MATHEMATICS

ON THE LAW OF THE ITERATED LOGARITHM. II

BY
P. ERDÖ́s and I. S. GÁL

(Communicated by Prof. J. F. Koksma at the meeting of October 30, 1954)

3. The lower estimate in the law of the iterated logarithm

From now on let $n_{1}<n_{2}<\ldots<n_{\nu}<\ldots$ be a fixed lacunary sequence satisfying $n_{v+1} / n_{v} \geqslant q>1 ; v=1,2,3, \ldots$. For the sake of simplicity let for $N \geqslant N_{0}$

$$
\psi(N)=\sqrt{N \log \log N}
$$

and for $M \geqslant 0, N \geqslant 1$

$$
F(M, N ; x)=\left|\sum_{v=M+1}^{M+N} \exp 2 \pi i n_{v} x\right| .
$$

For convenience's sake we introduce also $F(M, 0 ; x)=0$ for $M \geqslant 0$.
We want to prove that

$$
\begin{equation*}
\limsup _{N \rightarrow \infty} \frac{F(0, N ; x)}{\varphi(N)} \geqslant 1 \tag{25}
\end{equation*}
$$

almost everywhere. Obviously it will be sufficient to prove the following: given arbitrarily small numbers $\varepsilon>0$ and $\eta>0$

$$
\limsup _{N \rightarrow \infty} \frac{F(0, N ; x)}{\psi(N)} \geqslant 1-\varepsilon
$$

for every $x ; 0 \leqslant x \leqslant 1$ except possibly a set of measure at most η. Finally it is also clear that this second statement is a consequence of the following third one:

Lemma 9. Let $\varepsilon>0, \eta>0$ be arbitrarily small and let the positive integer N be arbitrarily large. Then thero exists a finite sequence of integers $N<N_{1}<N_{2}<\ldots<N_{k}$ such that

$$
\underset{1 \leqslant v \leqslant k}{\operatorname{maximum}} \frac{F\left(0, N_{v} ; x\right)}{\varphi\left(N_{v}\right)} \geqslant 1-\varepsilon
$$

for every $x ; 0 \leqslant x \leqslant 1$ except possibly a set of measure at most η.
In the proof of this lemma we shall use the following trivial result:
Lemma 10. Let $I_{1}, I_{2}, \ldots, I_{m}$ and $J_{1}, J_{2}, \ldots, J_{n}$ be arbitrary intervals on the real line. Then the intersection $\left(I_{1}+I_{2}+\ldots+I_{m}\right) \cap\left(J_{1}+J_{2}+\ldots+J_{n}\right)$ consists of intervals the number of which is less than $m+n$.

Now let $\varepsilon>0$ be given and let $a \geqslant a_{0}(\varepsilon), u \geqslant 1$ be arbitrary integers the exact value of which will be determined at the end of the following
proof. At present the condition $a \geqslant a_{0}(\varepsilon)$ assures only that Lemma 8 can be applied to any of the sums

$$
\begin{equation*}
F_{k}(x)=F\left(a^{n}+a^{n+1}+\ldots+a^{u+k-1}, a^{n+k} ; x\right) \tag{27}
\end{equation*}
$$

where $k=1,2,3, \ldots$
For the sake of simplicity let $\psi_{k}=\psi\left(a^{n+k}\right)$, and let I denote the interval $0 \leqslant x \leqslant 1$. We define the set

$$
E_{1}=\left\{x \mid x \varepsilon I ; F_{1}(x) \geqslant\left(1-\frac{\varepsilon}{2}\right) \psi_{1}\right\}
$$

and in general

$$
\begin{equation*}
E_{k}=\left\{x \mid x \varepsilon I-\left(E_{1}+E_{2}+\ldots+E_{k-1}\right) ; F_{k}(x) \geqslant\left(1-\frac{\varepsilon}{2}\right) \phi_{k}\right\} \tag{28}
\end{equation*}
$$

for $k=1,2,3, \ldots$ (E_{0} denotes the empty set). Our object is to obtain an upper estimate for the measure

$$
\mu\left(I-\left(E_{1}+E_{2}+\ldots+E_{k}\right)\right) .
$$

To this end we consider $E_{k}(k=1,2,3, \ldots)$ and estimate $\mu\left(E_{k}\right)$ from below.
Let us introduce the notation

$$
m_{k}=n\left(a^{u}+a^{u+1}+\ldots+a^{u+k}\right)
$$

where $n_{1}=n(1), n_{2}=n(2), \ldots$ denotes the given lacunary sequence. Since $F_{k}(x)^{2}$ is a trigonometric polynomial of degree $2 m_{k}$ the set

$$
\left\{x \cdot x \varepsilon I ; F_{k}(x)<\left(1-\frac{\varepsilon}{2}\right) \psi_{k}\right\}
$$

consists of at most $4 m_{k}$ intervals. In particular $I-E_{1}$ consists of ϱ_{1} intervals where $\varrho_{1}<4 m_{1}$. In general it is true that the set $I-\left(E_{1}+E_{2}+\ldots+E_{k}\right)$ consists of ϱ_{k} intervals where

$$
\varrho_{k}<4\left(m_{1}+m_{2}+\ldots+m_{k}\right)<4 k m_{k} .
$$

For, according to the definition of $E_{1}, E_{2}, \ldots, E_{k}$ in (28) we have

$$
\begin{aligned}
I-\left(E_{1}+E_{2}\right. & \left.+\ldots+E_{k}\right)= \\
& =\left[I-\left(E_{1}+E_{2}+\ldots+E_{k-1}\right)\right] \cap\left\{x \mid x \varepsilon I ; F_{k}(x)<\left(1-\frac{\varepsilon}{2}\right) \phi_{k}\right\} .
\end{aligned}
$$

Hence using Lemma 10 we obtain $\underline{o}_{k}<\varrho_{k-1} \div 4 m_{k}$, which proves the above estimate.

Now let $e_{k+1}(k \geqslant 1)$ be the union of those intervals of

$$
I-\left(E_{1}+E_{2}+\ldots \div E_{k}\right)
$$

the length of which is less than $\delta_{k}=m_{k}^{-1} a^{-(u+k+1) / 2}$. Then we have

$$
\begin{equation*}
\mu\left(e_{k+1}\right) \leqslant \varrho_{k} \delta_{k}<4 k m_{k} \delta_{k}=4 k a^{-(a+k+1) / 2} . \tag{29}
\end{equation*}
$$

The set $I-\left(E_{1}+E_{2}+\ldots+E_{k}\right)-e_{k+1}$ consists of intervals the length of which is at least

$$
\delta_{k}>1 / n\left(1+a^{u}+a^{u+1}+\ldots+a^{u+k}\right) \sqrt{a^{u+k+1}} .
$$

Hence the condition $\beta-\alpha \geqslant 1 / n_{1} \sqrt{N}$ of Lemma 8 is satisfied for every interval of the set $I-\left(E_{1}+E_{2}+\ldots+E_{k}\right)-e_{k+1}$. Since $a \geqslant a_{0}(\varepsilon)$ we may use Lemma 8 in order to estimate $\mu\left(E_{k+1}\right)$:

$$
\begin{aligned}
\mu\left(E_{k+1}\right) & \geqslant \frac{\mu\left[I-\left(E_{1}+E_{2}+\ldots+E_{k}\right)-e_{k+1}\right]}{(u+k+1) \log a} \\
& \geqslant \frac{\mu\left[I-\left(E_{1}+E_{2}+\ldots+E_{k}\right)\right]}{(u+k+1) \log a}-\mu\left(e_{k+1}\right) .
\end{aligned}
$$

According to Lemma 8 we also have

$$
\mu\left(E_{1}\right) \geqslant \frac{1}{(u+1) \log a}=\frac{\mu(I)}{(u+1) \log a} .
$$

From these last inequalities we obtain by induction on k;

$$
\mu\left[I-\left(E_{1}+E_{2}+\ldots+E_{k}\right)\right] \leqslant \prod_{v=1}^{k}\left(1-\frac{1}{(u+\nu) \log a}\right)+\sum_{v=2}^{k} \mu\left(e_{\nu}\right) .
$$

By (29),

$$
\begin{aligned}
\sum_{v=2}^{k} \mu\left(e_{v}\right) & \leqslant 4 a^{-u / 2} \sum_{k=1}^{\infty} k a^{-(k+1) / 2} \\
& =O a^{-u / 2}
\end{aligned}
$$

Finally it follows that

$$
\begin{aligned}
& \mu\left[I-\left(E_{1}+E_{2}+\ldots+E_{k}\right)\right] \leqslant \\
& \quad \prod_{v=1}^{k}\left(1-\frac{1}{(u+v) \log a}\right)+O\left(a^{-u / 2}\right) .
\end{aligned}
$$

Let us introduce the notation

$$
N_{k}=a^{u}+a^{u+1}+\ldots+a^{u+k}(k \geqslant 0)
$$

and let us define the sets $E_{k}^{\prime}(k \geqslant 1)$ as

$$
\begin{equation*}
E_{k}^{\prime}=\left\{x \mid x \varepsilon I ; F\left(0, N_{k-1} ; x\right) \geqslant \sqrt{2} \phi\left(N_{k-1}\right)\right\} . \tag{30}
\end{equation*}
$$

The measure $\mu\left(E_{k}^{\prime}\right)$ can be estimated by Lemma 7, and it follows that

$$
\mu\left(E_{k}^{\prime}\right)<\frac{18 \log \log N_{k-1}}{\left(\log N_{k-1}\right)^{2}}<\frac{1}{2(u+k-1)^{3 / 2}}
$$

(provided $a \geqslant a_{0}$). Hence

$$
\sum_{v=1}^{k} \mu\left(E_{v}^{\prime}\right)<\frac{1}{2}\left(\frac{1}{u^{3 / 2}}+\frac{1}{(u+1)^{2 / 2}}+\ldots\right)<\frac{1}{\sqrt{u-1}} .
$$

Using our previous estimates we see that

$$
\left\{\begin{array}{c}
\mu\left[I-\left(E_{1}+E_{2}+\ldots+E_{k}\right)\right]+\mu\left(E_{1}^{\prime} \cup E_{2}^{\prime} \cup \ldots \cup E_{k}^{\prime}\right) \tag{31}\\
\quad<\prod_{\nu=1}^{k}\left(1-\frac{1}{(u+v) \log a}\right)+\frac{1}{\sqrt{u-1}}+O\left(a^{-u / 2}\right) .
\end{array}\right.
$$

Having this inequality Lemma 9 can be proved easily as follows.

According to the definition of $F(M, N ; x) \geqslant 0$ we have

$$
\frac{F\left(0, N_{v} ; x\right)}{\psi\left(N_{v}\right)} \geqslant \frac{F_{\nu}(x)}{\psi_{v}} \cdot \frac{\psi_{v}}{\psi\left(N_{v}\right)}-\frac{F\left(0, N_{v-1} ; x\right)}{1 \overline{2} \psi\left(N_{v-1}\right)} \cdot \frac{1 \overline{2} \psi\left(N_{v-1}\right)}{\psi\left(N_{v}\right)} .
$$

An elementary computation shows that

$$
\frac{\psi_{v}}{\psi\left(N_{v}\right)} \geqslant \frac{\log u}{(1+(2 / a)) \log (u+1)}>\frac{1}{(1+(2 / a))(1+(1 / u))}
$$

for any $v=1,2,3, \ldots ; a \geqslant 2$ and $u \geqslant 3$. Similarly one shows that $\psi\left(N_{\nu-1}\right) / \psi\left(N_{\nu}\right)<\sqrt{2 /(a-1)}$ for any $v=1,2,3, \ldots ; a \geqslant 2$ and $u \geqslant 0$. Hence we have

$$
\frac{F\left(0, N_{v} ; x\right)}{\psi\left(N_{v}\right)} \geqslant \frac{F_{v}(x)}{\psi_{v}} \cdot \frac{1}{(1+(2 / a))(1+(1 / u))}-\frac{F\left(0, N_{v-1} ; x\right)}{\mid \overline{2} \psi\left(N_{v-1}\right)} \cdot \sqrt{\frac{4}{(a-1)}}
$$

for any $v=1,2,3, \ldots ; a \geqslant 2$ and $u \geqslant 3$.
If we restrict ourselves to those x 's which belong to the set

$$
E=\left(E_{1}-E_{2}+\ldots+E_{k}\right) \cap\left(I-E_{1}^{\prime} \cup E_{2}^{\prime} \cup \ldots \cup E_{k}^{\prime}\right)
$$

then by (30) $F\left(0, N_{v-1} ; x\right)<\sqrt{2} \psi\left(N_{\nu-1}\right)$ for every $\nu=1,2, \ldots, k$ and by (28) $F_{v}(x) / \psi_{v} \geqslant 1-\varepsilon / 2$ for a suitable $v=v(x) \leqslant k$. Hence on the set E we have

$$
\underset{1 \leqslant \nu \leqslant k}{\operatorname{maximum}} \frac{F\left(0, N_{v} ; x\right)}{\psi\left(N_{v}\right)} \geqslant\left(1-\frac{\varepsilon}{2}\right) \frac{1}{(1+(2 / a))(1+(1 / u))}-1 \overline{\frac{4}{a-1}} .
$$

Moreover according to (31) we have

$$
\begin{equation*}
\mu(E) \geqslant 1-\prod_{v=1}^{k}\left(1-\frac{1}{(u+v) \log a}\right)-\frac{1}{\mid \overline{u-1}}-O\left(a^{-u / 2}\right) \tag{**}
\end{equation*}
$$

Now the truth of Lemma 9 is clear: Given $\varepsilon>0, \eta>0$ and N, first we choose $a=a(\varepsilon)$ such that $a \geqslant a_{0}(\varepsilon), a>N$,

$$
\overline{\frac{4}{a-1}} \leqslant \frac{\varepsilon}{2} \quad \text { and } \quad \frac{1}{1+(2 / a)} \geqslant 1-\frac{\varepsilon}{4}
$$

Then $N_{v}>N(\nu \geqslant 1)$ is satisfied. Next we choose $u=u(q, \varepsilon, \eta) \geqslant 3$ such that $\frac{1}{1+(1 / u)} \geqslant 1-\frac{\varepsilon}{4}$, and the sum of the last two terms in (**) is numerically les than $\eta / 2$.

Finally we choose $k=k(q, \varepsilon, \eta)$ such that

$$
\prod_{v=1}^{k}\left(1-\frac{1}{(u+v) \log a}\right) \leqslant \frac{\eta}{2} .
$$

Then (26) holds on the set E and $\mu(E) \geqslant 1-\eta$. This proves the lower estimate in the law of the iterated logarithm.

4. The upper estimate in the law of the iterated logarithm

It will be sufficient to prove the following statement:
Lemma 11. Given arbitrarily small numbers $\varepsilon>0, \eta>0$ there exists
an $N_{0}=N_{0}(q, \varepsilon, \eta)$ such that

$$
\begin{equation*}
F(0, N ; x) \leqslant(1-\varepsilon) \phi(N) \tag{32}
\end{equation*}
$$

for every $N \geqslant N_{0}$ and every x\&I except possibly on a set of measure at most η.
The proof of this lemma consists of three steps. Let $a>1$ be a parameter which will tend to 1 at the end of our proof. We start from the following:

Lemma 12. Let $N \geqslant N_{0}(a)$ be an arbitrary integer. Let the integers $n=n(N) \geqslant 0, \Lambda=\Lambda(n) \geqslant 1$ and $1 \leqslant \lambda=\lambda(n) \leqslant \Lambda(n)$ be defined by the inequalities $\left[a^{n}\right] \leqslant N<\left[a^{n+1}\right], 2^{4} \leqslant\left[a^{n+1}\right]-\left[a^{n}\right]<2^{A+1}$ and $2^{\lambda-1} \leqslant\left[a^{n}\right]^{1 /}<2^{\lambda}$. Then there exist integers $N^{*}<2\left[a^{n}\right]^{1 / 4}<2 N^{1 / 2}$ and m_{l} satisfying

$$
0 \leqslant m_{l}<2^{A-l-1}(l=\lambda, \lambda+1, \ldots, A+1)
$$

such that

$$
\left\{\begin{align*}
F(0, N ; x) \leqslant F\left(0,\left[a^{n}\right] ; x\right) & +\sum_{l=\lambda}^{4} F\left(\left[a^{n}\right]+m_{l+1} 2^{l+1}, 2^{l} ; x\right) \tag{33}\\
& -F\left(\left[a^{n}\right]+m_{\lambda} 2^{\lambda}, N^{*} ; x\right)
\end{align*}\right.
$$

Proof of Lemma 12. According to the definition of $F(M, N ; x) \geqslant 0$ we have

$$
\begin{equation*}
F(M, N ; x) \leqslant F\left(M, N^{\prime} ; x\right)-F\left(M+N^{\prime}, N-N^{\prime} ; x\right) \tag{34}
\end{equation*}
$$

for any $M \geqslant 0$ and $0 \leqslant N^{\prime} \leqslant N$. Since $\left[a^{n}\right] \leqslant N$ we obtain immediately

$$
\begin{equation*}
F(0, N ; x) \leqslant F\left(0,\left[a^{n}\right] ; x\right)+F\left(\left[a^{n}\right], N-\left[a^{n}\right] ; x\right) . \tag{35}
\end{equation*}
$$

Using the definition of n, A and $\lambda \leqslant \Lambda$ we see that

$$
0 \leqslant N-\left[a^{n}\right]<\left[a^{n+1}\right]-\left[a^{n}\right]<2^{A+1}
$$

and so

$$
N-\left[a^{n}\right]=\varepsilon_{A} 2^{A}+\varepsilon_{A-1} 2^{A-1}+\ldots+\varepsilon_{\lambda} 2^{\lambda}+N^{*},
$$

where $\varepsilon_{l}=0,1(l=\lambda, \lambda+1, \ldots, A)$ and $N^{*}<2^{\lambda} \leqslant 2\left[a^{n}\right]^{1 / \lambda}$.
Now we return to (35) and apply (34) repeatedly to obtain the inequality

$$
\begin{aligned}
F(0, N ; x) & \leqslant F\left(0,\left[a^{n}\right] ; x\right)+F\left(\left[a^{n}\right], \varepsilon_{A} 2^{A}+\ldots-\varepsilon_{2} 2^{\lambda}-N^{*} ; x\right) \\
& \leqslant F\left(0,\left[a^{n}\right] ; x\right)+F\left(\left[a^{n}\right], \varepsilon_{\Lambda} 2^{A} ; x\right) \\
& \div \sum_{l=\lambda}^{A-1} F\left(\left[a^{n}\right]+\varepsilon_{A} 2^{A}+\ldots-\varepsilon_{l+1} 2^{l+1}, \varepsilon_{l} 2^{t} ; x\right) \\
& +F\left(\left[a^{n}\right]-\varepsilon_{A} 2^{A}+\ldots-\varepsilon_{\lambda} 2^{\lambda}, N^{*} ; x\right) .
\end{aligned}
$$

Next we introduce the notations $m_{A+1}=0$ and

$$
m_{l}=\varepsilon_{A} 2^{A-l}+\varepsilon_{A-1} 2^{A-l-1}+\ldots+\varepsilon_{l}
$$

for $l=\lambda, \lambda+1, \ldots, A$. Then the inequalities $0 \leqslant m_{l}<2^{\Lambda-l+1}(l=\lambda, \lambda+1, \ldots$ $\ldots, A+1)$ are satisfied.

The relations $F(M, 0 ; x)=0$ and $F(M, N ; x) \geqslant 0$ imply that

$$
\begin{aligned}
F\left(\left[a^{n}\right]\right. & \left.+\varepsilon_{\Lambda} 2^{A}-\ldots+\varepsilon_{l+1} 2^{l+1}, \varepsilon_{l} 2^{l} ; x\right) \\
& =F\left(\left[a^{n}\right]+m_{l+1} 2^{l+1}, \varepsilon_{l} 2^{l} ; x\right) \\
& \leqslant F\left(\left[a^{n}\right]+m_{l+1} 2^{l+1}, 2^{l} ; x\right) .
\end{aligned}
$$

Hence indeed (33) holds.

Our next object is to prove (32) for the subsequence $N=\left[a^{n}\right](n=1,2, \ldots)$. For this purpose we need the following:

Lemma 13. Let $1<a \leqslant 2$ and let E_{n} denote the set

$$
\begin{equation*}
E_{n}=\left\{x \mid x \varepsilon I ; F\left(0,\left[a^{n}\right] ; x\right) \geqslant a^{1 / 2} \phi\left(\left[a^{n}\right]\right)\right\} . \tag{36}
\end{equation*}
$$

Then given $\eta>0$, arbitrarily small, there exists a $n_{0}=n_{0}(q, a, \eta)$ such that $\sum_{n \geqslant n} \mu\left(E_{n}\right) \leqslant \eta / 2$.

Proof of Lemma 13. If $n \geqslant n_{0}(q, a)$ then we can apply Lemma 7 with $(\alpha, \beta)=I, N=\left[a^{n}\right]$ and $t=a$. Hence for $n \geqslant n_{0}(q, a)$ we have

$$
\mu\left(E_{n}\right)<\frac{18 \log \log \left[a^{n}\right]}{\left(\log \left[a^{n}\right]\right)^{a}}<c(a) \frac{\log n}{n^{a}}
$$

where $c(a)>0$ depends only on a. Since $a>1$ the series $\sum^{n-a} \log n$ is convergent and so $\sum_{n \geqslant n_{0}} \mu\left(E_{n}\right) \leqslant \eta / 2$ if $n_{0} \geqslant n_{0}(q, a, \eta)$ is large enough.

Finally we have to fill up the gaps in the lacunary sequence

$$
\left[a^{n}\right], \quad(n=1,2,3, \ldots) .
$$

Having Lemma 12 this will be accomplished by proving the following:
Lemma 14. Let $1<a \leqslant 2, n \geqslant n_{0}(a)$ and let $\Lambda(n) \geqslant 1, \lambda(n) \geqslant 1$ be the integers defined previously. Define the set $E_{l m}=E_{l m}^{n}$

$$
\begin{equation*}
E_{l m}=\left\{x \mid x \varepsilon I ; F\left(\left[a^{n}\right]+m 2^{l+1}, 2^{l} ; x\right) \geqslant 2^{2+\frac{l-4}{4}}(a-1)^{1 / 2} \phi\left(\left[a^{n}\right]\right)\right\} . \tag{37}
\end{equation*}
$$

Then given $\eta>0$, arbitrarily small, there exists a $n_{0}=n_{0}(q, a, \eta)$ such that

$$
\sum_{n \geqslant n_{0}} \sum_{\lambda \leqslant l \leqslant \Lambda_{0 \leqslant m}} \sum_{0<2} \Lambda-l=
$$

Proof of Lemma 14. Let $n \geqslant n_{0}(a)$ so large that $\Lambda(n) \geqslant \lambda(n) \geqslant 2$ and $\log \log \left[a^{n}\right] \geqslant 4$. According to the definition of $\Lambda(n)$ we have
and so

$$
2^{A} \leqslant\left[a^{n+1}\right]-\left[a^{n}\right]<a^{n+1}-\left[a^{n}\right]<(a-1)\left[a^{n}\right]+a,
$$

$$
2^{A-1} \leqslant 2^{A-1}+\left(2^{A-1}-a\right)<(a-1)\left[a^{n}\right] .
$$

Similarly, according to the definition of $\lambda(n)$ we have for $l \geqslant \lambda$
$3 \log \log 2^{l} \geqslant 3 \log \log \left[a^{n}\right]^{1 / 2}=\log \log \left[a^{n}\right]+\left(2 \log \log \left[a^{n}\right]-\log 27\right)>\log \log \left[a^{n}\right]$
Hence for $n \geqslant n_{0}(a)$ we have the inequalities

$$
\begin{gather*}
3 \log \log 2^{l} \geqslant \log \log \left[a^{n}\right], \tag{38}\\
(a-1)\left[a^{n}\right] \geqslant 2^{A-1}, \tag{39}\\
\log \log \left[a^{n}\right] \geqslant 4 . \tag{40}
\end{gather*}
$$

From (18) it follows that

$$
\int_{0}^{1} F(M, N ; x)^{2 p} d x<c(q) p(p N)^{p}
$$

for any $M \geqslant 0, N=1,2,3, \ldots$ and $p \leqslant 3 \log \log N$. Therefore if $l \geqslant \lambda$ we obtain

$$
\begin{aligned}
\mu\left(E_{l m}\right) & \leqslant \int_{E_{l m}}\left(\frac{F\left(\left[a^{n}\right]+m 2^{l+1}, 2^{l} ; x\right)}{2^{2+\frac{l-A}{4}}(a-1)^{1 / 2} \phi\left(\left[a^{n}\right]\right)}\right)^{2 p} d x \leqslant \int_{0}^{1}(\ldots)^{2 p} d x \\
& <c(q) p\left(\frac{p 2^{l}}{2^{4+\frac{l-A}{2}}(a-1)\left[a^{n}\right] \log \log \left[a^{n}\right]}\right)^{p}
\end{aligned}
$$

for any $p \leqslant 3 \log \log 2^{l}$. Hence by (38) $p=\left[\log \log \left[a^{n}\right]\right]$ is an admitted value of p. Using the inequalities (39) and (40) we see that

$$
\begin{aligned}
\mu\left(E_{l m}\right) & <c(q) p\left(\frac{p}{2^{3+\frac{A-\lambda}{2,}} \log \log \left[a^{n}\right]}\right)^{p}<c(q) p e^{-2 p} 2^{2(l-\Lambda)} \\
& <c(q)(\log n) 2^{2(l-\Lambda)} e^{2}\left(\log \left[a^{n}\right]\right)^{-2} .
\end{aligned}
$$

Consequently

$$
\mu\left(E_{l m}\right)<c(q, a) 2^{2(l-A)} \frac{\log n}{n^{2}}
$$

for any $m \geqslant 0$ and $l \geqslant \lambda$.
Summing over $m, 0 \leqslant m<2^{4-i}$ we get

$$
\sum_{0 \leqslant m<2 \Lambda-l} \mu\left(E_{l m}\right)<c(q, a) 2^{l-\Lambda} \frac{\log n}{n^{2}},
$$

and

$$
\sum_{\lambda \leqslant l \leqslant A_{0 \leqslant m<2}} \sum_{0-l} \mu\left(E_{l m}\right)<2 c(q, a) \frac{\log n}{n^{2}} .
$$

The series $\sum n^{-2} \log n$ being convergent the statement of Lemma 14 follows immediately.

Now given $\varepsilon>0$ and $\eta>0$, arbitrarily small, first we choose $a=a(\varepsilon)>1$ such that

$$
1<a^{1 / 2} \leqslant 1+\frac{\varepsilon}{3} \text { and } 4(a-1) \sum_{k=0}^{\infty} 2^{-k / 4} \leqslant \frac{\varepsilon}{3} .
$$

Next we choose $N_{0}=N_{0}(q, \varepsilon, \eta)$ so large that $N_{0}^{-2 / 2} \leqslant \varepsilon / 3$, and $n\left(N_{0}\right)=n_{0}(q, \varepsilon, \eta)$ satisfies the requirements of Lemma 13 and 14. Then the set

$$
E=I-\bigcup_{n \geqslant n_{0}}\left[E_{n} \cup\left(\bigcup_{l} \bigcup_{m} E_{I m}\right)\right]
$$

has measure $\mu(E) \geqslant 1-\eta$.
Let $N \geqslant N_{0}$ be arbitrary. Then we have by Lemma 12 , inequality (33)

$$
\begin{aligned}
\frac{F(0, N ; x)}{\phi(N)} \leqslant \frac{F\left(0,\left[a^{n}\right] ; x\right)}{\phi\left(\left[a^{n}\right]\right)} & +\sum_{l=\lambda}^{A} \frac{F\left(\left[a^{n}\right]+m_{l+1} 2^{l+1}, 2^{l} ; x\right)}{\phi\left(\left[a^{n}\right]\right)} \\
& +\frac{F\left(\left[a^{n}\right]+m_{\lambda} 2^{2}, N^{*} ; x\right)}{\sqrt{N}} .
\end{aligned}
$$

If $x \varepsilon E$ then we have by (36) and (37)

$$
\frac{F(0, N ; x)}{\phi(N)} \leqslant a^{1 / 2} \div 4(a-1)^{1 / 2} \sum_{,=\lambda}^{\Lambda} 2^{\frac{l-\lambda}{4}}+\frac{N^{*}}{\sqrt{N}} .
$$

Using the conditions on $a=a(\varepsilon)$ and the inequality $N^{*}<2 N^{1 / 2}$ we obtain $F(0, N ; x) / \phi(N)<1+\varepsilon$ for every $N \geqslant N_{0}(q, \varepsilon, \eta)$ and every $x \varepsilon E$, where $\mu(E) \geqslant 1-\eta \cdot$ This proves Lemma 11. Hence our theorem has been proved.

> University of Notre Dame and Cornell University

BIBLIOGRAPHY

1. KAc, M., Probability methods in some problems of analysis and number theory. Bull. Amer. Math. Soc., 55, 641-665 (1949).
2. Salem, R. and A. Zyguund, La loi du logarithm itéré pour les séries trigonométriques lacunaires. Bull. des Sciences Mathématiques, 74, 209-224 (1950).
3. GAL, I. S. and J. F. Koksma, Sur l'ordre de grandeur des fonctions sommables. Indagationes Mathematicae, 12, 192-207 (1950).
4. ${ }^{7}$ Gád, I. S., Sur la majoration des suites de fonctions. Proc. Kon. Ned. Akad. van Wet., 54, 243-251 (1951).
