$$
\begin{aligned}
& \text { ON THE SUM } \sum_{k=1}^{x} d(f(k)) \text {. } \\
& \text { ON THE SUM } \sum_{k=1}^{x} d(f(k))
\end{aligned}
$$

P. Erdös*,

1. Let $d(n)$ denote the number of divisors of a positive integer n, and let $f(k)$ be an irreducible polynomial of degree l with integral coefficients. We shall suppose for simplicity that $f(k)>0$ for $k=1,2, \ldots$. In the present paper we prove the following result.

Theorem. There exist positive constants c_{1} and c_{2} such that

$$
\begin{equation*}
c_{1} x \log x<\sum_{k=1}^{z} d(f(k))<c_{2} x \log x \tag{1}
\end{equation*}
$$

for $x \geqslant 2$.
Throughout the paper x is supposed to be large, and c_{1}, c_{2}, \ldots denote positive constants which are independent of x but may depend on the polynomial f.

The lower bound in (1) is not difficult to prove, and is in fact known \uparrow. It would not, be hard to show that

$$
\begin{equation*}
\sum_{k=1}^{x} d_{x}(f(k))=c_{3} x \log x+o(x \log x) \tag{2}
\end{equation*}
$$

where $d_{x}(n)$ denotes the number of divisors of n which do not exceed x. In $\$ \S 4$ and 5 we give a proof that the sum in (2) is greater than $c_{1} x \log x$, from which the lower bound in (1) follows.

The upper bound in (1) is much more diffienlt to prove, since it is not, easy to find an upper estimate for $d(f(k))$ in terms of $d_{x}(f(k))$. It is possible to do so if $l=2$, and in this case Bellman and Shapiro \ddagger have proved that

$$
\begin{equation*}
\sum_{k=1}^{\pi} d(f(k))=c_{4} x \log x+o(x \log x) . \tag{3}
\end{equation*}
$$

Very likely (3) holds also if $l>2$, but I cannot prove this.
The method used to prove the upper bound in (1), if combined with Brun's method, would enable one to prove that,

$$
\sum_{p \notin x} d(f(p))=O(x)
$$

This answers a question proposed in Bellman's paper (loc. cit.).

[^0]2. We need several lemmas for the proof of the upper bound in (1).

Lemma 1.

$$
\sum_{k=1}^{\frac{x}{2}}\{d(f(k))\}^{2}<x(\log x)^{r_{0}}
$$

This result, is due to van dor Corput*.
Lemma 2. Let $k_{1}, k_{2}, \ldots, k_{1}$ be distinct positive integers, all less than x, and suppose that $t<x(\log x)^{-r_{s}}$. Then

$$
\sum_{i=1} d\left(f\left(k_{i}\right)\right)<x .
$$

This follows at once from Lemma 1 by Schwarz's inequality:

$$
\sum_{i=1}^{\hbar} d\left(f\left(k_{i}\right)\right) \leqslant\left\{t \sum_{i=1}^{t}\left\{d\left(f\left(k_{i}\right)\right)\right)^{2}\right\}^{t}<x .
$$

Let $\rho(a)$ denote the number of solutions of

$$
f(k)=0(\bmod a), \quad 0 \leqslant k<a .
$$

Let D denote the discriminant of the polynomial $f(k)$. If p is any prime, we use the notation $p^{\sigma} \| D$ to express the fact that p^{σ} is the greatest power of p which divides D.

Lemma 3. We have
(i) $\rho(a b)=\rho(a) \rho(b)$ if $(a, b)=1$;
(ii) $\rho\left(p^{a}\right) \leqslant l$ if $p>D$;
(iii) $\rho\left(p^{\alpha}\right)=\rho\left(p^{2 \sigma+1}\right)$ if $p^{\sigma} \| D$ and $a>2 \alpha$;
(iv) $\rho\left(p^{n}\right) \leqslant c_{6}$ always.

The first two results are well known and trivial. The third result was given by Nagell \dagger, who also showed that (iv) is valid with $c_{0}=1 D^{2}$. As it stands, with an unspecified c_{6}, (iv) follows from (ii) and (iii).

Lemma 4. Suppose that $1 \leqslant u \leqslant x$. Let N denote the number of integers k satiefying

Then

$$
\begin{gathered}
f(k) \equiv 0(\bmod u), \quad 1 \leqslant k \leqslant x . \\
\frac{x}{2 u} \rho(u) \leqslant N \leqslant \frac{2 x}{u} \rho(u) .
\end{gathered}
$$

The proof is immediate, since obviously

$$
\left[\frac{x}{u}\right] \rho(u) \leqslant N \leqslant\left(\left[\frac{x}{u}\right]+1\right) \rho(u) .
$$

[^1]$$
\text { On the sum } \sum_{k=1}^{\sum_{2}} d(f(k)) \text {. }
$$

Lampa 5. There exists c_{7} such that the number of positive integers $k \leqslant x$ for which $f(k)$ is divisible by a prime power p^{*}, with $a>1$ and

$$
\begin{equation*}
p^{*}>(\log x)^{c_{7}} \tag{4}
\end{equation*}
$$

is o $\left(x(\log x)^{-c}\right)$.
By Lemma 4 and Lemma 3, the number of integers k in question is less than

$$
2 x \sum_{p,=} \frac{\rho\left(p^{2}\right)}{p^{2}}<2 c_{3} x \sum_{x, 0} p^{2}<4 c_{6} x\left\{\sum_{p \leqslant(\operatorname{los} x)^{d c t}}(\log x)^{-\varphi_{7}}+\sum_{p>\log x)^{i+c_{7}}} p^{-2\}},\right.
$$

and the result follows on taking $c_{7}>2 c_{5}$.
We define \bar{x} by

$$
\bar{x}=x^{\left(\operatorname{tog} \log x x^{-1}\right.} .
$$

Lemma 6. Let $f(k)$ be factorized into prime powers as $f(k)=\Pi$ I p^{a}, for each positive integer k. Then the number of values of $k \leqslant x$ for which

$$
\begin{equation*}
\operatorname{II}_{p<z} p^{*} \geqslant x^{2} \tag{5}
\end{equation*}
$$

is $o\left(x(\log x)^{-2}\right)$.
Consider first those values of k for which there is one at least of the prime powers p^{*} occurring in the product $(\overline{5})$ which satisfies $p^{*} \geqslant \bar{x}$. Each such prime power satisfies (4), and $\alpha>1$. Hence the number of values of k of this kind is $o\left(x(\log x)^{-9}\right)$ by Lemma 5 .

There remain those integers k for which every prime power in (5) is less than $\bar{x} . B y(5)$, every such value of $f(k)$ has at least $\frac{1}{8}(\log \log x)^{2}$ distinct prime factors, whonce

$$
d(f(k))>2^{t \log \log x)^{3}}>(\log x)^{2 c_{0}}
$$

By Lemma 1, the number of such integers is $O\left(x(\log x)^{-3 x_{2}}\right)$, and this completes the proof of the present lemma.

Lemma 7. We have

$$
\begin{align*}
& \sum_{p \leqslant x} \rho(p)=\frac{x}{\log x}+O\left(\frac{x}{\log ^{2} x}\right) \tag{6}\\
& \sum_{p<x} \frac{\rho(p)}{p}=\log \log x+c_{8}+o(1) \tag{7}
\end{align*}
$$

The first result follows from the prime ideal theorem*, which implies that

$$
\underset{S V<x}{\Sigma} 1=\frac{x}{\log x}+O\left(\frac{x}{\log ^{2} x}\right)
$$

[^2]where the summation is extended over prime ideals p in the field $k(\theta)$ generated by a root θ of the equation $f(\theta)=0$, and N denotes the norm. We have $N_{p}=p^{f}$, where p is a rational prime and f a positive integer. We may ignore rational primes p which divide D, since they contribute only $O(1)$ to the sum in (6) and to the sum last written above. If $f=1$, the same rational prime p arises as $N p$ for $p(p)$ different prime ideals p. When $f>1$, the same p arises from at most l prime ideals, and the corresponding part of the last sum is at most
$$
l\left(\sum_{p^{2}<x}^{\sum} 1+\underset{p^{2}<x}{\sum} 1+\ldots\right),
$$
which is $O\left(x^{\frac{1}{i}} \log x\right)$. This proves (6), and (7) follows from (6) by partial summation.

Lemma 8. For sufficiently large y, we have

$$
\sum_{y<p<y^{2}} \frac{\rho(p)}{p}<1
$$

This is obvious from (7).
Lemma 9. We have

$$
\prod_{p \leqslant x}\left\{1+\frac{\rho(p)}{p}+\frac{\rho\left(p^{2}\right)}{p^{2}}+\ldots\right\}<c_{9} \log x .
$$

This follows from (7) on using (iv) of Lemma 3 for $\rho\left(p^{\alpha}\right)$ when $\alpha>1$. For the logarithm of the above product is

$$
\sum_{p<x} \frac{p(p)}{p}+O(1)
$$

whence the result.
3. We now come to the proof of the upper estimate in (1). By Lemmas 2,5 and 6 , we have

$$
\begin{equation*}
\sum_{k=1}^{x} d(f(k))=\Sigma_{1} d(f(k))+O(x), \tag{8}
\end{equation*}
$$

where in Σ_{1} the variable of summation k is restricted to positive integers not exceeding x which satisfy the following two conditions:

$$
\begin{gather*}
f(k) \neq 0\left(\bmod p^{\alpha}\right) \text { if } a>1 \text { and } p^{a}>(\log x)^{\kappa^{c}}, \tag{9}\\
\prod_{p<x} p^{a}<x^{b} \tag{10}
\end{gather*}
$$

the last product being extended over the prime powers composing $f(k)$.

$$
\text { ON THE SUM } \sum_{k=1}^{x} d(f(k)) \text {. }
$$

We can obviously restrict ourselves to values of k for which $f(k)>x$. If $f(k)=p_{1}^{\alpha_{1}} \ldots p_{s}^{a_{s}}$, we define j by

$$
\begin{equation*}
p_{1}^{\alpha_{1}} \ldots p^{\alpha_{j}} \leqslant x<p_{1}^{\alpha_{1}} \ldots p_{y+1}^{3+1} \tag{11}
\end{equation*}
$$

Put

$$
\begin{equation*}
a_{k}=p_{1}^{a_{1}^{1}} \ldots p_{j}^{j}, \quad b_{k}=f(k) / a_{k} \tag{12}
\end{equation*}
$$

Write

$$
\begin{equation*}
\Sigma_{1} d(f(k))=\Sigma_{2} d(f(k))+\Sigma_{3} d(f(k)) \tag{13}
\end{equation*}
$$

where in Σ_{2} we take those values of k satisfying (9) and (10) for which $p_{s+1} \leqslant x^{3}$, and in Σ_{3} we take those for which $p_{s+1}>x^{b}$.

First we estimate the sum Σ_{3}. Any prime factor of b_{k}, is greater than $x^{\frac{1}{n}}$, and since $f(k)<x^{l+1}$ it follows that the total number of prime factors of b_{k} (multiple factors being counted multiply) is less than $32(l+1)$. Hence

$$
\begin{equation*}
d\left(b_{k}\right)<2^{332 n+1} \tag{14}
\end{equation*}
$$

Also, since $a_{k} \leqslant x$, we obviously have

$$
\begin{equation*}
d\left(a_{k}\right) \leqslant d_{x}(f(k)) \tag{15}
\end{equation*}
$$

By (14) and (15),

$$
\Sigma_{3} d(f(k))<2^{33 x+1)} \sum_{k=1}^{x} d_{x}(f(k))
$$

The sum on the right here is the number of solutions of $f(k) \equiv 0(\bmod u)$ in integers k and u satisfying $1 \leqslant k \leqslant x, 1 \leqslant u \leqslant x$. By Lemma 4, this number is less than

$$
2 x \sum_{w=1}^{\infty} \frac{\rho(u)}{u} .
$$

Using Lemma 3 (i) and Lemma 9, we obtain

$$
\begin{equation*}
\Sigma_{3} d(f(k))<c_{10} x \prod_{p \leqslant x}\left\{1+\frac{\rho(p)}{p}+\frac{\rho\left(p^{2}\right)}{p^{2}}+\ldots\right\}<c_{11} x \log x . \tag{16}
\end{equation*}
$$

We have now to estimate the sum Σ_{2}. For each k in this sum we have $p_{+11} \leqslant x^{3}$. We now prove that

$$
\begin{equation*}
p_{j+1}^{3+1} \leqslant x^{2} \tag{17}
\end{equation*}
$$

In faet, if this were false thore would be an exponent β such that $1<\beta \leqslant a_{j+1}$ for which $x^{h_{1}}<p_{j+1}^{\theta} \leqslant x^{h}$, and this would contradict (9).

It follows from (11), (12) and (17) that for the k in Σ_{2},

$$
\begin{equation*}
a_{k}>\frac{x}{p_{j+1}^{\mathrm{a}+1}}>x^{\frac{1}{2}} \tag{18}
\end{equation*}
$$

In view of (10), we have now

$$
\begin{equation*}
\bar{x} \leqslant p_{i+1} \leqslant x^{1+} \tag{19}
\end{equation*}
$$

We write

$$
\begin{equation*}
\Sigma_{2} a(f(k))=\Sigma_{r} \Sigma_{2}^{(r)} a(f(k)) \tag{20}
\end{equation*}
$$

where in $\Sigma_{2}^{(j)}$ the prime factor p_{s+1} satisfies

$$
x^{1 /(r+1)} \leqslant p_{j+1}<x^{1 / r}
$$

By (19), the values of r in question satisfy $32 \leqslant r \leqslant(\log \log x)^{2}$, since $\bar{x}=x^{(\log \log x)^{-1}}$. For any k in $\Sigma_{2}^{(r)}$, the total number of prime factors of b_{k} is less than $(l+1)(r+1)$, and it follows that

$$
\begin{equation*}
\Sigma_{2}^{(r)} d(f(k))<2^{(l+1)(r+1)} \Sigma_{2}^{(r)} d\left(a_{k}\right) \tag{21}
\end{equation*}
$$

Since at least half of the divisors of a_{k} are greater than or equal to $\sqrt{ } a_{k}$, it follows from (18) that

$$
\begin{equation*}
d\left(a_{k}\right) \leqslant 2 d^{+}\left(a_{k}\right) \tag{22}
\end{equation*}
$$

where $d^{+}(m)$ denotes the number of divisors of m that are $\geqslant x^{\frac{1}{2}}$. It follows from (9) and (10) that all the divisors of a_{k} that are $\geqslant x^{3}$ are included in a set of numbers $n_{1}^{(t)}, n_{2}^{(f)}, \ldots$ satisfying
(i) $x^{2} \leqslant n_{j}^{(r)} \leqslant x$,
(ii) if $p \mid x_{j}^{(r)}$ then $p<x^{1 / r}$, and $p(p)>0$,
(iii) if $p^{\alpha} \| n^{(r)}$ and $\alpha>1$ then $p^{a} \leqslant(\log x)^{c}$,
(iv) $\Pi^{\prime} p^{*}<x^{3}$,
where the last product is extended over $p^{a} \| n_{j}^{(\gamma)}, p<\bar{x}$. The sum $\Sigma_{2}^{(r)} d^{+}\left(a_{k}\right)$ does not exceed the number of solutions in k and j of $f(k)=0\left(\bmod n_{j}^{(\gamma)}\right)$. Hence, by (21), (22) and Lemma 4,

$$
\begin{equation*}
\Sigma_{2}^{(f)} d(f(k))<2^{(l+1)(x+1)+2} x \sum_{j} \frac{\rho\left(n_{j}^{(f)}\right)}{n_{j}^{(f)}} \tag{23}
\end{equation*}
$$

We have now to estimate the last sum. Let $I_{i}^{(p)}$ denote the interval $\left(x^{1 /\left(x^{2+h}\right)}, x^{1 /(r a)}\right)$, where $t=0,1, \ldots, Z$, and Z is the largest integer for which $r_{2}^{z} \leqslant(\log \log x)^{2}$. Any number $n_{j}^{(n)}$ must have at least, $N_{i}^{(x)}$ prime factors in at least one of these intervals, where

$$
N_{i}^{(r)}=\left[\frac{r(t+1)}{32}\right]+1
$$

For a prime in one of these intervals is at least equal to $x^{\mathrm{f}(\log \log x)^{-2}}$, and so can only divide $n n^{(r)}$ to the first power, by condition (iii) above. Every

$$
\begin{equation*}
\text { ON THE SUM } \sum_{k=1}^{k} d(f(k)) \text {. } \tag{13}
\end{equation*}
$$

prime greater than \bar{x} comes in one of the intervals, and if the above statement were false we should have

$$
n_{j}^{(r)}<\left(\Pi^{\prime} p^{*}\right) \Pi_{t}\left(x^{1 /(r 2 t}\right)^{r(3+1) / 32} .
$$

Since $\sum_{t=0}^{\infty}(t+1) / 2^{t}=4$, this gives $n_{j}^{(v)}<x^{i}$, contrary to (i) above.
We define s to be the least integer for which $n_{j}^{(r)}$ has at least $N_{a}^{(r)}$ prime factors in the interval $I_{n}^{(v)}$, and write

$$
\begin{equation*}
\sum_{j} \frac{\rho\left(n_{j}^{(r)}\right)}{n_{j}^{(r)}}=\sum_{i} \sum_{j(0)} \frac{\rho\left(n_{j}^{(r)}\right)}{n_{j}^{(r)}}, \tag{24}
\end{equation*}
$$

where the inner sum on the right is extended over those values of j for which s has a prescribed value. We put $n_{j}^{(r)}=u v$, where u is composed entirely of the prime factors of $n_{j}^{(i)}$ in the interval $I_{v}^{(x)}$, and v of the other prime factors. As already observed, u is square-free. By the multiplieative property of ρ [Lemma 3 (i)], we have

$$
\begin{equation*}
\sum_{j(v)} \frac{\rho\left(n_{j}^{(v)}\right)}{n_{j}^{(v)}} \leqslant\left(\sum_{u} \frac{\rho(u)}{u}\right)\left(\sum_{v} \frac{\rho(v)}{v}\right), \tag{25}
\end{equation*}
$$

where the summation on the right is extended over all u and v which divide any $n_{j}^{(0)}$ for which $\&$ has the prescribed value. Since u is square-free and has at least $N=N_{s}^{(t)}$ prime factors, we have

$$
\sum_{u} \frac{\rho(u)}{u} \leqslant \frac{1}{N!}\left\{\sum_{p} \frac{\rho(p)}{p}\right\}^{N},
$$

the summation being over primes p in $I_{\rho}^{(r)}$. By Lemmas 8 , it follows that

$$
\begin{equation*}
\sum_{u} \frac{\rho(u)}{u}<\frac{1}{N!}, \quad N=N_{s}^{(r)} . \tag{26}
\end{equation*}
$$

For the sum over v, we use the simple estimate (Lemma 9)

$$
\begin{equation*}
\sum_{v} \frac{\rho(v)}{v} \leqslant \prod_{p \leqslant x}\left\{1+\frac{\rho(p)}{p}+\frac{\rho\left(p^{2}\right)}{p^{2}}+\ldots\right\}<c_{9} \log x . \tag{27}
\end{equation*}
$$

From (25), (26), (27),

$$
\begin{equation*}
\sum_{j(s)} \frac{\rho\left(x_{j}^{(r)}\right)}{n_{j}^{(r)}}<\frac{c_{9} \log x}{N_{x}^{(r)}!} \tag{28}
\end{equation*}
$$

By the definition of $N_{s}^{(r)}$ we have, since $r \geqslant 32$,

$$
\left[\frac{r}{32}\right]<N_{0}^{(r)}<N_{1}^{\left(\theta_{1}\right)}<\ldots .
$$

Hence, by (24) and (28),

$$
\begin{equation*}
\Sigma \frac{\rho\left(n_{j}^{(r)}\right)}{n_{\xi}^{(r)}}<c_{9} \log x \sum_{\delta=0}^{\infty} \frac{1}{N(r)!}<2 c_{9} \log x\left(\left[\frac{r}{32}\right]!\right)^{-1} . \tag{29}
\end{equation*}
$$

Finally, by (20), (23), (29),

$$
\begin{align*}
\Sigma_{2} d(f(k)) & <2 c_{9} x \log x \sum_{r=32}^{\infty} 2^{(l+1)(r+1)+2}\left(\left[\frac{r}{32}\right]!\right)^{-1} \\
& <c_{12} x \log x \tag{30}
\end{align*}
$$

The upper bound in (1) follows from (8), (13), (16) and (30).
4. To prove the lower bound in (1), we use another lemma.

Lemma 10. For large y, we have

$$
\sum_{k=1}^{y} \rho(k)>c_{13} y .
$$

Let $\zeta_{K}(s)$ denote the zota-function of the fiold $K=k(\theta)$, so that

$$
\zeta_{K}(s)=\sum_{a}(N a)^{-\sigma}=\prod_{p}\left\{1-(N p)^{-\delta}\right\}^{-1},
$$

where the sum is extended over all the ideals a of K, and the product over the prime ideals of K. It is well known* that provided p / D, the factorization of a rational prime p as

$$
p=p_{1} p_{2} \ldots, \text { where } N p_{1}=p^{r_{1}} \text {, etc., }
$$

corresponds to the factorization

$$
f(x) \equiv f_{1}(x) f_{2}(x) \ldots(\bmod p)_{1}
$$

where $f_{1}(x), f_{2}(x), \ldots$ are irreducible $(\bmod p)$, and are of degrees r_{1}, r_{2}, \ldots. Obviously p has at most l prime ideal factors, provided p / D.

We split the product defining $\zeta_{K}(s)$ into three parts. The first part arises from the prime ideals p for which $N p=p^{9}$ with $g>1$. This is easily seen to be a regular function of $s=\sigma+i t$ for $\sigma>\frac{1}{2}$. The second part arises from the prime ideals p for which $p \mid D$, and is regular for $\sigma>0$. The third part arises from the prime ideals p for which $N p=p$ and p / D. The number of such prime ideals corresponding to a given p is the number of linear polynomials among $f_{1}(x), f_{2}(x), \ldots$, and so is $\rho(p)$. Hence

$$
\zeta_{E}(s)=\phi(s) \prod_{p \nmid D}\left(1-p^{-s}\right)^{-s(p)},
$$

where $\phi(s)$ is regular for $\sigma>\frac{1}{2}$.
Define $\rho^{\prime}(n)$ by

$$
\begin{aligned}
\sum_{n} \rho^{\prime}(n) n^{-s} & =\prod_{p \nmid D}\left\{1+\frac{\rho(p)}{p^{s}}+\frac{\rho\left(p^{2}\right)}{p^{2 s}}+\ldots\right\} \\
& =\prod_{p \nmid D}\left\{1+\frac{\rho(p)}{p^{s}-1}\right\}
\end{aligned}
$$

[^3]$$
\text { ON THE SUM } \sum_{k=1}^{x} d(f(k)) \text {. }
$$
since $p\left(p^{*}\right)=p(p)$ when p / D. Since, for large p,
$$
\log \left(1+\frac{\rho(p)}{p^{\prime}-1}\right)-\log \left(1-\frac{1}{p^{\prime}}\right)^{-\rho(p)}=O\left(\frac{\rho(p)}{p^{2 \sigma}}\right)
$$
it follows that
$$
\underset{p / D}{\mathrm{\Sigma}} \log \left(1+\frac{p(p)}{p^{*}-1}\right)+\underset{p / D}{\sum_{p}} p(p) \log \left(1-\frac{1}{p^{*}}\right)
$$
is regular for $\sigma>\frac{1}{2}$. Taking exponentials, we obtain
$$
\sum_{n} \rho^{\prime}(n) n^{-s}=\zeta_{E}(s) \Psi(s),
$$
where $\Psi(s)$ is regular for $a>\frac{1}{2}$.
Write
$$
\zeta_{n}(s)=\Sigma a_{n} n^{-z}, \quad \Psi(s)=\Sigma a_{n} n^{-s} .
$$

Then

$$
\sum_{n=1}^{y} \rho^{\prime}(n)=\sum_{d \in v}^{\sum} a_{e} a_{d}=\sum_{k=1}^{y} a_{e} \sum_{d<y / e}^{\sum} a_{d}
$$

It is well known* that

$$
\sum_{n=1}^{\sum} a_{n}=c_{13} z+O\left(z^{1-1}\right)
$$

where $\delta>0$. Since $\sum \alpha_{e} \sigma^{-1+\delta}$ converges absolutely, we easily deduce that

$$
\sum_{n=1}^{y} \rho(n)>\sum_{n=1}^{y} \rho^{\prime}(n)=c_{14} y+O\left(y^{1-4}\right) .
$$

This proves Lemma 10.
5. To prove the lower bound in (1), it suffiees to prove that

$$
\sum_{k=1}^{x} d_{x}(f(l k))>c_{1} x \log x
$$

The sum on the left is the number of solutions of $f(k) \equiv 0(\bmod y)$ with $1 \leqslant k \leqslant x, 1 \leqslant y \leqslant x$, By Lemmas 4 and 10 , and partial summation, it is greater than

$$
\begin{aligned}
\frac{1}{2} x \sum_{v=1}^{\mathbb{N}} \frac{\rho(y)}{y} & >\frac{1}{2} x \sum_{y=1}^{ \pm} y^{-2} \sum_{k=1}^{y} \rho(k) \\
& >\frac{1}{2} c_{13} x \sum_{y=1}^{n} y^{-1}>c_{1} x \log x .
\end{aligned}
$$

The University,
Aberdeen.

[^0]: * Reocived 3 January, 1951; read i8 Jamnary, 1951.
 \dagger Bellman, Duke Math. J., 17 (1950), 159-168.
 \ddagger This result is umpublished.

[^1]: * Proc. K. Neder. Akad. van. Wet., Amsterdam, 42 (1939), 547-553.
 \& "Généralisation d'un théorème de Tchebyoheff", Journal de Mabh., 8e wério, Tome IV 1921.

[^2]: * See, for example, Landau, Algebraische Zahlen, 111.

[^3]: * See Dedekind, Gesammelte math. Werke, I, 202-232.

