MATHEMATICS

ON THE PRODUCT OF CONSECUTIVE INTEGERS. III ${ }^{1}$)

BY
P. ERDÖS
(Communicated by Prof. J. Popken at the meeting of November 27, 1954)

It has been conjectured a long time ago that the product

$$
A_{k}(n)=n(n+1) \ldots(n+k-1)
$$

of k consecutive integers is never an l-th power if $\left.k>1, l>1{ }^{2}\right)$. Rigge ${ }^{3}$) and a few months later I^{1}) proved that $A_{k}(n)$ is never a square, and later Rigge and ${ }^{4}{ }^{4}$) proved using the Thue-Siegel theorem that for every $l>2$ there exists a $k_{0}(l)$ so that for every $k>k_{0}(l) A_{k}(n)$ is not an l-th power. In 1940 Siegel and I proved that there is a constant c so that for $k>c, l>1 A_{k}(n)$ is not an l-th power, in other words that $k_{0}(l)$ is independent of l. Our proof was very similar to that used in ${ }^{1}$) and was never published. A few years ago I obtained a new proof for this result which does not use the result of Thue-Siegel and seems to me to be of sufficient interest to deserve publication. The value of c could be determined explicitly by a somewhat laborious computation and it probably would turn out to be not too large, and perhaps the proof that the product of consecutive integers is never a powercould be furnished by a manageable if long computation (the cases $k \leqq c$ would have to be settled by a different method). A method similar to the one used here was used in a previous paper ${ }^{5}$).

Now we prove
Theorem 1. There exists a constant c so that for $k>c, l>1 A_{k}(n)$ is never an l-th power.

As stated in the introduction Rigge and I proved that $A_{k}(n)$ is never a square, thus we can assume $l>2$. Further assume that

$$
\begin{equation*}
A_{k}(n)=x^{l} . \tag{1}
\end{equation*}
$$

First we need some lemmas.

[^0]Lemma 1. $n>k^{l}$.
First we show $n \geqslant k$. If $n<k$ it follows from the theorem of Tchebicheff that there is a prime p satisfying $n \leqslant \frac{n+k-1}{2}<p \leqslant n+k-1$. Thus the product $A_{k}(n)$ is divisible by p but not by p^{2}, or (1) is impossible.

Assume now $n \geqslant k$. A theorem of Sylvester and Schur ${ }^{6}$) then asserts that there is a prime $p>k$ which divides $A_{k}(n)$. But clearly only one of the numbers $n, n+1, \ldots, n+k-1$ can be a multiple of p, say $n+i \equiv 0$ $(\bmod p)$. But then we have from (1) $n+i \equiv 0\left(\bmod p^{l}\right)$ or $n+k-1 \geqslant n+i \geqslant$ $\geqslant(k+1)^{2}$. Thus $n>k^{l}$ as stated.

Assume that (1) holds. Since all primes greater or equal to k can occur in at most one term of (1), we must have

$$
n+i=a_{i} x_{i}^{l}, \quad 0 \leqq i \leqq k-1
$$

where all the prime factors of a_{i} are less than k and a_{i} is not divisible by an l-th power.

Lemma 2. The products $a_{i} \cdot a_{j}, 0 \leqq i, j \leqq k-1$, are all different.
Assume $a_{i} \cdot a_{j}=a_{r} \cdot a_{s}=A$. Then we would have

$$
(n+i)(n+j)=A\left(x_{i} x_{j}\right)^{l}, \quad(n+r)(n+s)=A\left(x_{r}^{\prime} x_{s}\right)^{2} .
$$

First we show that $(n+i)(n+j)=(n+r)(n+s)$ implies $i=r, j=s$. Assume first $i+j \neq r+s$, say $i+j>r+s$. Then

$$
n^{2}+(i+j) n+i j=n^{2}+(r+s) n+r s, \text { or } n \leqq r s<k^{2}
$$

which contradicts Lemma 1. Hence $i+j=r+s$, therefore $i j=r$.
Assume now without loss of generality $(n+r)(n+s)>(n+i)(n+j)$. Then $x_{r} x_{s} \geqq x_{i} x_{j}+1$ and we would have by Lemma 1

$$
\begin{aligned}
2 k n & >(n+k-1)^{2}-n^{2} \geqq(n+r)(n+s)-(n+i)(n+j) \geqq A\left[\left(x_{i} x_{j}+1\right)^{l}-\left(x_{i} x_{j}\right)^{l}\right]> \\
& >l A\left(x_{i} x_{j}\right)^{l-1} \geqq l\left[A\left(x_{i} x_{j}\right)^{l}\right]^{(l-1) / l} \geqq l\left(n^{2}\right)^{(l-1) / l} \geqq 3 n^{4 / 4} .
\end{aligned}
$$

Thus we would have $n<k^{3}$, which contradicts Lemma 1. This contradiction proves Lemma 2.

Lemma 3. There exists a sequence $0 \leqq i_{1}<i_{2}<\ldots<i$ so that $t \geqq k-\pi(k)$ and

$$
\begin{equation*}
\prod_{r=1}^{t} a_{i_{r}} \mid k! \tag{2}
\end{equation*}
$$

For each $p<k$ denote by $a_{i_{p}}$ one of the a_{j} 's, $0 \leqq j<k$, which have the property that no other $a_{r}, 0 \leqq t r k$, is divisible by p to a higher power than $a_{i_{p}}$ (i.e. if a_{j} is divisible by p to the power d_{j} then $d_{i_{p}}=\max _{0 \leq j<k} d_{j}$). Denote by $a_{i_{1}}, a_{i_{2}}, \ldots a_{i_{i}}$ the sequence of a 's from which all the $a_{j_{p}}$'s have been omitted. Clearly $t \geqq k-\pi(k-1) \geqq t-\pi(k)$.

[^1]To show that (2) holds it suffices to prove that if p^{a} divides the product

$$
\prod_{r=1}^{t} a_{i_{r}}
$$

then $d \leqq[k / p]+\left[k / p^{2}\right]+\ldots$. This is easy to see, since the number of multiples of p^{β} among the integers $n, n+1, \ldots, n+k-1$ is at most $\left[k / p^{\beta}\right]+1$, or the number of multiples of p^{β} amongst the a_{i} 's, $0 \leqq i \leqq k-1$, is at most $\left[k / p^{\beta}\right]+1$. But then the number of multiples of p^{β} among the $a_{i,}, l \leqq r \leqq t$, is at most $\left[k / p^{\beta}\right]$, since if there is an $a_{j} \equiv 0\left(\bmod p^{\beta}\right)$, then $a_{j_{p}} \equiv 0\left(\bmod p^{\beta}\right)$ and $a_{i_{p}}$ does not occur among the $a_{i_{r}}, 1 \leqq r \leqq t$. This completes the proof of the Lemma.

By slightly more complicated arguments we could prove that

$$
\prod_{r=1}^{\prime} a_{r} \mid(k-1)!
$$

Denote now by $N(x)$ the maximum number of integers $1 \leqq b_{1}<b_{2}<\ldots$ $\ldots<b_{u} \leqq x$ so that the products $b_{i} b_{j}, \quad 1 \leqq i, j \leqq u$, are all different.

Lemma 4. For sufficiently large x we have

$$
N(x)<2 x / \log x .
$$

In a previous paper ${ }^{7}$) I proved

$$
\begin{equation*}
N(x)<\pi(x)+8 x^{3 / 4}-x^{1 / 2} . \tag{3}
\end{equation*}
$$

Using the well known inequality $\pi(x)<\frac{3}{2} \frac{x}{\log x}$ we immediately obtain Lemma 4.

For the sake of completeness I will outline a proof of a formula similar to (3) at the end of the paper.

Now we can prove our Theorem. Consider the integers $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{4}}$ of Lemma 3, order them according to size. Thus we obtain the sequence $b_{1}<b_{2}<\ldots<b_{i}$ where by Lemma 2 the numbers $b_{i} b_{j}$ are all different. Let now $i>i_{0}$ be sufficiently large. Putting $b_{i}=x$ and using Lemma 4 we obtain

$$
\begin{equation*}
i \leqq N\left(b_{i}\right)<\frac{2 b_{i}}{\log b_{i}} \text { or } b_{i}>(i \log i) / 2 \tag{4}
\end{equation*}
$$

Thus from (4) we have for sufficiently large i_{0} and $t>2 i_{0}$

$$
\begin{equation*}
\prod_{i=1}^{t} b_{i}>i_{0}!\prod_{i=i_{0}+1}^{t}(i \log i) / 2>t!\left(\log i_{0}\right)^{t / 2} / 2^{t}>t!10^{t} \tag{5}
\end{equation*}
$$

Now $t \geqq k-\pi(k)>k-\frac{3 k}{2 \log k}$. Thus

$$
\begin{equation*}
t!>\frac{k!}{k^{k-1}}>k!k^{-\frac{3 k}{2 \log k}}>k!/ 5^{k} \tag{6}
\end{equation*}
$$

[^2]Thus finally from (5) and (6) we have for sufficiently large k

$$
\begin{equation*}
\prod_{r=1}^{t} a_{i r}=\prod_{i=1}^{t} b_{i}>k!\frac{10^{t}}{5^{k}}>k! \tag{7}
\end{equation*}
$$

since

$$
10^{t}>10^{k-\frac{3 k}{\log k}}>5^{k}
$$

(7) clearly contradicts Lemma 3, and this contradiction proves the theorem for sufficiently large k.

One could easily make the estimations more precise and obtain a better value for c, but the method used in this paper does not seem suitable to get a really good value for c. The problem clearly is to determine the least constant c so that for all $k>c$ one can not have integers $a_{1}, a_{2}, \ldots, a_{t}$ satisfying (2) $t \geqq k-\pi(k)$ and the products $a_{i} \cdot a_{j}$ are all distinct.

It is clear from the proof of Theorem 1 that in fact we proved the following slightly stronger result: For $k>c$ there exists a prime $p>k$ so that if $p^{\beta} \| A(n)$ then $\beta \not \equiv 0(\bmod l)\left(p^{\beta} \| A(n)\right.$ means: $p^{\beta} \mid A(n)$, $\left.p^{\beta+1}+A(n)\right)$.

By a slightly more careful estimation at the end of the proof of Theorem 1 we could obtain the following

Theorem 2. Let $l>2$, and ε an arbitrary positive number. Then there exists a constant $c=c(\varepsilon)$ so that if $k>c, n>k^{l}$ and we delate from the numbers $n, n+1, \ldots, n+k-1$ in an arbitrary way less than $(1-\varepsilon) k \log \log k / \log k$ of them. Then the product of the remaining numbers is never an l-th power.

The condition $n>k^{l}$ can not entirely be omitted. In fact if $n=1$ it is easy to see that one can delate $r \leqq \pi(k)$ integers from $n, n+1, \ldots, n+k-1$ so that the product of the remaining numbers is an l-th power.

I can not prove Theorem 2 for $l=2$, I can only prove it with $c k / \log k$ instead of $(1-\varepsilon) k \log \log k / \log k$.

In the proof of Lemma 3 (1) was not used. Thus if we put

$$
A_{i}^{(n)}=\prod_{p} p^{d}, p^{d} \| n+i, p<k, 0 \leqq i \leqq k-1,
$$

we can prove by arguments used in the proof of Lemma 3 that there exists a sequence $i_{1}, i_{2}, \ldots, i_{t}, t>k-\pi(k)$ so that

$$
\begin{equation*}
\prod_{r=1} A_{i_{r}(n)} \mid(k-1)!. \tag{8}
\end{equation*}
$$

From (8) it easily follows from the prime number theorem that for $k>k_{0}=k_{0}(\varepsilon)$

$$
\begin{equation*}
\min _{0 \leqslant i \leqslant k-1} A_{i}^{(n)}<(1+\varepsilon) k . \tag{9}
\end{equation*}
$$

It is possible that (9) can be sharpened considerably. In fact it is probable that

$$
\lim _{k \rightarrow \infty} \frac{1}{k}\left(\max _{1 \leqslant n<\infty} \min _{0 \leqslant i \leqslant k-1} A_{i}^{(n)}\right)=0 .
$$

To complete our proof we now outline the estimation of $N(x)$. Instead of (3) we shall prove

$$
\begin{equation*}
N(x)<\pi(x)+3 x^{1 / 4}+2 x^{1 / x} . \tag{10}
\end{equation*}
$$

It is clear that Lemma 4 is an easy consequence of (10).
Let $1 \leqq b_{1}<b_{2}<\ldots<b_{s} \leqq x$ be such that all the products $b_{i} b_{j}, 1 \leqq i$, $j \leqq s$, are different. Write $b_{i}=u_{i} v_{i}$, where u_{i} is the greatest divisor of b_{i} which is not greater than $x^{1 / 2}$. First of all it is clear that the numbers $u_{1} \cdot v_{1}, u_{1} \cdot v_{2}, u_{2} \cdot v_{1}, u_{2} \cdot v_{2}$ can not all be b 's for if $b_{1}=u_{1} v_{1}, b_{2}=u_{1} v_{2}, b_{3}=u_{2} v_{1}$, $b_{4}=u_{2} v_{2}$ we would have $b_{1} b_{4}=b_{2} b_{3}$.

Now we distinguish several cases. In case I we have $u_{i}<x^{1 / 4}$. In this case v_{i} must be a prime. For if not let p be the least prime factor of v_{i}. If $p<x^{1 / 4}$ then $p u_{i}<x^{1 / 2}$ which contradicts the maximum property of u_{i}. Thus $x^{1 / 4} \leqq p \leqq x^{1 / 2}$ (since v_{i} was assumed to be composite we evidently have $\left.p \leqq x^{1 / 2}\right)$. But then $p>u_{i}$ which again contradicts the maximum property of u. Thus v_{i} must be a prime as stated.

Now we distinguish two subcases. In the first subcase are the b 's of the form $p u_{i}, u_{i}<x^{1 / 4}$ for which there is no other b of the form $p u_{i}^{\prime}$. The number of these b 's is clearly less than or equal to $\pi(x)$.

Consider now the b 's of the second subcase. They are clearly of the form

$$
p_{i} u_{j}^{(i)}, 1 \leqq i \leqq r, 1 \leqq j \leqq l_{i}, l_{i}>1, u_{j}^{(i)}<x^{1 / 4} .
$$

By what has been previously said each pair of the sets $U_{i}, \mathbf{1} \leqq i \leqq r$

$$
\left\{U_{i}\right\}=\cup_{j} u_{j}^{(i)}, \quad 1 \leqq j \leqq l_{i}
$$

can have at most one element in common, or the pairs

$$
\left(u_{j_{1}}^{(i)}, u_{j_{2}^{(i)}}^{(i)}, \quad 1 \leqq j_{1}, j_{2} \leqq l_{i}, \quad 1 \leqq i \leqq r\right.
$$

are all distinct. But since $u<x^{1 / 4}$ the number of these pairs is less than $x^{2 / 2}$. Thus ($l_{i}>1$)

$$
\sum_{i=1}^{r}\binom{l_{i}}{2}<x^{1 / 2} \text { or } \sum_{i=1}^{r} l_{i}<2 x^{1 / 2}
$$

Hence the number of b 's belonging to the second subcase is less than $2 x^{1 / 2}$.
In the second case $x^{2 / 6} \leqq u \leqq x^{1 / 2}$. Again we consider two subcases. In the first subcase are the b 's of the form $v u_{i}$ for which there are at most $x^{1 / *}$ other b 's of the form $v u_{i}^{\prime}$. From $u_{i} \geqq x^{1 / 4}$ we have $v_{i} \leqq x^{3 / 4}$. Thus the number of b 's of the first subcase is clearly less than or equal to $\left(x^{1 / 4}+1\right) \cdot x^{3 / 4} \leqq 2 x^{7 / 6}$.

Denote the b 's of the second subcase by

$$
v_{i} u_{j}^{(i)}, \quad 1 \leqq i \leqq r, \quad 1 \leqq j \leqq l_{i}, \quad l_{i}>x^{1 / s}+1
$$

Again the sets $U_{i}, 1 \leqq i \leqq r$

$$
U_{i}=\cup_{j} u_{j}^{(i)}, \quad 1 \leqq j \leqq l_{i}
$$

can have at most one element in common. Thus the pairs ($u_{j_{1}}^{(i)}, u_{j_{2}}^{(i)}$), $\mathbf{l} \leqq j_{1}, j_{2} \leqq l_{i}, 1 \leqq i \leqq r$ are all distinct. The number of pairs $\left(u_{j}, u_{j_{2}}\right)$ is clearly less than

$$
\binom{\left[x^{1} /\right]}{2}<\frac{x}{2} .
$$

Thus we have $\left(l_{i}>x^{1 / 4}+1\right)$

$$
\sum_{i=1}^{r}\binom{l_{i}}{2}<\frac{x}{2} \text { or } \sum_{i=1}^{r} l_{i}<x^{7 / 0} .
$$

Thus finally

$$
N(x)<\pi(x)+3 x^{3 / 6}+2 x^{1 /}
$$

which proves (10).

[^0]: ${ }^{1}$) I had two previous papers by the same title, Journal London Math. Soc. 14, 194-198 (1939) and ibid. 245-249. These papers will be referred to as I and II.
 ${ }^{2}$) A great deal of the early litterature of this problem can be found in the paper of R. Oblath, Tohoku Math. Journal 38, 73-92 (1933).
 ${ }^{3}$) O. Rigge, Über ein diophantisches Problem, 9. Congr. des Math. scand. 155-160 (1939) and P. Erdös I.
 ${ }^{4}$) P. Erdös II, As far as I know Rigges proof, which was similar to mine, has not been published.
 ${ }^{5}$) P. Erdös, On a diophantine equation, Journal London Math. Soc. 26, 176-178 (1951).

[^1]: ${ }^{6}$) P. Erdös, On a theorem of Sylvester and Schur, Journal London Math. Soc. 9, 282-288 (1934).

[^2]: ${ }^{7}$) P. Erdös, On sequences of integers no one of which divides the product of two others and on some related problems. Mitt. Forsch. Inst. Math. u. Mech. Univ. Tomsk 2, 74-82 (1938).

