SOME LINEAR AND SOME QUADRATIC RECURSION FORMULAS II ${ }^{1}$)

HY

N. G. DE bRUIJN and P. ERDÖS

(Communicated by Prof, H, D, Kloosterman at the meeting of February 23, 1952)

§ 5. Case 1

Throughout this section we assume that we are in case 1 , that is

$$
\begin{gather*}
f(1)=1 ; \quad f(n)=\sum_{k=1}^{n-1} c_{k} f(n-k) \quad(n=2,3, \ldots) \tag{5.1}\\
c_{k}>0 \quad(k=1,2,3, \ldots) \tag{5.2}
\end{gather*}
$$

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \sup _{k} c_{k}^{1 / k}=\infty . \tag{5,3}
\end{equation*}
$$

For, (5.3) is equivalent to the condition that $c_{1} x+c_{2} x^{2}+\ldots$ diverges when $|x|>0$.

It was proved in $\S 3$ that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}(j(n))^{1 / n}=\infty ; \tag{5.4}
\end{equation*}
$$

but apart from this the preceding sections give little information about the behaviour of $f(n)$ in case 1.
(5.4) implies that

$$
\begin{equation*}
\alpha=\liminf \frac{f(n)}{f(n+1)}=0, \tag{5.5}
\end{equation*}
$$

but on the other hand

$$
\begin{equation*}
\beta=\lim \sup \frac{f(n)}{f(n+1)} \tag{5,6}
\end{equation*}
$$

can be positive (see example 1 below). Anyway β is finite, by (2.6). $\left(\beta \leqslant c_{1}^{-1}\right)$.

Theorem 13. We have, if $n \rightarrow \infty$,

$$
\begin{equation*}
\lim \sup c_{n} / f(n)=\infty, \tag{5,7}
\end{equation*}
$$

$$
\begin{equation*}
\lim \sup c_{\mathrm{n}} / f(n+1)=1 \tag{5,8}
\end{equation*}
$$

${ }^{1}$) The first part appeared in this journal: Kon. Ned. Akad, v, Wetensoh. (A) 54, 374-382 (1951) = Indagationes Mathematicae 13, 374-382 (1951).

Proof. (5. 7) follows from theorem 18 (§ 6). For assume $c_{\mathrm{n}}<M f(n), M$ not depending on n; then theorem 18 gives $f(n)=O\left\{(4 M)^{n}\right\}$, which contradicts (5.4).

In order to prove (5.8), we first remark that $f(n+1)>c_{n}$ for all $n>1$ (see (5. 1)). So if (5.8) were false, then there would exist a constant $\lambda(0<\lambda<1)$ such that

$$
\begin{equation*}
c_{n}<\lambda f(n+1) \quad(n=2,3, \ldots) . \tag{5.9}
\end{equation*}
$$

It follows, by (5. 1), that

$$
\left\{\begin{align*}
(1-\lambda) f(n+1)<f(2) f(n) & +f(3) f(n-1) \tag{5.10}\\
& +\ldots+ \\
& +f(n) f(2) \quad(n=2,3, \ldots) .
\end{align*}\right.
$$

The sequence $\left\{\varrho_{n}\right\}$, defined by

$$
\varrho_{n}=(n+1)^{2}\left\{\frac{1}{2^{2} \cdot n^{2}}+\frac{1}{3^{2}(n-1)^{2}}+\ldots+\frac{1}{n^{2} \cdot 2^{4}}\right\} \quad(n=2,3, \ldots)
$$

is convergent; hence a constant C exists such that $\varrho_{n}<C(n=2,3, \ldots)$. It is now easily deduced from (5.10) that

$$
f(n) \leqslant \frac{4 f(2)}{n^{2}} \cdot\left(\frac{4 f(2) 0}{1-2}\right)^{n-2} \quad(n=2,3, \ldots) .
$$

This contradicts (5.4), and so (5.8) is proved.
The set of equations (5.1) can be solved explicitly:

$$
\begin{equation*}
f(n)=\sum_{n=1}^{n-1} \sum c_{i(1)} c_{i(2)} \ldots c_{i(2)}, \quad(n=2,3, \ldots) \tag{5.11}
\end{equation*}
$$

where, in the second sum, the summation variables $i(1), \ldots, i(h)$ are subjected to the conditions

$$
i(1)>0, \ldots, i(h)>0 ; \quad i(1)+\ldots+i(h)=n-1 .
$$

We can obtain (5.11) from the formal expansion (see (1.4))

$$
F(x)=x+\sum_{n=1}^{\infty}(C(x))^{n} .
$$

The summands of (5.11) correspond one-to-one to the ordered partitions of $n-1$; hence the total number of terms equals 2^{n-2}.

Let I_{n} denote the largest one of these 2^{n-2} summands. Then clearly

$$
\begin{equation*}
1 \leqslant\left\{f(n) / I_{n}\right\}^{1 / n} \leqslant 2 \quad(n=2,3, \ldots) \tag{5.12}
\end{equation*}
$$

We can even show
Theorem 14. $\lim _{n \rightarrow \infty}\left\{f(n) \mid I_{n}\right\}^{1 / n}=1$.
Proof. Let $\&$ be a positive number, and N an integer >1. Write

$$
f(n)=\Sigma_{1}+\Sigma_{2},
$$

where Σ_{2} is the sum of all summands $c_{i(1)} \ldots c_{i(1)}$ which satisfy

$$
\begin{equation*}
\sum_{1 \leq i \leq k . i a n<x} i(j)<e n . \tag{5.13}
\end{equation*}
$$

If ε and N are fixed, then Σ_{2} can be roughly described as corresponding to those ordered partitions of $n-1$ where the contribution of the small integers is small. We shall show that the number of summands in Σ_{2} is relatively small, if ε and N^{-1} are small but fixed. If a partition $n-1=$ $=i(1)+\ldots+i(k)$ satisfies $(5,13)$ then we have

$$
\begin{equation*}
h \leqslant \eta n \quad\left(\eta=\varepsilon+N^{-1}\right) . \tag{5.14}
\end{equation*}
$$

For, the number of $i \prime s<N$ is at most $E n$, since each i is $\geqslant 1$. And, the number of $i^{\prime} s \geqslant N$ is at most $N^{-1} n$, their sum being $\leqslant n-1$.

The number of partitions satisfying $(5,14)$ equals

$$
\begin{equation*}
\sum_{1 \leqslant h<\eta n}\binom{n-2}{h-1}<\exp \{n(\eta-\eta \log \eta)\} \tag{5.15}
\end{equation*}
$$

For we have generally, if $0<u<1, n-1 \geqslant m \geqslant 0$,

$$
u^{m} \sum_{n \leqslant m}\binom{n-1}{h} \leqslant \sum_{n \leqslant m} u^{n}\binom{n-1}{h} \leqslant(1+u)^{n} .
$$

Taking $m=[\eta n], u=\eta$ we obtain (5.15).
We can show that, if n is large, the largest summand I_{n} of (5.11) occurs in Σ_{2}, and we even have $I_{n}>\Sigma_{1}$. To this end we prove that to each summand t of Σ_{1} a second summand t^{\prime} (of either Σ_{1} or Σ_{2}) ean be found such that $t^{\prime}>2^{n} t$.

In virtue of $(5,3)$ we can choose $k=k(N, \varepsilon)$ such that

$$
\begin{equation*}
c_{k}^{1 / k}>c_{1}, c_{k}^{1 / k}>4^{1 i k} c_{1}^{-1} \mu^{2} \quad\left(\mu=\max _{1 \leqslant i<N} c_{3}^{1 / 2}\right) \tag{5.16}
\end{equation*}
$$

We put $n_{0}=n_{0}(N, \varepsilon)=2 k \varepsilon^{-1}$; henceforth assume $n>n_{0}$.
Let the term t of Σ_{1} correspond to the partition $n-1=i(1)+\ldots+i(h)$, then we have, say,

$$
i(1)+\ldots+i(r)=s>\varepsilon n, \quad i(1)<N, \ldots, i(r)<N .
$$

Now we obtain t^{\prime} from t by replacing the factors

$$
c_{i(1)} \ldots c_{\text {r(t) }} \text { by } c_{k}^{[n / 2 \pi} c_{1}^{-k\langle 0, k]} \text {. }
$$

Then we have

$$
t^{\prime} / t=\left(c_{k} / c_{1}^{k}\right)^{[s /(k)} c_{1}^{f} \mu^{-s}
$$

We have $s>\varepsilon n>2 k$ and so $[s / k]>\frac{1}{2} s / k$. Therefore, by (5, 16),

$$
\left(c_{k} / c_{1}^{k}\right)^{[\sigma / k]}>\left(c_{k} / c_{1}^{2}\right)^{2 / k / k}>4^{i b / \sigma} c_{1}^{-t \eta} \cdot c_{1}^{-i \prime} \mu^{*},
$$

and so

$$
t^{\prime} \mid t>2^{6 / \theta}>2^{n}
$$

This shows that each term of Σ_{1} is less than $2^{-n} I_{n}$; therefore $\Sigma_{1}<I_{n}$. The number of terms of Σ_{2} is bounded above by the right-hand-side of (5. 15); hence

$$
\Sigma_{2} / I_{\mathrm{a}}<\exp \{n(\eta-\eta \log \eta)\} .
$$

It now follows from $f(n)=\Sigma_{1}+\Sigma_{2}$ that

$$
\limsup _{n \rightarrow \infty}\left\{f(n) / I_{n}\right\}^{1 / n} \leqslant \exp (\eta-\eta \log \eta)
$$

As $\eta=\varepsilon+N^{-1}$, the theorem now follows by making $\varepsilon \rightarrow 0, N \rightarrow \infty$.
The following theorem was already announced in $\$ 4$ (theorem 9).
Theorem 15. If $c_{n+1} / c_{\mathrm{n}} \rightarrow \infty$, then $f(n+1) / f(n) \rightarrow \infty$.
Proof. We first prove: if $A>0$, there exists a number $B=B(A)>0$, such that $f(n+1)>B f(n)$ implies $f(n+2)>A f(n+1)$.

Let K be such that $c_{k+1}>A c_{k}$ for all $k \geqslant K$, and take

$$
B=A\left\{1+c_{2} c_{1}^{-2}+c_{1} c_{1}^{-3}+\ldots+c_{\kappa} c_{1}^{-\kappa}\right\} .
$$

Now assume $f(n+1)>B f(n)$, and put $L=\min (n, K-1)$. Then we have (empty sums are zero)

$$
\begin{gathered}
f(n+1)=c_{1} f(n)+c_{2} f(n-1)+\ldots+c_{L} f(n+1-L)+\sum_{k-L+1}^{n} c_{k} f(n+1-k) . \\
f(n+2) \geqslant c_{1} f(n+1)+\sum_{k=\frac{L}{L}+1}^{n} c_{k+1} f(n+1-k) .
\end{gathered}
$$

We have $f(m+1) \geqslant c_{1} f(m)$ for all m, and so

$$
\begin{gathered}
c_{1} f(n)+\ldots+c_{L} f(n+1-L) \leqslant f(n)\left\{c_{1}+c_{2} c_{1}^{-1}+\ldots+c_{L} c_{1}^{1-L}\right\} \leqslant \\
\\
\leqslant c_{1} f(n) B / A<c_{1} f(n+1) / A .
\end{gathered}
$$

It follows that $f(n+2)>A f(n+1)$.
By iteration of this result we find: If $A>0, k>0$, there exists a positive number $C(A, k)$ such that

$$
\begin{equation*}
f(n+1)>C(A, k) f(n) \tag{5,17}
\end{equation*}
$$

implies

$$
\begin{equation*}
f(n+j+1)>A f(n+j) \quad(j=0,1, \ldots, k) \tag{5.18}
\end{equation*}
$$

We can now show that $f(n+1) / f(n) \rightarrow \infty$. Let A be an arbitrary positive number, and choose K such that $c_{k+1}>A c_{k}$ for all $k \geqslant K$.

We have $\lim \sup f(n+1) \mid f(n)=\infty($ see $(5.5))$; therefore we can take N such that $N>K, f(N+1)>C(A, K) f(N)$. We can show that

$$
\begin{equation*}
f(N+j+1)>A f(N+j) \quad(j=0,1,2, \ldots) . \tag{5.19}
\end{equation*}
$$

By (5.17) and (5. 18) we know that (5. 19) holds if $j=0,1, \ldots, K$.

We proceed by induction. Assume (5. 19) to be true for $j<K+m$, where m is a positive integer. Then we have
$f(N+K+m+1)<\sum_{j=1}^{K} c_{i} f(N+K+m+1-j)+\sum_{j=K+1}^{N+K+a-1} c_{j+1} f(N+K+m-j)>$
$>A \sum_{j=1}^{K} c_{j} f(N+K+m-j)+A \sum_{j=K+1}^{N+K^{+}-m-1} c_{j} f(N+K+m-j)=A f(N+K+m)$.
This proves (5. 19). Since A is arbitrary, we obtain $f(m+1) / f(m) \rightarrow \infty$.
Lemma. For $n=1,2,3, \ldots$ we have

$$
\frac{f(n+1)}{f(n)} \leqslant c_{1}+\max _{1 \leqslant j \leqslant n} \frac{c_{j+1}}{c_{j}} .
$$

Proof. Denoting the right-hand-side by $c_{1}+\mu$, we have
$f(n+1)=c_{1} f(n)+\sum_{1}^{n-1} c_{k+1} f(n-k) \leqslant c_{1} f(n)+\mu \sum_{1}^{n-1} c_{k} f(n-k)=\left(c_{1}+\mu\right) f(n)$.
Theorem 16. If

$$
\begin{equation*}
\frac{c_{2}}{c_{1}} \leqslant \frac{c_{3}}{c_{2}} \leqslant \frac{c_{4}}{c_{3}} \leqslant \ldots \tag{5.20}
\end{equation*}
$$

then we have

$$
\begin{align*}
& \frac{f(2)}{f(1)} \leqslant \frac{f(3)}{f(2)} \leqslant \frac{f(4)}{f(3)} \leqslant \ldots, \tag{5.21}\\
& \limsup _{n \rightarrow \infty} \frac{f(n+1)}{f(n)} \cdot \frac{c_{n-1}}{c_{n}}=1, \tag{5.22}\\
& \lim _{n \rightarrow \infty}\left\{f(n) / c_{n-1}\right\}^{1 / n}=1 \tag{5,23}
\end{align*}
$$

Proof. For (5.21) see the proof of theorem 12, § 4.
As to (5.22), the lemma shows that the lim sup is at most 1. For, (5.3) and (5.20) imply that $c_{n} / c_{n-1} \uparrow \infty$. On the other band, the lim sup cannot be less than 1 , since

$$
\prod_{k=1}^{n}\left\{\frac{f(k+1)}{f(k)} \cdot \frac{c_{k-1}}{c_{k}}\right\}=\frac{f(n+1)}{c_{n}} c_{1} \geqslant c_{1}
$$

Finally, (5.23) follows from (5. 22) and from the fact that $f(n+1) \geqslant c_{n}$ for all n.

We can deduce (5.23) from theorem 14 also: Without loss of generality we may assume $c_{1}=1$ (see the transformation (1.5)). Then (5. 20) implies that $\left\{c_{k}^{1 / k}\right\}$ is a non-decreasing sequence, whence $I_{n}=c_{n-1}$ for all n.

Theorem 17. Let O and α be positive constants, and $\psi(k)=C k^{a}$. Then if

$$
\frac{c_{k+1}}{c_{k}} \uparrow \infty, \frac{c_{k}+1}{c_{k}}>\psi(k) \quad(k=1,2,3, \ldots),
$$

we have

$$
f(n+1) / e_{n} \rightarrow 1 \quad(n \rightarrow \infty)
$$

Proof. We have, by (5.1),

$$
0 \leqslant \frac{f(n+1)}{c_{n}}-1=\sum_{1}^{n} c_{j} f(n+1-j) / c_{n} \leqslant \sum_{1}^{n} \frac{c_{j} c_{n-1}}{c_{n}} \max _{1 \leqslant k<n} \frac{f(k+1)}{c_{k}} .
$$

Since c_{k+1} / c_{k} is increasing, $c_{j} c_{n-1}$, decreases with increasing j in the interval $1 \leqslant j<\frac{1}{2} n$.

Let q be an integer $>\alpha^{-1}$, and assume $n>3 q$. Then we have, when $q \leqslant j<\frac{1}{2} n$,

$$
\frac{c_{j} c_{n-j}}{c_{n}} \leqslant \frac{c_{q} c_{n-q}}{c_{n}} \leqslant c_{q} \prod_{n-q}^{n-1} \frac{c_{k}}{c_{n+1}}
$$

Hence we obtain, for q fixed,

$$
0 \leqslant \frac{f(n+1)}{c_{n}}-1 \leqslant d n \cdot \max _{1 \leqslant k<a} \frac{f(k+1)}{c_{k}} \cdot O\left(n^{-a q}\right)=o(1) \cdot \max _{1 \leqslant k<n} \frac{f(k+1)}{c_{k}} .
$$

Now the theorem easily follows.
Theorems 13-17 seem to be comparatively weak. We shall, however, give some examples which show that not very much more can be obtained.

Example 1. $f(n+1) / f(n)$ need not tend to infinity if c_{n+1} / c_{n} does not tend to infinity. Define $c_{n}, f(n)$ by (5.1) and by ($n=1,2,3, \ldots$)

$$
c_{2 n}=n\left(\sum_{1}^{2 n} f(k)\right) \cdot\left(\sum_{1}^{2 x-1} c_{k}\right), \quad c_{1}=1, \quad c_{2 n+1}=c_{2 n} .
$$

Clearly $c_{2 n} / c_{2 n-1} \rightarrow \infty$; hence we are in case 1 . We have, if $n>2$,

$$
\begin{aligned}
f(2 n+2)= & c_{1} f(2 n+1)+\sum_{2}^{ \pm n-1} c_{n} f(2 n+2-k)+c_{2 n} f(2)+c_{2 n+1} f(1)< \\
& <c_{1} f(2 n+1)+c_{2 n}+c_{2 n} f(2)+c_{2 n} f(1)< \\
& <f(2 n+1)\left\{c_{1}+1+f(2)+f(1)\right\} .
\end{aligned}
$$

Therefore $f(2 n+2) / f(2 n+1)=O(1)$. The sequence $f(2 n+1) / f(2 n)$ is not bounded, of course (see (5.5)).

Example 2. The expressions $c_{n} / f(n)$ and $c_{n} / f(n+1)$, whose upper limit was established in theorem 13, can have lower limit zero, even if $c_{n+1} / c_{n} \rightarrow \infty$.

Let $\{\varphi(n)\}$ be any positive sequence, then we can find a sequence $\left\{c_{\mathrm{n}}\right\}$ satisfying $c_{\mathrm{n}+1} / c_{\mathrm{a}} \rightarrow \infty$, such that

$$
\begin{equation*}
f(n)>\varphi(n) c_{m} f(n)>\varphi(n) c_{n-1} \text { infinitely often. } \tag{5.24}
\end{equation*}
$$

To this end we take

$$
c_{\mathrm{n}}=\{\psi(k)\}^{\mathrm{n}+2} \quad\left(4^{k-1} \leqslant n<4^{k}, k=1,2, \ldots\right),
$$

where $\psi(k)$ is the maximum of $\varphi(n)$ in the range $4^{k-1} \leqslant n<4^{k}$. We may assume, of course, that $\varphi(n) \rightarrow \infty$.

For any k we have, if $m=2.4^{k-1}-1$,

$$
f(2 m+1)=\sum_{1}^{4 m} c_{i} f(2 m+1-j)>c_{m} f(m+1)>c_{m}^{2}
$$

and

$$
c_{\mathrm{m}}^{2}=\{\psi(k)\}^{2 \mathrm{~m}+4}=c_{\mathrm{Rm}+1} \psi(k) .
$$

Therefore

$$
f(2 m+1)>\varphi(2 m+1) c_{2 m+1} .
$$

This proves the first part of (5.24). The second part is a direct consequence, since $c_{n+1} / c_{n} \rightarrow \infty$.

Example 3. If c_{n+1} / c_{n} tends to infinity monotonically, then (5.24) cannot be true if $n^{-1} \log \varphi(n)$ has a positive upper limit (see 5. 23). But, if $\eta(n)$ is an arbitrary positive function satisfying $\eta(n) \rightarrow 0(n \rightarrow \infty)$, then a sequence $\left\{c_{n}\right\}$ can be found such that $\left(c_{n+1} / c_{n}\right) \uparrow \infty$, and

$$
\begin{equation*}
\left.f(n) / c_{n-1}>e^{n n(n)} \text { for infinitely many values of } n^{1}\right) \text {. } \tag{5.25}
\end{equation*}
$$

Let the sequence $\left\{t_{n}\right\}$ satisfy $1<t_{1}<t_{2}<\ldots, \lim t_{n}=\infty$. Let $\left\{c_{n}\right\}$ be defined by

$$
c_{1}=1 ; \quad c_{n+1} / c_{n}=t_{k} \quad\left(N_{k} \leqslant n<N_{k+1}+k=1,2,3, \ldots\right),
$$

where the integers $N_{4}\left(1=N_{1}<N_{2}<N_{3}<\ldots\right)$ will be chosen such that (5. 25) holds infinitely often. To this end we prove: If N_{1}, \ldots, N_{E+1} have been fixed, then N_{n} can be found such that $(5,25)$ holds for $n=N_{K}$.

Let $\left\{c_{n}^{*}\right\}$ be defined by

$$
\begin{aligned}
c_{1}^{*}=1 ; & c_{n+1}^{*} / c_{n}^{*}=t_{2} \quad\left(N_{k} \leqslant n<N_{h+1}, k=1, \ldots, K-2\right), \\
& c_{n+1}^{*} / c_{n}^{*}=t_{K-1} \quad\left(n \geqslant N_{K-1}\right) .
\end{aligned}
$$

The sequence $\left\{c_{n}^{*}\right\}$ belongs to case 2 (see $\S 2$), and we have ${ }^{2}$)

$$
R^{-1}=t_{\kappa-1}, \quad 0<\gamma<R, \quad F^{*}(n) \gamma^{n} \rightarrow C \quad(O>0), \quad\left(c_{n}^{*}\right)^{1 / n} \rightarrow R^{-1} .
$$

It follows that $\lim \left(f^{*}(n) / c_{n-1}^{*}\right)^{1 / n}=R / \gamma>1$. Since $\eta(n) \rightarrow 0$, we can find a number $N_{\kappa}>N_{\kappa-1}$ such that

$$
f^{*}(n)>e^{\operatorname{nq}(t) 0} c_{n-1}^{*} \quad\left(n=N_{K}\right) .
$$

Now N_{K} has been fixed, and obviously $c_{\mathrm{n}}=c_{\sigma}^{*} f(n)=f^{*}(n)\left(n \leqslant N_{K}\right)$. Hence (5.25) holds for $n=N_{K}$.

Example 4. There exists a sequence c_{n} with $\left(c_{n+1} / c_{n}\right) \uparrow \infty$, such that $\liminf \frac{f(n+1)}{f(n)} \cdot \frac{c_{n-1}}{c_{n}}=0$.
${ }^{1}$) The same thing can be obtained for $f(n) / c_{n}$, without much extra trouble.
$\left.{ }^{2}\right)\left\{f^{*}(n)\right\}$ is the sequence corresponding to $\left\{c_{i}^{*}\right\}$ by the analogue of $(5,1)$.

This shows that, in (5.22), "lim sup" may not be replaced by "lim".
An example can be obtained along the same lines as above; we only take care that $t_{z+1} / t_{k} \rightarrow \infty$.
Further, N_{K} has to be determined such that

$$
\begin{gathered}
f^{*}(n+1) c_{n-1}^{*}<2 f^{*}(n) c_{n}^{*} \quad\left(n=N_{K}+1\right), \\
c_{n}^{*} / f^{*}(n+1)<K^{-1} \quad\left(n=N_{K}+1\right) .
\end{gathered}
$$

Then it is easily verified that

$$
f(n+1) c_{n-1} l\left(f(n) c_{n}\right)<2\left\{\left(t_{\kappa}\left(t_{K-1}\right)^{-1}+K^{-1}\right\} \quad\left(n=N_{K}+1\right)\right.
$$

Example 5. The following example shows that, in theorem 17, the condition $c_{k+1} / c_{k} \uparrow \infty$ is essential. It shows that no function $\varphi(k)$ has the property that $c_{k+1} / c_{k}>\psi(k)$ implies $f(n+1) / c_{n} \rightarrow 1$. For take c_{1}, c_{2}, \ldots such that $c_{k+1} / c_{k}>\psi(k)(k=1,2,3, \ldots)$ and such that $c_{m}^{2} / c_{2 m}>2$ for infinitely many m. Then obviously for these m we have

$$
f(2 m+1)=\sum_{1}^{2 m} c_{i} f(2 m+1-k)>c_{\mathrm{m}} f(m+1)>c_{2 k}^{\ell}>2 c_{m}
$$

We finally remark that theorem 17 is best possible in the following sense: If the increasing function $\psi(k)$ has the property that

$$
\frac{c_{k+1}}{c_{k}} \uparrow \infty, \frac{c_{k+1}}{c_{k}}>\psi(k) \quad(k=1,2, \ldots) \quad \text { imply } \quad f(n+1) / c_{n} \rightarrow 1
$$

then we have $\psi(k)>C k^{a}$ for suitable positive constants C and α. We omit the proof.
§ 6. The quadratic recursion formula
Consider

$$
\begin{equation*}
f(1)=1, \quad f(n)=\sum_{k=1}^{n-1} d_{k} f(k) f(n-k) \quad(n=2,3, \ldots), \tag{6,1}
\end{equation*}
$$

where $d_{k}>0(k=1,2,3, \ldots)$. Consequently also $f(n)>0(n=1,2,3, \ldots)$.
Putting $d_{k} f(k)=c_{k}$, we have $c_{k}>0(k=1,2, \ldots)$. Therefore, we can use the results and the division into 5 eases introduced in $\S 2$.

In the first place it follows that $\{f(n)\}^{-1 / n}$ always tends to a finite limit as $n \rightarrow \infty$. We have, however, no simple formula, which relates its value γ to the numbers d_{k}.

If $d_{k} \rightarrow \infty$, then we have $\gamma=0$ (case 1). For then, by $f(n+1) \geqslant c_{n}=$ $=d_{n} f(n)$, we have $f(n+1) / f(n) \rightarrow \infty$. On the other hand we have

Theorem 18. If $d_{z}=O(1)$, then $\gamma>0$.
Proof. It is sufficient to show that $f(n)=O\left(P^{n}\right)$ for some P. Assume $d_{n} \leqslant M$ for all n. Then the sequence $\{f(n)\}$ is majorised by the sequence $\{g(n)\}$ satisfying

$$
g(1)=1, g(n)=M \sum_{1}^{n-1} g(k) g(n-k) \quad(n=2,3, \ldots) .
$$

The unique solution is obtained from the generating function $G(x)$ which satisfies

$$
G(x)-x=M G^{2}(x), \quad G(0)=0,
$$

whence

$$
Q(x)=(2 M)^{-1}\left\{1-(1-4 M x)^{\prime}\right\}, g(n)=\frac{1}{2 n-1} \frac{(2 n)!}{n!n!} M^{n}=O\left\{(4 M)^{n}\right\} .
$$

It follows that $f(n)=O\left\{(4 M)^{n}\right\}$, and so $\gamma \geqslant(4 M)^{-1}$.
If \lim inf $d_{k}<\lim \sup d_{k}=\infty$, then we may have either ease 1 , or 4 , or 5 (see the examples in the beginning of $\$ 4$ and example $1, \S 5$). If $0<\lim \inf d_{k} \leqslant \lim \sup d_{k}<\infty$, then we are in case 5 .For then we have $\gamma>0$ and $\Sigma f(n) \gamma^{n}=O\left(\Sigma c_{n} \gamma^{n}\right)<\infty$, which is only possible in case 5 (see (2,3)). An interesting example is obtained by taking $d_{1}=d_{3}=\ldots=a>0, d_{2}=d_{4}=\ldots=b>0$. It cañ be shown that $f(2 n+1) / f(2 n) \rightarrow A>0, f(2 n) / f(2 n-1) \rightarrow B>0$, where $A \neq B$ if $a \neq b$.

Theorem 19. Necessary and sufficient that we are in case 2 is that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup _{n}\left(d_{n}\right)^{1 / n}<1 . \tag{6,2}
\end{equation*}
$$

Proof. In case 2 we have (2, 4), where δ is such that $C(x)$ is regular for $|x| \leqslant \delta$. Therefore

$$
\lim \sup \left(c_{n}\right)^{1 / n} \leqslant \delta^{-1}, \text { and so } \lim \sup \left(d_{n}\right)^{1 / n} \leqslant \gamma / \delta<1 \text {. }
$$

If, on the other hand, (6.2) holds, then we know by theorem 18 that the series $F(x)$ has a positive radius of convergence, and further, by (6. 2) and $c_{n}=d_{n} f(n)$, that the radius of convergence of $C(x)$ is larger than the one of $F(x)$, which equals the least positive root of $C(x)=1$ (see (1.4)). It follows that we are in case 2.

Theorem 20. Necessary and sufficient that we are in case 3 is that

$$
\begin{equation*}
\sum n d_{\mathrm{n}}<\infty, \quad \lim \sup \left(d_{\mathrm{n}}\right)^{1 / n}=1 . \tag{6.3}
\end{equation*}
$$

Proof. In case 3 we have $\Sigma n c_{n} \gamma^{n-1}<\infty$, and $f(n) \gamma^{n \prime}$ tends to a positive limit. Hence $\Sigma n d_{\beta}<\infty$. Consequently, the lim sup in (6.3) cannot be >1. It cannot be <1 either, because of theorem 19 .

If on the other hand (6.3) holds, then case 1 is excluded by theorem 18 , case 2 by theorem 19, and case 5 by theorem $3(\S 4)$. Furthermore, by (2.5) we infer $C^{\prime \prime}(\gamma)=\Sigma n c_{n} \gamma^{H-1}<\infty$, which excludes case 4 .

If $\Sigma d_{n}<\infty, \Sigma n d_{n}=\infty$ then we are in case 4 (the cases $1,2,3,5$ are excluded, respectively, by theorems 18, 19, 20, 3). Moreover we find that $f(n) / f(n+1) \rightarrow \gamma$ (theorem 11).

If $d_{n} \rightarrow 0, \sum d_{n}=\infty$ then we are either in case 4 or in case 5 .
If we have $0<\lim \sup d_{n}<\infty$, then we are again either in case 4 , or 5 (see the examples in the beginning of §4).

We do not know whether the existence of $\lim d_{n}$ is or is not sufficient for the existence of $\lim f(n) / f(n+1)$. A positive example is

Theorem 21. If $A>0,0<\eta<1$ and $d_{n}=A+O\left(\eta^{n}\right)$, then we have $f(n) / f(n+1) \rightarrow \gamma$, and even

$$
f(n) \sim B n^{-n / 2} \gamma^{-n} \quad(B>0) .
$$

Proof. We can exclude cases 1, 2 and 3, by theorems 18, 19, 20. Putting $\Sigma\left(d_{n}-A\right) f(n) x^{n}=\Phi(x)$, we have

$$
F(x)-x=\{A F(x)+\Phi(x)\} F(x),
$$

where $A F(x)+\Phi(x)$ has non-negative coefficients. $F(x)$ is regular for $|x|<\gamma$, and has a singularity at $x=\gamma$, its coefficients being non-negative. As $\eta<1, \Phi(x)$ is regular for $|x| \leqslant \gamma$. Furthermore

$$
\left\{A F(x)+\frac{1}{1} \Phi(x)-\frac{1}{2}\right\}^{2}=\frac{1}{4}\{\Phi(x)-1\}^{2}-A x .
$$

Since $x=\gamma$ is a singularity of $F(x)$, we infer that $A F(\gamma)+\frac{1}{3} \Phi(\gamma)=\frac{1}{2}$. Further, $A F(x)+\frac{1}{2} \Phi(x)=\frac{1}{2} A F(x)+\frac{1}{2}\{A F(x)+\Phi(x)\}$ has nonnegative coefficients, and so $\left|A F(x)+\frac{1}{2} \Phi(x)\right|<\frac{1}{2}$ if $|x| \leqslant \gamma, x \neq \gamma$. It also follows that the root of $A F(x)+\Phi(x)-\frac{1}{2}$ at $x=\gamma$ is a single one. Consequently $F(x)$ has no further singularities on the circle $|x|=\gamma$, and we have

$$
A F(x)+\frac{1}{2} \Phi(x)=\frac{1}{2}-(\gamma-x)^{i} h(x),
$$

where $h(x)$ is regular for $|x| \leqslant \gamma$, and $h(\gamma) \neq 0$. It can now be shown (e.g. by Cauchy's theorem) that

$$
A f(n) \sim \frac{1}{2} \pi^{-1 / 9} n^{-1 / 2} h(\gamma) \gamma^{-n+1 /} .
$$

We are in case 5 , since

$$
C(\gamma)=A F(\gamma)+\Phi(\gamma)=2\left\{A F(\gamma)+\frac{1}{2} \Phi(\gamma)\right\}-A F(\gamma)=1-A F(\gamma)<1 .
$$

§7. A generalisation

We shall consider, in theorem 24, a more general quadratic recursion formula. We first generalise the method of \& 3, where we used the fact that for any sub-additive function $g(n)$ the limit of $g(n) / n$ exists (it may be $-\infty$.) We can prove a slightly better result:

Theorem 22. Let the sequence $g(n)(n=1,2, \ldots)$ satisfy

$$
\begin{equation*}
g(n+m) \leqslant g(n)+g(m) \text { whenever } \quad \frac{1}{2} n \leqslant m \leqslant 2 n \text {. } \tag{7.1}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\frac{q(n)}{n} \rightarrow L \tag{7,2}
\end{equation*}
$$

for some $L(-\infty \leqslant L<\infty)$, and

$$
\begin{equation*}
\frac{g(n)}{n} \geqslant L \quad(n=1,2, \ldots) . \tag{7,3}
\end{equation*}
$$

11 Indagationes

Proof. Put $g(n) / n=h(n)$. Clearly we have

$$
\begin{equation*}
h\left(2^{k} n\right) \leqslant h(n) \quad(n=1,2,3, \ldots ; k=0,1,2, \ldots) . \tag{7,4}
\end{equation*}
$$

Further it is easily proved by induction that $h(n) \leqslant h(1)$ for all n (every integer $n>1$ can be written as $a+b$, where $\frac{1}{1} a \leqslant b \leqslant 2 a$).

Let u and v be positive integers, and $u \geqslant \$ v$. Let the integer k be determined by $\frac{1}{\frac{1}{2}} u<2^{k} v \leqslant \frac{y}{3} u$. Put $2^{k} v=w, u-w=z$. Then we have $\frac{1}{2} \leqslant z / w<2$, and so, by (7.1) $u h(u) \leqslant z h(z)+w h(w)$.
By (7.4) we have $h(w) \leqslant h(v)$; furthermore we have $w=u-z$, and $z<\frac{i}{\dot{j}} u$. Therefore

$$
\begin{equation*}
h(u)-h(v) \leqslant \frac{z}{u}\{h(z)-h(v)\} \leqslant \frac{2}{3}\{h(z)-h(v)\} . \tag{7,5}
\end{equation*}
$$

Summarizing: if $u \geqslant \frac{3}{2} v$, then there is a number $z\left(\frac{3}{3} u \leqslant z<\frac{2}{3} u\right)$ such that (7.5) holds. By iteration of (7.5) we obtain

$$
\begin{equation*}
\left.h(u)-h(v) \leqslant \frac{3}{2 v}\right)^{2}\{h(1)-h(v)\} \quad(u \geqslant 1 v), \tag{7,6}
\end{equation*}
$$

where $\left.\lambda=\left(\log \frac{1}{2}\right) / \log 3\right)$.
From (7.6) we infer $\lim \sup h(u) \leqslant \inf h(v)$, and the theorem follows.
It may be remarked that the inequality in (7.1) cannot be replaced by $\mu^{-1} n \leqslant m \leqslant \mu n$ for any $\mu<2$.

Theorem 23. Let $\varphi(t)$ be positive and increasing for $t>0$, and assume

$$
\int_{i}^{\infty} \varphi(t) t^{-2} d t<\infty .
$$

Let the sequence $\{g(n)\}$ satisfy

$$
\begin{equation*}
g(n+m) \leqslant g(n)+g(m)+\varphi(n+m) \quad\left(\frac{1}{2} n \leqslant m \leqslant 2 n\right) \tag{7.7}
\end{equation*}
$$

Then $g(n) / n \rightarrow L$ for some $L(-\infty \leqslant L<\infty)$.
Proof. Put

$$
g(n)+3 n \int_{n}^{\infty} \varphi(3 t) t^{-2} d t=G(n) \quad(n=1,2, \ldots)
$$

Then, we have, by (7.7), if $\frac{1}{2} n \leqslant m \leqslant 2 n$,

$$
\begin{aligned}
G(n+m)-G(n)-G(m) & \leqslant \varphi(3 n)+\varphi(3 m)-3 n \int_{n}^{m+m}-3 m \int_{m}^{m+m} \leqslant \\
& \leqslant \varphi(3 n)\left\{1-3 n\left(\frac{1}{n}-\frac{1}{n+m}\right)\right\}+\varphi(3 m)\left\{1-3 m\left(\frac{1}{m}-\frac{1}{n+m}\right)\right\} .
\end{aligned}
$$

The latter expression is $\leqslant 0$, since we have $\frac{1}{2} n \leqslant m \leqslant 2 n$. Therefore, theorem 22 can be applied to the function $G(n)$. Finally we have obviously $\{G(n)-g(n)\} / n \rightarrow 0$.

Theorem 24. Let $\varphi(t)$ satisfy the conditions mentioned in theorem 23, and let the numbers $c_{k, \mathrm{~m}}$ satisfy

$$
\begin{equation*}
c_{k, n}>0 \quad(1 \leqslant k<n<\infty), c_{k, 1}>e^{-v(n)} \quad\left(\frac{1}{3} n \leqslant k \leqslant \frac{1}{2} n\right) \tag{7,8}
\end{equation*}
$$

Let

$$
\begin{equation*}
f(1)=1, f(n)=\sum_{1}^{n-1} c_{n, n} f(k) f(n-k) . \quad(n=2,3, \ldots) . \tag{7.9}
\end{equation*}
$$

Then $\{f(n)\}^{-1 / n}$ tends to a finite limit. The limit is positive if we add the condition $c_{k, n}<M \quad(1 \leqslant k<n<\infty)$.

Proof. We have $f(n) \geqslant c_{k, a} f(k) f(n-k)$. Putting $g(n)=-\log f(n)$, we have (7.7), and the result follows from theorem 23.

If $c_{h, n}<M$, then $f(n)$ is majorized by the solution of the according equation with $c_{k, n} \equiv M$, and theorem 18 gives $\gamma>0$.

Whight [5] discussed an equation of the type (7.9), viz. $c_{k, n}=(n-1)^{-1}$ $e^{-(h-1) a}(a>0)$. He proved that $\{f(n)\}^{-1 / n}$ tends very slowly to infinity, and more precisely, that $-n^{-1} \log j(n)$ is of the order of $j(t)$, where $j(t)$ is defined by

$$
j(t)=0 \quad(1 \leqslant t<\epsilon), j(t)=j(\log t)+1 \quad(t \geqslant e) .
$$

In fact his equation just escapes our theorem 24, since $\varphi(t)$ is of the order of t, and $\int_{1}^{\infty} t^{-1} d t=\infty$.

Coorer [2] considers, among others, the formula

$$
n^{r} f(n)=\sum_{1}^{n-1} k^{-a r} f(k) f(n-k) \quad(r>0, \alpha>0)
$$

He showed that $\{f(n)\}^{1 / n}$ oscillates between finite positive limits. From our theorem 24 we immediately deduce its convergence.

REFERENCES

1. BruiJn, N, G. De and P. Ernब̄s, On n recursion formula and on some Tauberian. theorems. Submitted to J. Research Nat. Bur. Standards.
2. Coopss, R., A class of remmrence formulae. I. London Math. Soc. 22, 31-40 (1947).
3. Erdös, P., W. Feller and H. Pollasd. A property of power series with positive coefficients. Bull. Am. Math. Soc. 55, 201-204 (1949).
4. Pólya, G. and G. Szegō. Aufgaben und Lehrsitze zus der Analysis, vol. 1 (New York, 1945).
5. Wright, E. M., On a sequence defined by a non-linear recurrence formula. J. London Math. Soc. 20, 68-73 (1945).
