ON A CONJECTURE OF HAMMERSLEY

P. Erdös*.

[Extracted from the Journal of the London Mathematical Society, Vol. 28, 1953.]

Denote by $\Sigma_{n, s}$ the sum of the products of the first n natural numbers taken s at a time, i.e. the s-th elementary symmetric function of $1,2, \ldots, n$. Hammersley \dagger conjectured that the value of s which maximises $\Sigma_{n, s}$ for a given n is unique. In the present note I shall prove this conjecture and discuss some related problems.

We shall denote by $f(n)$ the largest value of s for which $\Sigma_{n, s}$ assumes its maximum value. As Hammersley \dagger remarks, it follows immediately from a theorem of Newton that

$$
\begin{equation*}
\Sigma_{n, 1}<\Sigma_{n, 2}<\ldots<\Sigma_{n, f(n)-1} \leqslant \Sigma_{n, f(n)}>\Sigma_{n, f(n)+1}>\ldots>\Sigma_{n, n}=n! \tag{1}
\end{equation*}
$$

Thus it follows from (1) that the uniqueness of the maximising s will follow if we can prove that

$$
\begin{equation*}
\Sigma_{n, f(n)-1}<\Sigma_{n, f(n)} . \tag{2}
\end{equation*}
$$

Hammersley proves (2) for $1 \leqslant n \leqslant 188$. He also proves that
$f(n)=n-\left[\log (n+1)+\gamma-1+\frac{\zeta(2)-\zeta(3)}{\log (n+1)+\gamma-\frac{3}{2}}+\frac{h}{\left(\log (n+1)+\gamma-\frac{3}{2}\right)^{2}}\right]$,

* Received 27 February, 1952; read, 20 March, 1952.
\dagger J. M. Hammersley, Proc. London Math. Soc. (3), 1 (1951), 435-452.
where $[x]$ denotes the integral part of x, γ denotes Euler's constant, $\zeta(k)$ is the Riemann ζ-function and $-1 \cdot 1<h<1 \cdot 5$. Thus for $n>188>e^{5}$ we obtain by a simple computation

$$
\begin{equation*}
\left[\log n-\frac{1}{2}\right] \leqslant n-f(n) \leqslant[\log n] \tag{4}
\end{equation*}
$$

First we prove
Theorem 1. For sufficiently large n all the integers $\Sigma_{n, s}, 1 \leqslant s \leqslant n$, are different.

We evidently have*
$\Sigma_{n, n-k}<\frac{n!}{k!}\left(\sum_{l=1}^{n} \frac{1}{l}\right)^{k}<\frac{n!}{k!}(1+\log n)^{k}<n!\left\{\frac{e}{k}(1+\log n)\right\}^{k} \leqslant n!=\Sigma_{n, n}$
for $k \geqslant e(\log n+1)$. Thus from (1) and (5) it follows that to prove Theorem 1 we have only to consider the values

$$
\begin{equation*}
0 \leqslant k<e(\log n+1) \tag{6}
\end{equation*}
$$

The Prime Number Theorem in its slightly sharper form states that for every l

$$
\begin{equation*}
\pi(x)=\int_{2}^{x} \frac{d y}{\log y}+O\left(\frac{x}{(\log x)^{2}}\right) . \tag{7}
\end{equation*}
$$

From (7) we have that for sufficiently large x there is a prime between x and $x+x /(\log x)^{2}$. Thus we obtain that for $n>n_{0}$ and $k<e(\log n+1)$ there always is a prime p_{k} satisfying

$$
\frac{n}{k+1}<p_{k} \leqslant \frac{n}{k}
$$

We have

$$
\begin{equation*}
\Sigma_{n, n-k} \not \equiv 0 \quad\left(\bmod p_{k}\right) \tag{8}
\end{equation*}
$$

For $\Sigma_{n, n-k}$ is the sum of $\binom{n}{k}$ products each having $n-k$ factors. Clearly only one of these products is not a multiple of p_{k} (viz., the one in which none of the k multiples not exceeding n of p_{k} occur); thus (8) is proved. For $r<k$ all the $\binom{n}{r}$ summands of $\Sigma_{n, n-r}$ are multiples of p_{k}. Thus

$$
\begin{equation*}
\Sigma_{n, n-r} \equiv 0 \quad\left(\bmod p_{k}\right) \tag{9}
\end{equation*}
$$

(8) and (9) complete the proof of Theorem 1.

We now give an elementary proof of Theorem 1 which will be needed in the proof of Hammersley's conjecture. Let

$$
\begin{equation*}
r<k<e(\log n+1) \tag{10}
\end{equation*}
$$

[^0]We shall prove that for $n>10^{8}$

$$
\begin{equation*}
\Sigma_{n, n-r} \neq \Sigma_{n, n-k} \tag{11}
\end{equation*}
$$

Let q be a prime satisfying $n / 2 k<q \leqslant n / k$. Assume that

$$
\frac{n}{l+1}<q \leqslant \frac{n}{l}, \quad k \leqslant l \leqslant 2 k-1 .
$$

Clearly

$$
\begin{equation*}
\Sigma_{n, n-r} \equiv 0 \quad\left(\bmod q^{l-r}\right) . \tag{12}
\end{equation*}
$$

Now we compute the residue of $\Sigma_{n, n-k}\left(\bmod q^{l-k+1}\right)$. Clearly $\Sigma_{n, n-k} \equiv 0\left(\bmod q^{l-k}\right)$. The only summands of $\Sigma_{n, n-k}$ which are not multiples of q^{L-k+1} are those which contain $\Pi^{\prime} t$ where the product is extended over the integers $1 \leqslant t \leqslant n, t \not \equiv 0(\bmod q)$. $\Pi^{\prime} t$ contains $n-l$ factors, and the remaining $l-k$ factors of the summands in question of $\Sigma_{n, n-k}$ must be among the integers $q, 2 q, \ldots, l q$. Thus clearly

$$
\begin{equation*}
\Sigma_{n, n-k} \equiv \Sigma_{l, l-k} \cdot \Pi^{\prime} t \cdot q^{l-k}\left(\bmod q^{l-k+1}\right) . \tag{13}
\end{equation*}
$$

Therefore if (11) does not hold we must have

$$
\Sigma_{l, l-k} \equiv 0(\bmod q)\left(\text { i.e. } \Sigma_{n, n-k} \equiv \Sigma_{n, n-r} \equiv 0\left(\bmod q^{l-k+1}\right)\right) .
$$

Thus if (11) is false

$$
\begin{equation*}
\left.\prod_{n / 2 k<\emptyset \leq n / k} q\right|_{l=k} ^{2 k-1} \Sigma_{l, l-k} . \tag{14}
\end{equation*}
$$

Now evidently (we can of course assume that $k \geqslant 2$ for if $k=1$ then (11) clearly holds)

$$
\begin{equation*}
\prod_{l=k}^{2 k-1} \Sigma_{l, l-k}<\prod_{l=k}^{2 k-1}\binom{l}{k} l^{l-k}<\prod_{l=k}^{2 k-1}(2 k)^{l}<(2 k)^{i k^{2}} \leqslant l^{3 k^{2}}<(3 \log n)^{27(\log n)^{2}} \tag{15}
\end{equation*}
$$

since for $n>10^{8}>e^{10}, k<e(1+\log n)<3 \log n$. Define

$$
\vartheta(x)=\sum_{p \leqslant x} \log p .
$$

By the well-known results of Tchebycheff* we have

$$
\vartheta(2 x)-\vartheta(x)>0.7 . x-3.4 . x^{\frac{1}{4}}-4.5(\log x)^{2}-24 \log x-32 .
$$

Thus for $n>10^{4}$ we have by a simple computation

$$
\begin{equation*}
\vartheta(2 x)-\vartheta(x)>\frac{1}{2} x . \tag{16}
\end{equation*}
$$

For $n>10^{8}$, we have $n / 2 k>n /(6 \log n)>10^{4}$. Thus from (16) we have

$$
\begin{equation*}
\prod_{n / 2 k<g<n / k} q>e^{n / 4 k}>e^{n /(12 \log n)} . \tag{17}
\end{equation*}
$$

[^1]From (14), (15) and (17) we have

$$
(3 \log n)^{22(\log n)^{2}} \geqslant e^{n /(12 \log n)} .
$$

Thus on taking logarithms and using $\log (3 \log n)<\log n$ for $n>10^{8}$,

$$
27(\log n)^{3}>n /(12 \log n) \quad \text { or } \quad 324(\log n)^{4}>n
$$

which is false for $n>10^{8}$. Thus the proof of Theorem 1 is complete.
Theorem 2 (Hammersley's conjecture). The value of s which maximises $\Sigma_{n, s}$ is unique; in other words

$$
\begin{equation*}
\Sigma_{n, f(n)-1} \neq \Sigma_{n, f(n)} \tag{18}
\end{equation*}
$$

It follows from the second proof of Theorem 1 that Theorem 2 certainly holds if for $n>10^{8}$. Thus since Hammersley proved Theorem 2 for $n \leqslant 188$ it suffices to consider the interval $188<n \leqslant 10^{8}$.

Put $n-f(n)=t$. We have, from (4),

$$
\begin{equation*}
\log n-2 \leqslant t \leqslant \log n . \tag{19}
\end{equation*}
$$

As was shown in the first proof of Theorem 1, (18) certainly holds if there is a prime satisfying

$$
\begin{equation*}
n /(t+2)<p \leqslant n /(t+1) \tag{20}
\end{equation*}
$$

It follows from (19) that if $1500<n \leqslant 10^{8}$

$$
150<n /(t+2)<10^{7}
$$

The tables of primes* show that for $150<x<10^{7}$ there always is a prime q satisfying $x<q<x+x^{\ddagger}$. For $n>1500$ we have
since

$$
\begin{aligned}
& \frac{n}{t+2}+\left(\frac{n}{t+2}\right)^{\frac{1}{2}}<\frac{n}{t+1} \\
& \frac{n}{(t+1)(t+2)}>\left(\frac{n}{t+2}\right)^{t}
\end{aligned}
$$

or, by using (19), $\quad n>(1+\log n)^{2}(2+\log n)$,
which holds for $n>1500$. Thus for $1500<n<10^{7}$ there always is a prime in the interval (20) and thus Theorem 2 is proved for $n>1500$.

To complete our proof we only have to dispose of the n satisfying $188<n \leqslant 1500$. Hammersley \dagger showed that for $n \leqslant 1500$ the only doubtful values of n are: $189 \leqslant n \leqslant 216,539 \leqslant n \leqslant 580$. He also showed that if $189 \leqslant n \leqslant 216$ and (18) does not hold, then $t=5$. But then $p=31$ is in the interval (20), which shows that (18) holds in this case. If $539 \leqslant n \leqslant 590$ and (18) does not hold, he shows that $t=6$. But then

[^2]either $p=73$ or $p=79$ lies in the interval (20). Thus (18) holds here too, and the proof of Theorem 2 is complete.

By slightly longer computations we could prove that for $n \geqslant 5000$ Theorem 1 holds. Theorem 1 is certainly not true for all values of n since $\Sigma_{3,1}=\Sigma_{3,3}$. Hammersley proved that for $n \leqslant 12$ this is the only case for which Theorem 1 fails, and it is possible that Theorem 1 holds for all $n>3$. The condition $n \geqslant 5000$ could be considerably relaxed, but to prove Theorem 1 for $n>3$ would require much longer computations.

Let $u_{1}<u_{2}<\ldots$ be an infinite sequence of integers. Denote again by $\Sigma_{n, s}$ the sum of the products of the first n of them taken s at a time. It seems possible that for $n>n_{0}$ (n_{0} depends on the sequence) the maximising s is unique and even that for $n>n_{1}$ all the n numbers $\Sigma_{n, s}, 1 \leqslant s \leqslant n$ are distinct. If the u 's are the integers $\equiv a(\bmod d)$ it is not hard to prove this theorem.

Stone and I proved by elementary methods the following
Theorem. Let $u_{1}<u_{2}<\ldots$ be an infinite sequence of positive real numbers such that

$$
\Sigma \frac{1}{u_{i}}=\infty \quad \text { and } \quad \Sigma \frac{1}{u_{i}^{2}}<\infty .
$$

Denote by $\Sigma_{n, s}$ the sum of the product of the first n of them taken s at a time and denote by $f(n)$ the largest value of s for which $\Sigma_{n, s}$ assumes its maximum value. Then

$$
f(n)=n-\left[\sum_{i=1}^{n} \frac{1}{u_{i}}-\sum_{i=1}^{\infty} \frac{1}{u_{i}^{2}}\left(1+\frac{1}{u_{i}}\right)^{-1}+o(1)\right] .
$$

Department of Mathematics, University College, London.

[^0]: * The proof is similar to the one in a joint paper with Niven, Bull. Amer. Math. Soc., 52 (1946), 248-251. We prove there that for $n>n_{0}, \Sigma_{n, s} \neq 0(\bmod n!)$.

[^1]: * E. Landau, Verteilung der Primzahlen, I, 91.

[^2]: * A. E. Western, Journal London Math. Soc., 9 (1934), 276-278.
 \dagger See footnote \dagger, p. 232.

