$.
This is a result of Nagell*.
Proof of the theorem. From Lemmas 2, 3, 4 and 5,

$$
\begin{align*}
\sum_{k=1}^{x} \log A_{k} & \geqslant \sum_{i} \log A_{u_{i}} \\
> & \left(x-c_{14} x \log \log x / \log x\right)\left(\log x-l c_{2} \log \log x \log \log \log x\right) \\
& +\left(c_{16} x \log \log x \log \log \log x / \log x\right)\left(\frac{1}{2} \log x\right) . \tag{18}
\end{align*}
$$

The first summand of (18) is given by Lemmas 2 and 3, the second summand is given by Lemmas 4 and 5 , i.e. by the u 's satisfying $f\left(u_{j}\right) \equiv 0\left(\bmod a_{i}\right)$. Thus from (18)

$$
\begin{aligned}
\sum_{k=1}^{x} \log A_{k}>x \log x-c_{14} x \log \log x-l c_{2} x \log \log x & \log \log \log x \\
+\frac{1}{2} c_{16} x & \log \log x \log \log \log x
\end{aligned}
$$

But this contradicts Lemma 6 for $c_{2}<c_{16} / 2 l$. This contradiction proves

$$
P_{x}>x(\log x)^{\varepsilon_{2} \log \log \log x},
$$

and so completes the proof of the theorem.
Department of Mathematics,
University College, London.

[^3]
[^0]: * Received 3 October, 1951; read 15 November, 1951.
 \dagger E. Landau, Handbuch über die Lehre von der Verteilung der Primzahlen, 1 (1909), 559-561.
 \ddagger Abhandlungen aus dem Math. Seminar Hamburg, 1 (1922), 179-194. See also G. Ricei, Annali de Mat. (4), 12_(1934), 295-303.

[^1]: * If p does not divide the discriminant of $f(x)$, the number $\rho(p)$ of solutions of $f(x) \equiv 0(\bmod p)$ is the same as the number of prime ideal factors of p of the first degree in the field generated by a zero of $f(x)$ (see Dedekind, Abh. K. Ges. Wiss. Göttingen, 1878). Thus the sum in (5) is essentially the same as the number of prime ideals y with $N \mathfrak{p}<y$.

[^2]: * $p^{\alpha} \mid ; z$ means that $p^{\alpha}\left|z, p^{\alpha+1}\right\rangle z$.

[^3]: * Ibid. (footnote ${ }_{\ddagger}^{+}$, p. 379), 180-182. Nagell does not state the result explicitly, but proves it on the above-mentioned pages [see in particular equation (7), p. 182].

