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1 . Let

f (z) _ an z1 n
0

be an integral function, A,, being a strictly increasing sequence of non-
negative integers. We shall use the notations

M (r) =max f (z) , m(r)=min if (z) 1,
Izl=r

	

IzI=r
µ (r) = max j an rn,

n = 0, 1, 2, . . .

describing M (r) as the maximum modulus, m (r) as the minimum
modulus and µ (r) as the maximum term of f (z) .

The present paper is a development of a remark by Pólya (Math .
Zeit., 29 (1929), 549-640, last sentence of the paper) that if

lim log (An+1 - -gym) > i

	

(2)
Log A„

	

2

then

	

in

	

m (r) - lim µ(r) = 1.

	

(3)M (r)

	

r .0 1I7 (r)<-r-> z

Our first result is

THEOREM 1 .
If

A ,

	

(4 )n=0 ~n+l - ~n
then (3) holds .

Theorem 1 is clearly a sharpened form of Pólya's result, for from
(2) it evidently follows that for sufficiently large n

An + 1 - X n > \ n + E > n1 + 1 for some positive E and 8 .
Theorem I is best possible, as is shown by our next result .

THEOREM 2.

If

(1 )



then

but if

for every h, then there exists an integral function of the form (1) such that
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then there exists an integral function of the form (1) such that

lim µr) < 2, lim m (r) <- 2 .

	

(6)
r->~ M (r)

	

r~ a0 M lr ) .-
We generalise these theorems in two ways . First, relaxing the gap
hypothesis we have

THEOREM 3 .

If for a positive integer h

lira

1
n=0 An +h - An

< 00

tc (r) >

	

1

rl

	

M (r) = 2h-1 ;

00
E

n=0

1
	 - co

An + h - An

63

(7)

( 8 )

(9)

((r)

	

r--
M (r) 0 .

M

The conjecture that under condition (7) we could derive

r-> n,

is disproved trivially by the example

2Z zn 3 / (n 3 ) ! + E zn 3 + 1 / (n 3 + 1) ! .
0

	

0

Our second generalisation relaxes the gap condition of Theorem I
in a different way, but imposes in addition a condition on the order
of the function . We have

THEOREM 4.

If as n tends to infinity
n

	

1 - _

k = 0 .11, + 1 - Ak

	

o (log 'fi n ) .

	

(12)

and the function f (z) is of finite order, or if

E	 1 - = 0 (log An ),

	

(13)
k=0 ",k+l - Xk

and f (z) is of zero order, then (2) holds .
This theorem cannot be materially strengthened since the example

lira M
(r)>0

	

(11}
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constructed for Theorem 2 will be of finite order if

We have
EBn =EEA
0

	

0 0

where A,,, n = (in - in + 1) - 3/2 or zero, as v falls in in < v < in or not,
i n , in being the values of i, j for which the maximum in (14) is attained .
Since in < n < in also it follows thatin - in ? I v-n I

	

Consequently

E8n <~E -

	

E„

+ 0

	

0 0( v- n

	

1) 3/2

<(1-+- 2En' 3 ' 2)EEn .
0

	

0
We now assume (4) and set

En - 1/(An +1 -X.) .

	

(18)

Defining 8 n as in (14), we have E bn < oo by (15) . Let en be a sequence
0

of positive numbers tending to infinity so slowly that

E C1 151n < 00 .

	

(17)
0

Now let An < z I < An ,,, n = 0, 1, 2, . . ., be the sequence of
intervals in which a single term al,. z'k remains the maximum term .
k will depend on n and increases with n, but we need not express this

6
dependence in our notation . From (17) we have H (1 + 2c k 8,_) 2 <

0
and hence there exist arbitrarily large values of n such that

An +7/In>(1 + 2ck8k) 2 .

lim

	

1

	

1

	

> 0
log An k=0 Ak+1 - Akn-sw

and of zero order if

lim	 1log A nn-3,

0

	

n=2

n

	

1
E--Akk=o Ak+1

2. Proof of Theorem 1 . To prove the theorem we need an element-
ary inequality . If Eo + E1 + E2 + . . . is a convergent series of non-
negative numbers and if a sequence 8 n is defined by

8n = max

	

1

	

E E,,,

	

(14)
i<n<j 0 - 2 + 1 ) ; v=i

then
E8 n <(1+2 E n - ")EE,, .

0

00 ,



where
n-1

An = 11
v=0
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We understand by n such a value and by k the associated integer . .
Since ak z'k is the maximum term for A n < z I <An+l, we have

Ia,I<
av < ak I An+1 -(~ -~k)

	

(v > k) .

	

(19)

Using these inequalities with r = z _ (An An + 1) ~, we have
av I r'v < I ak

I ak

Iav ~rw < a ll
But by the definition of 5n and the inequality of the harmonic and
arithmetic means,

1

	

18, > ,--

	

+

	

,/1v+1 - w Av+2 -nv+1

1

	

k -

	

(k-v)1
(k-v)2, (A k -

	

-A v
Consequently

(1 + 2C1 yi )

	

e - uk (k- v)1

From this and a similar inequality when v > k, it follows from (20)
that as n -->oo (and so k -> oo , r -- oc , c,-*co)

k-1

	

ao
E I a, I r', + E I a. I rxv = o(
0

	

k+1

From this follow first the second and then evidently the first state-
ment of (3) .

1 E "

v-1

a1, An xk - Av

	

(v < k)

rk1(A n /A, + 1)1(A 1 -A,)

r1k(1 + 2Gk3k) -(2, -T v)

rAk(1 + 2Ck61) -(w - Ak)

A o = 1,

(v < k),

	

(20)
(v > k) .

	 1	)--
Ak '- Ak -1

(k

	

v)

(v < k) .

(v < k) .

	

(22)

all I r 2 k ) .

	

(23)

m
3 . Proof of Theorem 2 . Now suppose that E 1 / ( An + 1 - An)

0
diverges . We choose the coefficients an by the following rules .

a0 = 1,

	

an = an+l An -(In ',, -1),

	

(24)

_

	

1 l
A 1 - (1 -}- ~o +

1/ (25)
and en is a a sequence of positive numbers tending to zero and such
that E En (\ n + 1 - An ) diverges .

X

Evidently An -> oc and f (z) = E an z'n is an integral function .
0

Since
an , 1 r 2n+1

	

r a n + 1 - 2,
a„ r An

	

an+1 - '\n
An+1

(26)
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the maximum term µ (r) is anr2n for
A n < r C An +1

	

(27 )
Clearly

M(r)=Ian r'`n>an r1n+a, +l ran+1 .
0

Now for An<r<An+1 we have
an	+1rAn+ 1 = / r

	

An+1 -''n
> (

A n \An+1 -An
an r'n

	

\An +1)

	

An+1

-C1

	

En

	

/ -
(fin+1 -1n)

	

(29)

An+1-

	

> e

and it follows that M (r) > (2 - E) µ (r) for all sufficiently large r .
This proves the first inequality of (6) . To establish the second

we argue as follows . With An < r < An + 1 and z = re

	

+ i - n) we
have, for n sufficiently large,
If (z) I < M (r) - an r'`n - an + i r An + 1 + (an r 2'n - an + 1 r "n + 1)

	

(30)
= M (r) - 2 an + 1 r'n + 1 < M (r) - (2 - E) Fc (r) .

If µ (r) > I M (r), it follows that m (r) < (2 + E) M (r) .

If µ (r) < 1 M (r) we argue differently . We use the relations

{m (r)} 2 < {M2 (r)} 2 =
2~r J 0~

f (rei°) 1 2 dO = E ant r 2an

which lead to

{M(r)}2 > E
(, 2 r22,+ E a„ r'~ {f (r) - a„ r ',v }

0

	

0

cc
{11 2 (r)} 2 + E a„ r'v {f (r) - 4f (r)}

0
and

{m (r)} 2 < {M2 (r)} 2 < { ; ill (r)} 2 .

4 . Proof of Theorem 3 .

Suppose now that
X

E	 < co ,

	

(34)
n=0 ~n+h - ~n

where h is a positive integer greater than unity .
Defining 8n as in (14) with en = (A,,+,, - An) -1 and choosing cn > 0

so that c,,--> + cc and 'y cn 8n < oo , and again taking An < ( z < An+ I

1

(28)

(32)

(33)



to be the sequence of intervals in which a single term, say a k z'k , is the
maximum term, we must have arbitrarily large values of n such that
An+I/An > (1 + 2c k 8 k ) 2 , that is condition (18) . With such values of n
and associated k we still have (19) and (20), but we can no longer
expect such a good result as (21) or its consequences (22) and (23) .
For r = (A nAn + 1 )1 and v " near " to k we can only say

I a v I r-1 v < I a k I r'k

	

(k - h < v < k + h) .

	

(35)

For values of v which are not " too near " k we can give an analogue
of (21) valid fork - ph < v S k - (p - 1) h,

8
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I

-(p-2)h-Ak-(p - I)h

>

	

(p- 1) 2

	

1
Ak - Ak - (p - 1)h (ph)

> (k - v)'
= 4h 2 (A k - A)-

Consequently

f*(z)=Ean

p = 2, 3, . . ., in
I

	

I

	

1. . .

	

A`-h - ,~k - 2h + Ak - A
;~
-h (A) ,

>	pi	
4h= (A k - w)

(1 + 2c k 8k) -(''k - 2v) C e - ek (k - v) 1 /4h'

From this and the similar inequalities with v > k + h we have, as
n -3 oo , the result

k-h

	

o 0
I I av I rav + E I av I rw = o( I ak I rAk ),
0

	

k+h

and consequently with (35) we deduce
lim M (r)/µ (r) < (2h - 1)

or
lhm µ (r)/M (r) > 1/(2h - 1),

which constitutes the first part of Theorem 3 .
Now suppose that for some integer h > 1

(36)

n=() An+h -,An

Then evidently one of the series
.0

	

1
E

	

(k = 0, 1, . . ., h - 1)

	

(37)
n =0 XnJt+h+k - "nh {-k

must diverge . There will be no loss of generality in supposing that the
series with k = 0 diverges. We now, as in the proof of Theorem 2,
define the series

An = 'nh

	

(38)
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with the properties that
(i) µ * ( r) = an r 2'-

1Z

µ" (r) is the maximum term of f , ( z) and An is defined from the
sequence An as A, is defined from A n in (25) . Let us now define

cc
f (z) = E a,, z ~In by the conditions

0

anh = a n , a„h +1, = a * An+hh+h Anh)

	

(k = 1, 2, . . ., h - 1) .

	

(40)

'Then evidently for An < r < An + 1 we shall have
a„h r A n_h > anh + 1 r~nh + 1 > . . . > a,,h + h r 1 nh + h,

	

(41)

and µ (r) for the function f (z) will be anh r1nh, so that

M (r) = f (r) > (h + 1 - E) Ft (r)

	

[r > r (e)] .

	

(42)

We approximate m (r) by using
cc

{m (r)}2 < {M 2 (r)}2 = a2 r 2a .
c

Clearly
m

	

m
{M (r)} 2 = a2 r 2 '' + E a, rw {M (r) - a, r

0

	

0
(44)

{111 2 (r)} 2 + {M (r)} 2 - ( h+ 1 -E) -1 {M (r)} 2 ,
from which

m (r) < M 2 (r) < (h -- 1 -E) - M (r)

	

(45)
follows .

This does not quite complete the proof of Theorem 3 since
(h + 1 - e) -1 and (h + 1 - E) - ~, although arbitrarily small, are not
zero . However we should only have to choose X' to be a subsequencen
of An such that the interval A" < A < A'

	

contains a number of X,n

	

- va+1
increasing with An but that E (An+1 - A') -1 diverges . It does not
seem necessary to enumerate the details .

5 . Proof of Theorem 4.

Given an increasing sequence of integers A n , let us first try to
cc

construct an integral function E C,, x1n with positive coefficients such
that each term is in turn the maximum term and greatly exceeds in

(ii) an +1 r 2 n+i > (1 - E) a n r'"n

for An < r < An-1,

	

n > n (E),
(39)

(43)
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value the rest of the series . More precisely let 8 > 0 be a small
prescribed number and let us choose the cn in such a way that for a
certain increasing sequence An of positive numbers the following
conditions hold for all N. For x = AN we require that

CN + 1x'N+i=8CNX'N
CN - 1 x AN - 1 = SCN xXN .

In this case we shall have, for n > N and x = AN ,
Cn

	

An+1 = 8Cn x1n

	

(47)

and consequently, for x = AN < An ,
C, +1xAn+1 < 8C nx 2n .

	

(48)

So for x = AN , p > 0,

CN p x1`N +P ~ 8P CN XXN

(49)

E C nxC

	

CN x2N .
N+1

	

1 -
Similarly, for x = A N ,

N+1
E Cn x2n <	 CN x'N .

	

(50)
0

1 _
s

We must now consider whether our conditions are possible .
(46) requires that

xN + 1 - ANcN + 1 - SCNIAN

(51)

CN = 5CN

	

+ 1 1 N -

Eliminating

	

AN
Eliminating CN and c2,+ 1, we see that
AN+1/AN=S-2/(7N+1-AN)=K" ( R iv+1 - ^ :G)

	

(K > 1) .

	

(52)

This defines the sequence An if we take A o = 1, and shows that it is
increasing . With c 1 = 1 the sequence cn is also defined, for the two

conditions of (46) are now equivalent. The function E c n x-' n will be
1

(46)

an integral function if A n tends to infinity . Since
Ilog A n = log K l	1

X

+ a	 1 I + . . . -} ,

	

(53)~

		

--n -
i

this condition requires the divergence of E 1/(A,. + 1 - An) .
1
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The property of domination by single terms expressed by (49)
and (50) will be carried over to the integral function I an Z n if we

0
can assert that

m
an zAn/cn

	

(54 )0

is an integral function . If we make the hypothesis that Z an Z"' is of
0

finite order then i an I < An - ' In for sufficiently large n and some
positive a . To ensure that (54) does define an integral function we
shall require to prove that for arbitrary E > 0 and sufficiently large n .

e n > An E), n .

	

(55)
This is equivalent to

	

log cn > - e A n log A n
and since

n-1
log en = n log 8 - Z (A, + , - Av) log A„

	

(56)
v=0

this will follow from

or
log A n = o (log A n )

n

	

1
= o (log An) .

1 A u
- Av-•1

(57)

(58)

Now if we assume that I" a n z'`nlc n is an integral function it will
0

follow that for sufficiently large values of z, say z = R, the maximum
term of this function will occur with n = N arbitrarily large . We
shall have

an I R11n/Cn < I a_y I R"-,Y/c,.

a'nIRan < en

	 anI(RA y)'-G cn (A,,)'-
aY I (RA -Y A,"

	

cy (Alv) AN .

Thus the dominance expressed by (49) and (50) of a single term for
Y_ e n zI n holds also for the function E a n z ,\ with I z I = RAY. Since 8
may be chosen arbitrarily small Theorem 4 is proved for functions
of finite order . If E an x~n is assumed to be of zero order we only
require that c, > An -"n for some positive h, and this clearly follows
from (13) .
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