
ON A CONJECTURE OF HAMMERSLEY

P. ERDÖS*.

[Extracted from the Journal of the London Mathematical Society, Vol . 28, 1953 .]

Denote by E n,, the sum of the products of the first n natural numbers
taken s at a time, i .e . the s-th elementary symmetric function of 1, 2, . . ., n .
Hammersleyt conjectured that the value of 8 which maximises E., ., for
a given n is unique. In the present note I shall prove this conjecture and
discuss some related problems .

We shall denote byfln) the largest value of s for which En, $ assumes its
maximum value . As Hammersleyt remarks, it follows immediately from
a theorem of Newton that

In,1 < Y-.,2 < . . . < F+n, f(n)-1 < En, An) > F'n, f(n)+1 > . . . > En n = n! . (1)

Thus it follows from (1) that the uniqueness of the maximising s will
follow if we can prove that

Zn,f(n)-1 < F'n,f(n)-

Hammersley proves (2) for 1 < n < 188 . He also proves that

f(n)=n-[log (n+1) +y-1-E log	
(n+ 1 )+y-z + (log (n+1) { y-z)2J' (3)

* Received 27 February, 1952 ; read, 20 March, 1952 .
f J. M. Hammersley, Proc. London Math . Soc . (3), 1 (1951), 435-452 .
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where [x] denotes the integral part of x, y denotes Euler's constant, ~(k) is
the Riemann c-function and -1 . 1 <h< 1 .5 . Thus for n > 188 > e5 we
obtain by a simple computation

[log n- a] < n-f (n) < [log n] .

	

(4)

First we prove

THEOREM 1 . For sufficiently large n all the integers En, a, 1 < 8 < n,
are different .

We evidently have*
!

	

n

	

k

	

!

	

k
En, n-k<ki (Ei

L) <ki (1+1ogn)k<n! {k (l+logn)} <n!=Ef,n (5)

for k > e(logn+l) . Thus from (1) and (5) it follows that to prove
Theorem 1 we have only to consider the values

0 < k < e(logn+1) .

	

(6)

The Prime Number Theorem in its slightly sharper form states that
for every l

From (7) we have that for sufficiently large x there is a prime between x
and x+x/(log x)2 . Thus we obtain that for n > no and k < e(log n+l)
there always is a prime pk satisfying

We have

"(x)=
~02log y+0 ((log

x
x)i)'

n

	

n
k+1 <Pk< k .

En, n-k # 0 (mod pk) .

(7)

(8)

For En, n-k is the sum of (k) products each having n-k factors . Clearly

only one of these products is not a multiple of Pk (viz ., the one in which
none of the k multiples not exceeding n of pk occur) ; thus (8) is proved .

For r < k all the (n ) summands of En,n_r are multiples of pk . Thusr
En,n_r =-0 (mod Pk) •

	

(9)
(8) and (9) complete the proof of Theorem 1 .

We now give an elementary proof of Theorem 1 which will be needed
in the proof of Hammersley's conjecture . Let

r < k < e(logn+1) .

	

(10)

* The proof is similar to the one in a joint paper with Niven, Bull. Amer . Math. Soc .,
52(1946),248-251 . We prove there that for n > no,a.,,00(mod n!) .
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We shall prove that for n > 10 8

F'n, n-r : En, n-k .

	

(11)

Let q be a prime satisfying n/2k < q < n/k. Assume that

l-{ 1 <q< i, k<l<2k-1 .

Clearly

	

En, nJ, - 0 (mod ql-r) .

	

(12)

Now we compute the residue of En, n-k (mod ql-k+l) . Clearly
Y'n, n-k = 0 (mod ql-k) . The only summands of En, n-k which are not
multiples of ql-k+l are those which contain H' t where the product is
extended over the integers 1 < t < n, t # 0 (mod q) . H' t contains n-l

factors, and the remaining l-k factors of the summands in question of
En, n-k must be among the integers q, 2q, . . ., 1q. Thus clearly

En, n-k - El , t-k . Wt . ql-k (mod qt-k+1),

	

(13)

Therefore if (11) does not hold we must have

El, l_k = 0 (mod q) (i .e . En, n-k - En, n-r - 0 (mod ql-k+1)l .

Thus if (11) is false

11

	

q
n/2k<g<n/k

2k-1
F'l, l-k

l=k

Now evidently (we can of course assume that k > 2 for if k = 1 then (11)
clearly holds)
2k-1

	

2k-1 l

	

2k-1
F'l,l-k < fl O ll-k < H (2k) l < (2k)~ka' < k3ka < (3 log n)27(logn)2, (15)

l=k

	

l=k k

	

l=k

since for n > 108 > e10, k < e (1 +log n) < 3 log n. Define

$(x) = E loge .
p<x

By the well-known results of Tchebycheff* we have

$(2x)-$(x) > 0-7 . x-3 .4 . xi-4.5(logx) 2-24 logx-32 .

Thus for n > 104 we have by a simple computation

$(2x)-$(x) > Ix .

	

(16)

For n > 108 , we have n/2k > n/(6 log n) > 104. Thus from (16) we have
q> en/4k > e n/(12 logn)•

	

(17)
nl2k<q<n/k

* E. Landau, Verteilung der Primzahlen, I, 91 .



235

	

P. ERDÖS

From (14), (15) and (17) we have

(3 log")27009 n? >1 e n/(121ogn)
.

Thus on taking logarithms and using log (3 log n) < log n for n > 108 ,
27 (logn)3 > n/(121ogn) or 324 (logn)4> n,

which is false for n > 108 . Thus the proof of Theorem 1 is complete .

THEOREM 2 (Hammersley's conjecture) . The value of s which maxi-
mises In, g is unique ; in other words

I n, f(n)-1 0 In,f(n)-

	

(18)

It follows from the second proof of Theorem 1 that Theorem 2 certainly
holds if for n > 108 . Thus since Hammersley proved Theorem 2 for n G 188
it suffices to consider the interval 188 < n < 10 8.

Put n-f(n) = t . We have, from (4),

logn-2 <t <logn.

	

(19)

As was shown in the first proof of Theorem 1, (18) certainly holds if
there is a prime satisfying

n/(t+2) < p <n/(t+1) .

	

(20)

It follows from (19) that if 1500 < n < 10 8

150 < n/(t+2) < 107 .

The tables of primes* show that for 150 < x < 10 7 there always is a
prime q satisfying x < q < x+x} . For n > 1500 we have

l

	

8

t+2 + \t+2) < t+1 ,
(

	

i
since

	

(t+l)(t+2) > `t+2) ,

or, by using (19),

	

n > (1+ log n) 2 (2+logn),

which holds for n > 1500 . Thus for 1500 < n < 10 7 there always is a
prime in the interval (20) and thus Theorem 2 is proved for n > 1500 .

To complete our proof we only have to dispose of the n satisfying
188 < n < 1500 . Hammersley f showed that for n < 1500 the only
doubtful values of n are : 189 < n < 216, 539 < n < 580 . He also showed
that if 189 < n < 216 and (18) does not hold, then t = 5 . But then p = 31
is in the interval (20), which shows that (18) holds in this case . If
539 < n < 590 and (18) does not hold, he shows that t = 6 . But then

* A. E . Western, Journal London Math. Soc., 9 (1934), 276-278 .
t See footnote t, p. 232 .
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either p = 73 or p = 79 lies in the interval (20). Thus (18) holds here too,
and the proof of Theorem 2 is complete .

By slightly longer computations we could prove that for n > 5000
Theorem 1 holds. Theorem 1 is certainly not true for all values of n since
13,1 = E3,3' Hammersley proved that for n < 12 this is the only case
for which Theorem 1 fails, and it is possible that Theorem 1 holds for all
n > 3 . The condition n > 5000 could be considerably relaxed, but to prove
Theorem 1 for n > 3 would require much longer computations .

Let ul < U2 < . . . be an infinite sequence of integers . Denote again by
In,, the sum of the products of the first n of them taken s at a time. It
seems possible that for n > n„ (n„ depends on the sequence) the maximising
s is unique and even that for n > nl all the n numbers In, ,, 1 < s < n are
distinct . If the u's are the integers -=a (mod d) it is not hard to prove
this theorem .

Stone and I proved by elementary methods the following

THEOREM . Let U1 < U2 < . . . be an infinite sequence of positive real
numbers such that

E 1= co and E 12-<00.ui

	

U,2

Denote by En s the sum of the product of the first n of them taken s at a time and
denote by f (n) the largest value of s for which In, 8 assumes its maximum value .
Then

f(n) =n-C E 1 - E

	

(I+
b=1 ui i=1 ui

	

ui
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