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1 . Let 1(t) be a real-valued function. R. P. BOAS 1) called /(I)
odd about the point (x, I (x)) if for all t except possibly a set of
measure 0

f (x + t) + I (x - t) - 2/(x) = 0 (1)

If 1(t) is odd about several points (xe , I (x,)) it is to be understood
that the exceptional set may depend on x a .
BOAS 1) proves among others that if 1(t) is periodic, bounded on

a set of positive measure, and satisfies (1) for a set of x's having
positive measure then 1(t) is equivalent to a constant (i .e . 1(t) is
constant almost everywhere) . He also shows there exists a bounded
periodic function not equivalent to a constant which is odd about a
denumerable set of points . He proposes the question if a bounded
periodic 1(h exists not equivalent to a constant which is odd about
a noncountable set of points . He remarks that it is clearly necessary
to put on 1(t) some restriction like boundedness since every additive
function (that is, every solution of the functional equation
f(x + y) = f(x) + Ay)) satisfies (1) for all x .

We shall prove that such functions do exist . We shall also con-
sider the more general functional equation

1m=1 Y7n f (z + cmu) - f(z) = 0

	

(2)

where the y,,, c m are given complex numbers, 1 m ym. = 1, cm 5 0 .
We shall prove that if /(u) is an essentially bounded complex-valued
function of the complex variable u, not equivalent to a constant,

1) R. P . BOAS, Functions which are odd about several points, Nieuw Archief
voor Wiskunde (1) 3, 27-32 (1953)
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which satisfies (2) identically in u for at least one value of the
complex variable z then

c s

g.l .b . I ~m-1 y~~z cn, lar m-

	

= 0

	

( co < r, s < oo) (3 )
Cm

Conversely, if this condition is satisfied then (2) has a bounded
solution, not equivalent to a constant, for a set of z's of power c
that is everywhere dense in the z plane .

2. Th e o r e m l . There exists a bounded function f(t), not
equivalent to a constant, which satisfies (1) identically in t for a non-
measurable set of x's which is everywhere dense and of Power c .

Let H be a HAMEL basis of the real numbers, x0 an arbitrary
element of H, and put H = H - tx 0} . Every real number t can be
written, in a unique way, as a finite sum t = h oxo + I hkxak ,
where xak E H _ and the h's are rational numbers, hk t 0 . We shall
write ho - ho (t) for the coefficient of x0 in this decomposition of t .
Then h 0(r1t1 + 7212) = r 1h0 (ti ) + r2h o (t 2 ) for any real ti , t 2 and
rational rl, r2 .

Obviously, the set X0 of real numbers x for which h o (x) = 0 is
non-measurable, of the power c, and everywhere dense . We use X o
as the set of x's for which (1) is satisfied . We define 1(t) as follows

1(t) = 0

	

if t e Xo

	

(4)

	 h° (t) 	if t O X0
I ho(t)

Clearly, 1(t) is bounded and not equivalent to a constant . Equation
(1) is satisfied identically in t for all x c X0. To see this we have
only to remark that if t c X o then (x ± t) E X0 and all summands
in (1) vanish . If t ¢ Xo then (x ± t) 0 X0 and ho(x ± t) _ ± h o (t),
hence I(x + t) = - I(x - t), and (1) holds again .
We remark that 1(t) is periodic. Every x c X0 is a period .

3 . We now turn to equation (2) . We first prove that the existence
of a bounded solution implies that condition (3) holds .

T h e o r e m 2 . I f f (m) is essentially bounded, not equivalent to
a constant, and satisfies (2) joy almost all a and at least one value o f z
then (3) holds .

It is no restriction to assume (2) is satisfied for z o = 0 since we



he may otherwise use z* = z - z0 , f * (u) = 1(,u + zo ) . Also we may
assume /(0) = 0 since if /(u) satisfies (2) so does 1(u) - f (O) . We

then have
3)

	

Im= 1 ym f( e m u) =

	

(5)

for almost all u . Putting cm = c"-' ib ~, it = e"' (a 71,, b,m , x, y real),
'd f(ex+tizi) = g(x, y), equation (5) becomes
c

I'+n y ., g(x + am, y + bm) = 0

	

(6)
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This equation is satisfied for almost all x, y by the essentially
bounded function g(x, y) .

Now let A1 , . . ., A K be a rational basis for the numbers a l , . . ,
an , and B	BL a rational basis for b1 , . . . , b, That is, A 1 , . . . ,

AkandB1,...,BLare linearly independent over the rationals, and
there are integers a?zk , bm , such that

a,, = I~ 1 amk A, bm = ~ 1 b, n,B, (m = 1, . . ., n)

If a 1 = a2 = . . . = a n = 0 or b1 = b2 = . . . =b,=0 we take
the corresponding basis to be vacuous .

Let a k , /1, (k = 1, . . . , K ; l = 1, . . . , L) be any integers. Equation
(6) implies

~n2 Y-n g(x + a,,, + Y-k (1kAk, y + bm + Y-Z l1B,) = 0

	

(7)

for almost all x, y . Let x, y be chosen such that (7) holds and such
that the set of numbers g(x + am + 17, a kA k , y + b m + 11 f3,B,)
(a k, f3, = 0, + 1, ± 2, . . . ; iii = 1, . . . , n) is bounded. With these
numbers as coefficients we form the Fourier series 2 )

1(«,a) g(x + a,, + Y-k akAk, y + bm + 7-i fl,B,) .
.exp (i1k akA krk + i1i i3,B,S,) ( 8 )

It represents a SCHWARTZ' distribution 3 ) on the torus T IC±L whose
points are the (K + L)-tuples (rl , . . .

	

s 1 , . . . , SL), where rk , s,
are real numbers modulo 2~c A-, 1 , 2ji B-' . By (7) we have

ym g(x + am + 1:k a kA k, y + b m. + l i f,B ,)
. exp (i I k akA krk + 'I'll fl,B,sj

	

0,

E

or after renaming the a's, fl's

Y-(Z,P) g(x + Ik akAk, y + 11 [3,B,) exp (i lk akA I r k + ill fl,B,s,) .
2rnym exp(- i Ik amkA krk - i 11 b ,1B,s,) = 0 .

	

(9)

L

2) Summation to be done over all integral values for a 1 , . . ., aK , fli , . . ., h-
3) L. SCHWARTZ, Theorie des Distributions, Hermann and Cie, Paris 1951, tome

II, Ch . VII, 1 . - The theory of distributions is used here only to avoid somewhat
lengthier, but probably more familiar argument'_ on weak convergence .
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Now assume condition (3) is not satisfied . That is, there exists
a number E > 0 such that

11. ym exp(- iamr - ib,,,,s) I > e

	

(10)

for all real r, s . Because of the rational independence of the numbers
A 1, . . . , A K and B,_, . . . , BL the points . (AY, . . . , AKY, B1 s, . . . ,
BLS) (- co < r, s < co) are everywhere dense on TK+L. It follows
that

gym, ym exp(- i lk a, z,A,,,r k - i Y-l b,m1B,s, J > E

on TK +L . Therefore, (9) implies that Fourier series (8) represents the
zero distribution on TK+L, which is possible only if all the coefficients
in the series are zero . Thus, g(x, y) = 0 for almost all x, y . This is
contrary to the hypotheses of the theorem . It follows that (10)
cannot hold .

The proof shows that the boundedness of the numbers

g(xo + Y-k a,A k , yo + 11 [5,B 1 ),

assuming that they do not all vanish, for some fixed x0, yo and a, ,

Pa = 0, ± 1, ± 2, . . ., already implies condition (3) . We may also
replace essential boundedness of g(x, y) by the condition of essential
boundedness of (1 + x2 + y 2) -v g(x, y) for some sufficiently large N .
Then, as in the case of bounded g(x, y), Fourier series (8) converges
to a distribution 4 ) .

4. The solution of equation (2) is, like that of equation (1),
constructed with the aid of a HAMEL basis . Let H be such a basis of
the complex numbers over the field C(c1 , c 2,, . . . , c u ), which is the
field resulting from adjoining the numbers ;1 , c2 , . . ., c . to the
rational real numbers . Let zo be an arbitrary element of H, and put
H_ = H - {z 0} . Every complex number u can be written, in a unique
way, as a finite sum u = h ozo + I hk z,,, where z„, E H_ and the h's
are rational functions with rational real coefficients of c 1 , c 2 , . . . , c,t ;
hk -A 0. We write again ho = ho (u) for the coefficient of zo in this

decomposition . The set Zo of complex numbers z for which ho (z)=0
is non-measurable, of the power c, and everywhere dense . Of the
same character is 2 0 , the complementary set .

In the following we write, as before, cm = e'zm+Zbm (am, bm real) .
The lemma to be proved is independent of condition (3) .

4) L.c. Footnote 3 .
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L e m m a . For every fair o f real numbers r, s, there exists a
function f(u) such that

(a) /(it) = 0 on Z.,

	

I A it) I = I on Z"
(b) ~m ym f(z + c„2u) - f(z) I = o

	

if u E Z0

	

_

I I. y . ei(a,,,,)+b,,,s) I i f uE Z0

for all z c- Z0 .

Using the function ho(u) defined
(a 0 (u), b 0 (u) real) . Then define

f (u) = 0

	

if u E Z0

	

(1 1)
= ei(ao(u)r+bo(u)s)

	

if u E 70

This function obviously satisfies assertion (a) of the Lemma as well
as the first part of (b) . If z e Z0, u e 20 then h0 (z + cmu) = c„tho(u) _
= ea-+ao(u)+i(b,+b0(u)) ; thus /(z -f- cmu) = ei(amT+b~s) ei(ao(u)r+bo(u)s)

while /(z) = 0 . This proves assertion (b) of the Lemma .
In this lemma, as in the following theorem, no use is made of

the condition 1,n ym = 1 .
If there are numbers r, s for which

c

	

3
~m ym I cm I it

	

m
I
/ =

0

	

(12)

then the function /(u) of the Lemma, constructed for these numbers
r, s, is a solution of (2) . We prove a stronger result, the exact converse
of Theorem 2 .

T h e o r e m 3 . If condition (3) holds then there exists a bounded
function f(u), f(u) = 0 on Z0 , I f(u) I = 1 on 2, which satisfies (2)
identically in u for all z c- Z 0 .

Let rk , s k (k = 1, 2, . . .) be so chosen that

~mYmei(a-rk+bmsk)I <	 I
k

Define the sequence of functions

fk(u) = 0

	

if u E ZO
= ei(au(u)rk+ba(u)lk)

Then, by the preceding Lemma,

above put h0(u) = ea0(u)+ib o tu)

if uEZ0 .

I ~m ym fk(z + e

	

- fk(z) I <
k

	

(13)

for all complex u, and z E7, 0 .
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The range Ho of the function h o(u) on the complex numbers u is
denumerable. Let Ho be ordered as a sequence : Ho ={hol , hQ2 , . . . },
and put ho , = ea0l+ibot (ao,, b o , real) . Select a sequence of positive
integers n k such that

urn c1 (a oi+'nk+b oa snk ) = el
ti-~'-oo

exists for l = 1, 2, . . .
Now define 1(u) by

f (u) -= 0

	

if u E Zo
= e,

	

if ii E Z o , ho(u) = ho , .

Then 1(u) = lim f 7,(u) for all complex u . Obviously, 1(u) = 0 on Zo ,
IC-oof(U)

I = 1 on 20. Inequality (13) implies that f (u) satisfies (2) for
z E Zo identically in u.

As in Theorem 1, the constructed solution is periodic . Every
z E Zo is a period of f(u) .

5. Let cm = e' where e. is a primitive n-th root of unity . Then
equation (12) is satisfied with r = 0, s = 1, y i = Y2 = . . . = Y. _
= 1 /n. If we let H be a HAMEL basis of the complex numbers over
the field C(e 3 , e4 , e 5 , . . .) then Zo as defined in 4 . is independent of n
and so is the function f(u) (with r = 0, s = 1) as defined in (11) .
Hence, 1(u) satisfies, for z e Zo , simultaneously the equations

A z) = n
Im=~ f(z + en u) (n = 1, 2, . . .)

	

(14)

and we have

T h e o r e m 4 . There exists a bounded function 1(u), not equiva-
lent to a constant, which at every z from a non-measurable everywhere
dense set Z o o f Power c equals the arithmetic average o f 1(u) over the
vertices o f any regular polygon with center at z .

If yl = Y2 = . . . = Yn = I/n and the cm are real positive
numbers, am = log cm , then putting ~ = exp(ir) in equation (12)
we have I'M=, dam = 0 to be satisfied by some ~ of modulus 1 .
Clearly there exists a 5, satisfying these conditions if the am form an
arithmetic progression, that is the c m form a geometric progression .

Another noteworthy case is I'M ., y,,, = 0 . Then equation (12)
is satisfied by r = s = 0, no matter what the cm are .



If the c 1, c 2 , . . , c,, are multiplicatively independent, that is

Cpl , Cpl . . . c

	

= 11

	

2

	

n

for integers p1, P2, . . . , P,, implies p1 = p2 = . . . _ P,n = 0, then
at least one of the n-tuples a l , . . . , a,, ; b1 , . . . , b 1 , is rationally
independent. In this case it is readily seen that condition (3) is
equivalent to

max I y,n I< 2 I I ym I,

	

(15)

a condition in which the c,,, do not enter at all .

(Received Jan . 28, 1954)
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