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MATHEMATICS

ON THE PRODUCT OF CONSECUTIVE INTEGERS . III')
BY

P. ERDÖS

(Communicated by Prof. J . POPKEN at the meeting of November 27, 1954)

It has been conjectured a long time ago that the product
Ak(n)=n(n+1) . . . (n+k-1)

of k consecutive integers is never an l-th power if k > 1, 1 > 1 2 ) . RIGGE 3 )
and a few months later I 1 ) proved that Ak(n) is never a square, and later
RIDGE and 14) proved using the Thue-Siegel theorem that for every
l > 2 there exists a k0(l) so that for every k > k0(l) A k(n) is not an l-th
power. In 1940 SIEGEL and I proved that there is a constant c so that for
k > c, l > 1 A k(n) is not an l-th power, in other words that k o(l) is independent
of 1 . Our proof was very similar to that used in') and was never published .
A few years ago I obtained a new proof for this result which does not use
the result of THUE-SIEGEL and seems to me to be of sufficient interest to
deserve publication . The value of c could be determined explicitly by a
somewhat laborious computation and it probably would turn out to be
not too large, and perhaps the proof that the product of consecutive
integers is never a power could be furnished by a manageable if long compu-
tation (the cases k < c would have to be settled by a different method) .
A method similar to the one used here was used in a previous paper 5 ) .
Now we prove

Theorem 1 . There exists a constant c so that for k > c, l > 1 A k(n) is
never an l-th power .

As stated in the introduction RIGGE and I proved that Ak(n) is never
a square, thus we can assume 1>2. Further assume that
(1)

	

A, (n) = x 1 .

First we need some lemmas .

1 ) I had two previous papers by the same title, Journal London Math . Soc . 14,
194-198 (1939) and ibid . 245-249. These papers will be referred to as I and II .

2 ) A great deal of the early litterature of this problem can be found in the paper
of R . OBLATH, Tohoku Math. Journal 38, 73-92 (1933) .

3 ) O . RIGGE. Über ein diophantisches Problem, 9 . Congr. des Math. scand.
155-160 (1939) and P . EBDÖS I.

4 ) P. ERDÖS II, As far as I know Rigges proof, which was similar to mine, has
not been published .

5 ) P. ERDÖS, On a diophantine equation, Journal London Math . Soc. 26, 176-178
(1951) .
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Lemma 1 . n>kt .
First we show n > k. If n < k it follows from the theorem of TCHEBICHEFF

that there is a prime p satisfying n ~ n+2-1 < p < n + k- 1 . Thus the
product A k (n) is divisible by p but not by p 2 , or (1) is impossible .
Assume now n > k . A theorem of SYLVESTER and SCHUR 6 ) then asserts

that there is a prime p > k which divides A,(-n). But clearly only one of
the numbers n, n + 1, . . ., n + k - 1 can be a multiple of p, say n + i - 0
(mod p) . But then we have from (1) n+i-0 (mod pt) or n+k-1 >n+i
> (k+ 1)t. Thus n > k' as stated .
Assume that (1) holds . Since all primes greater or equal to k can occur

in at most one term of (1), we must have

n+i=a.t xi, 0 < i < k-1

wherc all the prime factors of a,i are less than k and ai is not divisible by
an l-th power .
Lemma 2 . The products a i •a,, 0 < i, j < k-1, are all different .
Assumc ai . a, = ar • a6=A. Then we would have

(n + 2 ) (n+j)=A(x1x,)t, (n+r)(n+s)=A(xr'x,)t .

First we show that (n + i) (n. +

	

(n + r) (n + s) implies i =r, j = s . Assume
first i+j+r+s, say i+j>r+s . Then

n 2 +(i+j)n+ij=n 2 +(r+s)n+rs, or n < rs<k 2

which contradicts Lemma 1 . Hence i + j = r + s, therefore ij = rs .
Assume now without loss of generality (n+r)(n±s)> (n+i)(n+j) . Then

xrxs > xti x,+1 and we would have by Lemma 1

2kn> (n+k-1) 2-n 2 >_(n+r)(n+s)-(n+i)(n+j) >_A [(x~x;--1)z-(xix,)d] >
> 1A(xi x,)'-1 >=1 [A(xz x,)t] (1-1 va >l(n2)U-1 /I >'3n'~e

Thus we would have n<103, which contradicts Lemma 1 . This contra-
diction proves Lemma 2 .

Lemma 3 . There exists a sequence 0 <_ '1< 2'2< . . . <' 8o that
t > k- r(k) and

t

( 2 )

	

IT a2r I L, ! .
r=1

For each p < k denote by a,, one of the a,'s, 0 < j < k, which have the
property that no other a,, 0 <~r<k, is divisible by p to a higher power
than a,, (i .e . if a, is divisible by p to the power d, then d,,= max d,) .

o_,<k
Denote by aQ , al	alt the sequence of a's from which all the a,"S
have been omitted. Clearly t _>_ k- r(k-1) > t- ~(k) .

6 ) P. ERDÖS, On a theorem of Sylvester and Schur, Journal London Math. Soc .
9, 282-288 (1934) .



To show that (2) holds it suffices to prove that if pd divides the product
t

J ai,r=1
then d < [k/p] + [k,l p2] + . . . . This is easy to see, since the number of mul-tiples of TO among the integers n , it 1,

.... n + k - 1 is at most [k J7P] - 1,
or the number of multiples of pa amongst the a ;'s, 0 < i. < lc- 1, is at
most [kf p5] + 1 . But then the number of multiples of pfl among the a,,, 1 :-<r <t,
is at most [/C/PO], since if there is an a ; = 0 (mod ps), then a,, - 0 (mod p5)
and a5 does not occur among the a,,, 1 < r < t . This completes the proof
of the Lemma .

By slightly more complicated arguments we could prove that
7
~a,r=1

Denote now by (x) the maximum number of integers I < b1 < b2 < . . .
<b. < x so that the products bb;, 1 < i, j < u, are all different .

Lemma 4 . For sufficiently large x we haze

N (x) < 2x1100, x.

In a previous paper 7) I proved

(3)

	

l (x) < r (x) + Sx"s  - xl%? •

Using the well known inequality .T(x) < 3 log we immediately obtain21

	

x
Lemma 4.

For the sake of completeness I will outline a proof of a formula similar
to (3) at the end of the paper .
Now we can prove our Theorem. Consider the integers a;., aia, . . ., az of

Lemma 3 . order them according to size . Thus we obtain the sequence
b,_ < b2 < . . . < bt where by Lemma 2 the numbers bi b ; are all different .
Let now i > io be sufficiently large. Putting bi = x and using Lemma 4 we
obtain

(4)

	

i < N (b) < 2b,b  or b > (i log i)!2 .log bi	i log i
Thus from (4) we have for sufficiently large ip and t > 2 io

t
(5)

	

IT bt > i0!

	

(i log 0/2 > t! (log T'o)t/2 ?t > t! lOt .
7.=1

	

4.='ip+1

Now t > k - r(k) > k - 31 k Thus2 tog k.,

J. sx
F

(6)

	

t!

	

~. k! k "Ogk- >-
2, - t

7) P. ERDÖS, On sequences of integers no one of which divides the product Of
two others and on some related problems . Mitt. Forsch . Inst. Math. u. Mech. Univ .
Tomsk

2, 74-82 (1938)

.
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(7)

Thus finally from (5) and (6) we have for sufficiently large k

since

88

t'~

	

t

	

IW
Tlair=ITbi>k1 5, >klT=1

	

i=1

l Ot > 10k Iog k > 5k .

(7) clearly contradicts Lemma 3, and this contradiction proves the theorem
for sufficiently large k .

One could easily make the estimations more precise and obtain a better
value for c, but the method used in this paper does not seem suitable to
get a really good value for c . The problem clearly is to determine the least
constant c so that for all k > c one can not have integers a1, a2, . . . , at
satisfying (2) t > k- :7(k) and the products ai •a; are all distinct .

It is clear from the proof of Theorem 1 that in fact we proved the
following slightly stronger result : For k > c there exists a prime p > k
so that if ps I~ A(n) then / 0 (mod 1) (ps ~~ A(n) means : p8 A(n),
p8+1 t A(n)) .

By a slightly more careful estimation at the end of the proof of Theorem 1
we could obtain the following

Theorem 2 . Let 1 > 2, and e an arbitrary positive number . Then
there exists a constant c=c(8) so that if k > c . n > kt and we delate from the
numbers n, n+ 1, . . .,n+k- 1 in an arbitrary way less than (1-s)Icloglogk,lloglc
o f them.. Then the product o f the remaining numbers is never an l-th power .

The condition n > kt can not entirely bc omitted . In fact if n = I it is
easy to see that one can delate r < z(k) integers from n, n + 1, . . ., n + k -1
so that the product of the remaining numbers is an l-th power .

I can not prove Theorem 2 for 1= 2, I can only prove it with c k1 log k -
instead of (1- s)k log log k: /log 1-

In the proof of Lemma 3 (1) was not used . Thus if we put

Ain1=flpd,pd11 n+i.p<k,05i <_k-1,
27

we can prove by arguments used in the proof of Lemma 3 that there
exists a sequence i1, i2, . . .,'1, t>k- :z:(k) so that

(8}

	

IJA~,> I (k- 1)! .
r=1

From (8) it easily follows from the prime number theorem that for
k > ko = ko(e)

(9)

	

min Azn' < (1 + e) k .
o<i.«-1

It is possible that (9) can be sharpened considerably. In fact it is probable
that

lim k ( max min Ann)) = 0 .
4-00 1<n<00 o<i<k-1
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To complete our proof we now outline the estimation of N(x) . Instead
of (3) we shall prove

(10)

	

N(x) < a(x) + 3x'1 ' + 2x'l' .

It is clear that Lemma 4 is an easy consequence of (10) .
Let 1 < b1 < b2< . . . < b$ < x be such that all the products b ib;, 1 < i,

j < s, are different. Write bi = uivi, where ui is the greatest divisor of bi
which is not greater than x'/' . First of all it is clear that the numbers
u1 • v1, u1 • v2, u2 • v1, u 2 • v2 can not all be b's for if b1 = u 1v1 , b2 = uiv2 , b3 = u 2v1,
b.= u2v 2 we would have b1b4 = b2b3 .

Now we distinguish several cases . In case I we have ui < x'1' . In this case
v i must be a prime . For if not let p be the least prime factor of v i . If p < x'1i
then pui< x'1' which contradicts the maximum property of ui . Thus
x'1- _< p < x'1 ' (since vi was assumed to be composite we evidently have
p < x'l') . But then p > ui which again contradicts the maximum property
of u. Thus vi must be a prime as stated .

Now we distinguish two subcases . In the first subcase are the b's of the
form p ui, ui < x'l' for which there is no other b of the form p U,' . The
number of these b's is clearly less than or equal to 7r(x) .

Consider now the b's of the second subcase . They are clearly of the form

Pi u.?i) 1 < 2 < r, I S j < li, li > 1, u~i) < x'/a

By what has been previously said each pair of the sets Ui , 1 < i < r

{Ui} = u u;",, 1 <_ j s li

can have at most one element in common, or the pairs

ua; ) ) , 1 < 71 , j2 < l i , 1 <= i _<_ r

are all distinct . But since u < x'l' the number of these pairs is less than x" .
Thus (li > 1)

di } < x'/I or I li < 2 x'/' .
i=1 2

	

d=1

Hence the number of b's belonging to the second subcase is less than 2x'1' .
In the second case x'l- < u < x% . Again we consider two subcases .

In the first subcase are the b's of the form vui for which there are at most
x'/e other b's of the form vu' . From ui > x'l- we have vi < x'l' . Thus the
number of b's of the first subcase is clearly less than or equal to
(x'/' + 1) • x"4 < 2x'/' .
Denote the b's of the second subcase by

vi 2GJi 1 , 1 < i < r, 1 < j < li , li > x'le + 1 .

Again the, sets U., 1 < i < r

Ui = u 2G~i1, 1 C 2 C li.i
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can have at most one element in common . Thus the pairs (u;i~, ut),
1 _< jl, j2 < li , 1 < i _< r are all distinct . The number of pairs (u,, ui,)
is clearly less than

l 2

	

2'

Thus we have (l2 > x'"° + 1)

(
4

	

2) < 2 or

	

l% < x% .
=1

	

a=1

Thus finally

N (x) < n (x) + 3x'"- + 2x",
which proves (10) .
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