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The paper is concerned with two sets of positive numbers, c k and fk, connected by a
linear recursion formula . Under certain assumptions there exists an asymptotic relation

n

	

n
between the partial sums E ck and 571, fk .
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1
The assumptions on the c k are of Tauberian type . The method is based on discussing

the associated power series ~' c kxk and

	

fkxk.
1

	

1

Let
C k >0, Ec k =1 .

k=1
Define

n-1
f(1)=1, f(n)=Zc kf(n-k)

	

(n>1) .

	

(1)

This recursion formula has various applications in
the theory of probability. 4 In the present note,
however, we will investigate (1) independently of
its applications . Assume, first, that

'~7',kc k< co .
k=1

Erdos, Feller, and Pollard [2] proved that if the
greatest common divisor of the k's with ck>O is 1,
then,

f(n)- A-1

	

(A=~kc k ) .

	

(2)

It is easy to see that if the greatest common divisor
of the k's with c k>O is greater than 1, then lim f(n)
cannot exist.' It was also shown that if

7'kck= co,
1

then (2) always holds, in other words, f(n)-s0 .
Feller in a paper [3] restricted himself to the case

when Ekck< - . In the present paper we will not
in general make this assumption .

We prove the following results :
Theorem 1 . Assume that for every k>1,

Ck-1Ck+1 >Ck2 .

Then for every n>1,

f(n-1)f(n+1)>.f(n) .
5 Preparation of this paper was sponsored in part by the Office of Naval

Research .
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Other theorems of the same type as theorem 1 were
proved by T . Kaluza [4] . Assuming (1), he showed
for instance, that f(2)>O, f(n-1)f(n+1)>f2(n)
(n=2,3, . . .) imply that the c's are positive .
Furthermore, he proved that f(1),f(2), . . . is a
moment sequence if, and only if, c l , c2 , c 3 , . . . is a
moment sequence . (Here c 1 , c 2 , c 3 ,

	

. is called a
moment sequence whenever it is of the form
an=J

W

undx(u), where X(u) is nondecreasing and
0

such that the integral converges for all n) .

Theorem 2 . Putrk=Zc l , s(y)=Er k,S(y)=Ef(k) .
1>_k

	

k<y

	

k<y
Assume that for every p>O

lim s(py)=p"

	

(4)V- s (y)

for a fixed a, 0 <a < 1 (a independent of p) . Then
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s(y)S(y)-r(2-a)I'(1 { a)+o(y) .

	

(5)

Theorem 3 . Assume that (3) and (4) both hold .
Then,

1-a

	

1
f(n)=snr(1+a)r(2-a)+ sn)

	

(6)

In case a=1, (6) does not give an asymptotic
formula, it only gives f(n) =o(sn 1 ) .

It would be interesting to obtain conditions that
imply f (n+ 1) /f (n) -1 . We can prove that if
cn+l/c n->1, then f(n+1)/f(n)-->1 ; also if

cn<B. min ck ,
1<k<n

then f(n+1)/f(n)- 1 . We suppress the proofs be-
cause we believe that very much more general
conditions can be obtained. If f(n+l)/f(n)->1,
then it is not difficult to prove that cn_ 1 =o{ f(n)} .
It can be conjectured that the converse is also true,
under the additional condition that the g .c.d of the
k's with ck>O is 1 .



Proof of theorem 1 . First we show that for any n

cn{f(n+2)f(n)-f2(n+1)}

n

_ E(cn+lck_1 - CnCk) { .f (n+ 1)f (n-+ 1-k)
k=2

-f (n)f (n+2-k) } . (7)

To prove (7) split the right-hand side into four
sums. These are, respectively,

n

cn+1.f(n+1 )7Ck-,_f(n+l-k)=cn+, .f(n+1) f(n),
k=2

-cn+lf (n) ~Lck_If (n-+2-k)
k=2

=-cn+1f(n) {f(n+1)-cj(1) }

-cn.f(n+1) 57' c k f(n+1-k)
k=2

=-cnf(n+1) { f(n + 1)-c 1 f (n) } ,
11

c n f (n) ~;7 ,C kf(n+2-k)
k=2

= Cnf (n) {f (n+ 2 ) -cn+lf (1) -clf(n + 1) } .

Addition gives c n {f(n+2)_f(n)- f 2(n+1) }, which
proves (7) .

To prove theorem 1, observe that

f(1)f( 33 ) -f2 (2 ) =clf(2)+C2f( 1 ) f2 (2 ) =C2f(1)> 0.

((3) implies that all the c's are positive.) Assume
now n>2, and suppose that f(k)f(k+2)>f2(k+1) is
already proved for 1 <k<n . Then (3) implies
Cn+1Ck `l >c nck, since by (3) (c2/c1) < (c'/c2) < . .
Thus in (7) all terms on the right side are positive,
and we obtain f (n) f (n+2) >f 2 (n+ 1), which proves
theorem 1 .
Remarks: It is clear from the proof of theorem I

that if we only assume that Ck+1Ck_1>Ck2 (k>1), we
obtain_f(n+1)f(n-1) >12(n.)(n>1) .

If (3) is true, then, by theorem 1, f(n+1)/f(n) is
an increasing function of n. We have,f (n+1)/f(n) < 1
for all n, for otherwise we would have f(n+1 )/
.f(n)>a>1 for some a and all large n. This would
contradict the fact that f(n)=0(1), which easily
follows from (1) . From f (n+ 1) < f (n) (n=1,2, . . .)
it follows that

.f(n)(cl+ . . . +cn)<f(n+1)<1(n),

	

(8)

and so (3) implies .f(n+1)/f(n) ->1 (nom) .
To prove theorem 2 we need some lemmas .
Lemma 1 . 6 Let d 1i d 2 , . . . be an infinite sequence,

and let a be a number greater than - 1 . Put g(y) =
and assume that g(y)>0_for all large y, and that,

k< y

6 As far as the authors know, a complete proof of this lemma was not published
before, although it is the Abelian counterpart of the Tauberian lemma 2, which is
due to Karamata. K . L . Chung brought to our notice that in Doetsch [l] an
incomplete proof is presented for a theorem very similar to our lemma 1 .Doetsch
claims to use only the inequalities L(y)=O(y<), 1/L(y)=O(y,) (y-W), whereas
an inequality of the type (11) seems to be indispensable .
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for every p>O,

g(py)/g(y)-1),

	

(yam

	

(9)

L (py)
L (y)

Then the series D(x) =Zdkxk converges for !xj<1, and
1

if t>0, t-30, we have

D(e- `)={ 1+0(1) }g(1/t)F(1+a) .

	

(10)

Proof. The function L(y)=g(y)y-- is positive for
y large, and it is measurable and bounded over any
flute interval 0 <y<A (for g(y)=0 if 0<y<1).
Furthermore, L(y) is slowly increasing, that is,
L(py)/L(y)-s1 as y- oo, for every p>0 .

We shall prove that for any E>0 there exist
positive constants C(E), C,(e) such that

<Ci(e){p'+p-'} (p>o, y>C(E)) . (11)

It is known7 that 1.(py)/L(y)-s1 as y->-, uni-
formly for a < p < b, where a and b are arbitrary
positive. Therefore, ('(E) can be determined such
that L(y)>O for y > C(E) and such that

log {L(py)/L(y)}<e

	

(e-'<p<e,y>C(E))

It follows by induction that

log {L(py)IL(y)}<E(1+log p) (p>_1,y?C(E)), (12)

and

log {L(py)/L(y) } <e(1+log p-1 )

(('(E)y-1<p<, y _ C(E)) .
Put

M(E)= sup L(y) .
o<y<C(2)

Then we have, for 0<p<C(E)y ', y>C(e) by (13),

log {L(py)IL(y) }

-log{L(C(e))/L(y) } +log{L(py)/L(C(E)) }

<E 1+log y

	

M(E)

	

(14)
('(E)

~
+log

L(C(E))
<E (1 +log p-1 )+ C2 (e)

-Now (12), (13) and (14) prove (11) .
In the Erst place, we obtain from (11) that

L (x) = 0 (x') as j.->-, and therefore dk= 0 (k'+F)
Hence the power series for D(x) converges if !xH<1 .

We have, for t>0,

D(e-`)=

	

~te-y`g(y)dy,j o

	

oe-y `lg(y)= f
7 gee [5] (where L(y) is assumed to he continuous), and [7] .



and so,

l

D(e-')=t-°L(t-') fo,0(y,t)dy,

where

O(y,t)=e-yy° L(y/t)L(1/t)'

For any fixed y>O, 0(y,t) tends to e-yy' as t-O .
Furthermore, by (11), 0(y,t) can be majorized by a
positive function of y only, whose integral over (O,')
converges . Therefore, by the Arzéla-Lebesgue
theorem, we have

fo 'O(y,t)dy-J 'e-yy°dy=r (l+a) (t>O,t-0)
.

This proves the lemma .
Lemma 2. Assume that

D(x)=~dk-x
1

is convergent for Ixj < 1, and that d,>-0 but not all
d,=0. Let a > G be fixed. Assume that for any
fixed p>O

D(e-P')/D(e-1)_p-" (t>O,t_O) .

	

(15)

Then we have

Edk={ 1+0(1) }D(e-`)/r(1+a) (t>O,t-O) .
k <t-1

This result is due to Karamata [6] .
Theorem 2 can be derived from lemmas 1 and 2 .

Following a suggestion of Karamata, we first prove
a more general theorem :

Theorem 4 . Let a,> O (but not all=O), bk > O (but
not all= 0), k=1,2,3,

	

. . ;
n-1

dn=Eakbn-k (n=2,3, . . .) .
1

Put
s(y)=E,ak, S(y) =Ebk, T(y) =Edk .

k<y

	

k<y

	

k<y

Assume that for every p>O, we have

s(py)ls(y)-p, T(py)/T(y)-p' (y--),

where y > a > 0, y and a independent of p . Then we
have

S(y)={1+0(1)) T(y)	r(1+y)	
t

	

s(y) r(1+y-a)r(1+a)

Proof . Put A(x)=Eakxk, B(x)='>7,bkxk,
1

	

1
D (x) _~ dkxk, then we have formally A(x) B(x)=D (x) .

2
Both A(x) and D(x) are analytic for Jxj<1 (see
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lemma 1) ; it follows that B(x) is analytic in some
circle ~xj<S. The coefficients of B(x) are non-
negative, and for O<x<l, B(x) is analytic (since
A(x)>O for O<x<1) . Thus by a theorem of
Pringsheim (see [8], sec . 17) B(x) is analytic for
1xI k1 .
By lemma 1 we have, as t>O, t->O,

A(e `)' s(t-')r(1+a) ; D(e-t)-T(t-')r(l+y) .

Hence for any p>O,

B (e-P `) /B(e-') ->p-" .

But then by lemma 2

S(t-1) ^'B(e-`)lr(1+y-a) .

Now theorem 4 follows immediately from
D (x) =A(x) B (z) .

Proof of theorem 2 . Theorem 2 is an easy con-
sequence of theorem 4. If

F(x)=f(1)x-}-f(2)x2+ . . ., R(x)=rlx+r2x2+ . . .,

then it follows from (1) that F(x)R(x)=x2/(1-x),
and so

n-1
Er1f(n-k)=1 (n=2,3, . . .) .

	

(16)k=1

Therefore, taking

ak=rk, bk=f(k) (k=1,2, . . .),
d,,=1 (n=2,3, . . .), y=1,

we obtain from theorem 4

S(n) _	s(n) r(2-a)r(1+a)'

which proves theorem 2 .

Proof of theorem 3 . Let e be a number greater
than 0 . From (8) we infer

f(n)s{Sna+f)-Sn}/(en+1) .

	

(17)

It follows from (4) and (5) that

snSn-cn, snSn(1+e)'"Cn(1+e)1-a

where C=1/{r(2-a)r(1+a)} . Therefore, (17) im-
plies

lim inf f(n)sn>C{(1+e)'-°-1}/e (n-aD) .

This holds for every e>0 . Making e-0, we obtain

lim inf f(n) sn> (1- a) C .



Applying the same argument to n(1-e) instead
of n(1+e) we obtain lim inf f(n)sn<(1-a)C. This
proves theorem 3 .

Some final remarks : Feller [3] proved the following
theorem: Assume that the g .c .d . of the k's with
C k>0 is 1, and that

7~-',k 2 c k< co ,

	

( 18)1
then

n
E.f(l)=A-1n+d+o(1),

	

(19)l=1

where A= :Lck , and, in fact,
1

	

1
Now we show the converse, namely, if (19) holds,
then (18) holds too .

Theorem 5. Assume that the g .c .d. of the k's with
ck>0 is 1, and that 7,k2ck = . Then we have

1

Proof. IfA=-, then (19) expresses thatEf (l)<w .
1

This is false, since Ef(l)xl=x/{1-Ec kxk }, and the
1

	

1
right-hand side tends to CO if x-l .
Now assume A<o3 . Since f(l)-A-', we have by

(16),
n

	

n

	

n

	

n
~f (l) irk= E f(l)r, +E,f(l) '57, rk

1

	

1

	

2<k+l<n

	

1=1

	

n+1-1
n

	

n
=n-1+ (A-l+el)

	

r x
l=1

	

n+1-l
n

	

n

	

n
=n-1+A-1Ekr k +Ee1 1: r k

k=1

	

1=1 n+1-1

=n- 1 +~1 +LI2 .

We have 7',1-.CO, since Ekr k diverges
(Zkr k> Zk 2 c k), and E,2=0(7~1 ), since e1-e0 .
Finally, we have Er k=Ekck =A, and so

1

	

1

AE,f (l)>n'+E1+0(71) •1
Consequently,

t{f(l)-A-'}>{A-'+o(1)}~1-~~,
1

q.e.d .
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Let D denote the greatest common factor of the
k's with Ck>0. Erdos, Feller, and Pollard [2]
proved that if D=l and Ekc k<c, then

Elf(k) f(k -1 )I < cn ,

	

(20 )2

which, of course, implies that f (k) tends to a limit .
It seems possible that the condition T',kck<- is
superfluous .

If D>1 and Ekck<-, then (20) does not hold,
since lira f (k) does not exist . In order to see this,
take Ck =CkD, f * (k) f (kD-D+1) ; it follows that

f * (k) -(Ekck)-1=DA -1 .
Hence,

f(kD-{-1)--DA -1 5z0, f(kD+2)=-0 .

If D>1 and .,kck= m , then we have f (k) -->0 .
Nevertheless, the series (20) need not converge .
Take c,,=0 for n odd, c,,=24ir-2n 2 for n even .
Then we have f(2n)=O, f (2n-1) f *(n), where
f *(n) and C:=C2 . are related by an equation of the
type (1), and Ecn*=1 . It follows, by theorem 3,

1
that f * (n) .ire/ (6 log n) .
Therefore,

f (2n-1) _ir e / (6 log n), f (2n) =0,
and the series (20) diverges .
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