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ON CONSECUTIVE INTEGERS

BY

P. ERDÖS

A theorem of SYLVESTER and SCHUR 1) states that for every k
and n > k the product n(n + 1) . . . (n + k - 1) is divisible by a
prime P > k, or in other words the product of k consecutive
integers each greater than k always contains a prime greater than k .
Define now 1(k) as the least integer so that the product of 1(k)
consecutive integers, each greater than k always contains a prime
greater than k . The theorem of SYLVESTER and SCHUR states that
f(k) < k . In the present note we shall prove
Theorem 1 . There is a constant c1 > 1 so that

f(k)

	

k
< cl log k

	

(1)

k
In other words the sequence u + 1, u + 2, . . . , u + t, t = 1c, togk

u > k has at least one prime > k .
The exact determination of the order of 1(k) is an extremely

difficult problem . It follows from a theorem of RANKIN 2) that
there exists a constant c2 > 0 so that for every k we have consecu-
tive primes p, and h,.+l satisfying

k <

	

log k . loglog k . loglogloglog k
Pr < Pr+l < 2k, Pr+i-Pr > C2

	

(2)
(logloglog k)2

Clearly all prime factors of the product (Pr + 1) . . . (Pr+1- 1)
are less than k . Thus

C-3 log k
.loglog k .loglogloglog k

f(k) >

	

(3)3

	

(logloglog r)2
1) P. ERDÖS, A theorem of SYLVESTER AND SCHUR, Journal London Math . Soc .

9 (1934) 282-288 .
2) R . A. RANKIN, The difference between consecutive prime numbers, ibid . 13

(1938) 242-247 .
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The gap between (1) and (3) is extremely large . It seems likely
that 1(k) is not substantially larger than the greatest difference

Pr+1- pT, k < P T < PT+l < 2k . Thus by a conjecture of CRAMER 3 )

one might guess
f(k) = (1 + 0(1)) (log k) 2.

	

( 4)

The proof or disproof of (4) seems hopeless, there is of course
no real evidence that (4) is true .

It would be interesting, but not entirely easy to determine f(k)
say for all k < 100. It is not even obvious that 1(k) is a non de-
creasing function of k (in fact I can not prove this) . A theorem of
PÓLYA and STÖRMER states that for u > uo(k), the product u(u+1)
always contains a prime factor greater than k, thus 1(k) can be
determined in a finite number of steps, but as far as I know no
explicite estimates are available for u o(k), which makes the de-
termination of 1(k) difficult. In general it will be troublesome to
prove that f(k) < n(k) (n(k) is the number of primes < k) . It is
easy to see that

/(2) = 2, f(3) = /(4) = 3, /(5) = /(6) = 4 .
It seems likely that /(7) = /(8) = /(9) = /(10) = 4, but /(13) > 6 .

In the proofs of theorems I and 2 we will make use of the follow-
ing consequences of a result of HOHEISEL-INGHAM 4)

x~
;z (x + x e) - -r(X)

	

to

	

8 < 0 < 1

	

(*
g x-

from which it follows for each pair of consecutive primes pn,

P .+, :

L'n+l - pn = 0 (t' i 3)

	

(**)

To prove Theorem 1 we first of all make use of (**) : there
exists a constant c 4, so that

pk+1 - pk < C4pk}

	

(5 )
It immediately follows from (5) that for it < k 3/2 at least one

of the integers
r

it + 1, u. + 2, . . , it + t, t
= Lcl

is a prime, for sufficiently large c l .

k
log k

3 ) H. CRAMER, On the order of magnitude of the difference between consecutive
prime numbers, Acta Arithmetica 2 (1936) 23-46 .

4) A . E. INGHAM, On the difference between consecutive primes . Quart . J. Math.
8 (1937) 255-266 .
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Thus in the proof of Theorem I we can assume u > / L 3/2 . If
Theorem 1 would not be true then for each c 1 > 0 we could find a
it > k3i2 so that all prime factors of

(at ± t\

	

0 2 ,
C

cik

Jt

	

, at >

	

t =
log k

would be less than or equal to k .
+

I. e m m a . If p° / at t t
then p° < it + t . 5 )

The Lemma is well known and follows easily from Legendre's
formula for the decomposition of n ! into prime factors .

Clearly
(u±t)(n+l)(u+2)_

	

. . . (u { t)
>

(u
± t) t > \	 u

~t
6t

	

t~

	

i

	

t

	

( }

Now if all prime factors of
(

it t l would be less than or equal

to k, we would have from (6) and from the above Lemma

tt / t
< Cat t

t\
G (2t +

	

(7 )

Now by it > k3'`2 and t < k (t < k can be assumed by the theorem
of SYLVESTER and SCHUR) we obtain from (7) and from

3k
~(k)

< 2 log k

it
t,13
< ( it + t)y(k) < 1r2k/log A- (8)

Thus (8) leads to a contradiction for c, > 6, which completes the
proof of Theorem 1 .

Define g(k) as the smallest integer so that among k consecutive
integers each greater than k there are at least g(k) of them having
prime factors greater than k . The theorem of SYLVESTER and SCHUR
asserts that g(k) > 1. We prove
Theorem 2 .

k
g(k) _ (I + o(1))

log k

The sequence k + 1, . . . , 2k clearly contains z(2k) - 7c(k) _
k

	

k
_ (1 + o(1))

log k
primes, or g(k) < (1 + o(l ))

log k '
Thus to

5) p° // u means that p°,, and p°+ I X u .



prove theorem 2 it will suffice to show that if n >_ k the sequence
n + 1, n ± 2, . . ., n + k

	

(9)

contains at least (1 + o(l))

	

k
log k

integers having prime factors
g

greater than k .
a) If k < n < 2k the integers (9) contain by the prime number

theorem
kz(n+k)-r(n) _ (1 -{- 0 ( 1 )) log k

prime numbers . Thus we can assume n > 2k .
b) Assume first 2k < n < k 3'`2 . By (*) there are least

k
(1 + o(1)) 2log k

primes amongst the integers (9), but since

n > 2k there are also at least (1 + o(1))
2 .

	

integers of the
2 logk

form 2P, P > k, since among the integers

~ 2
11

		

it +
J+1, . . .,1

2 k1

k
there are at least (1 + o(1)) 2

a log k primes .

Since
k

	

k

	

k

(1 ;- 0(1)) a log k +( 1 + 0(1)) 2 .3 log k

	

+
0(1)) log k2 g

	

2 g

	

g
we can assume n > k 3 i2 .

c) Next we show that there is a constant k o > 0 such that if
k > ko and n > k312 there are at least k/6 integers of (9) having
prime factors greater than k . For if not, we have (as in the proof
of theorem 1) by the Lemma and by (6) for an arbitrary large k a
n > k31 2 such that

(nH_kr < (n+k)(k)k/±(k)< it+6,7k

	

kk

or
1 + a (k)

	

2 + 1 + -(k)

(n + k) < k(n + k)F' k < (n + k)3 s k

which is clearly false if k is sufficiently large .

1 27



1 28

Remark : k = 10, n = 12 shows that g(k) can be less than
7r(2k)

T h e o r e m 3 . Amongst the integers (9) there are at least

(' + o(1))

	

k
log k

which do not divide the product of the others .
g

Here we only assume n > 0 (and not n > k) . If n > k this
follows immediately from Theorem 2 (since a prime greater than k
can divide at most one of the integers (9)) . If n < k the primes

n + 2 < P < n + k divide only one of the integers (9) and their

k

	

k
number is 1 log k +

o
log k '

For n = 0 and k > 5 the sequence

(9) contains exactly,-r(k) -,T (2) = 1 log k + o
(lok

	 k )integers
g

	

g
which do not divide the product of the others, thus Theorem 3
is best possible .
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