POLYNOMIALS WHOSE ZEROS LIE ON THE UNIT CIRCLE

By P. Erdös, F. Herzog and G. Piranian

1. Introduction. Let

$$
\begin{equation*}
P(z)=\prod_{i=1}^{n}\left(1-z / \omega_{i}\right), \tag{1}
\end{equation*}
$$

where the points ω_{i} lie on the unit circle C. It has been shown by Cohen[1] that, on some path Γ which joins the origin to C, the inequality $|P|<1$ holds everywhere except at $z=0$. In an oral communication, C. Loewner has established the existence of a polynomial (1) for which every radius of the unit dise passes through a point at which $|P|>1$.

We will describe (see Theorem 1) a very simple example of a polynomial (1) with the property that on each radius of the unit disc there exist two points z^{\prime} and $z^{\prime \prime}$ such that $\left|P\left(z^{\prime}\right)\right|<1$ and $\left|P\left(z^{\prime \prime}\right)\right|>1$.

In connection with Theorem 1, the following question might be asked: Does there exist a universal constant L such that for every polynomial (1) the inequality $|P|<1$ holds on a path which connects the origin to C and has length at most L ? This question has recently been answered in the negative by G. R. MacLane [2].

Section 3 deals with the polynomials (1) in the cases $n \leq 4$. In these cases there always exist two half-lines from the origin on which

$$
\begin{equation*}
|P(z)| \leq\left|1-|z|^{n}\right| \quad \text { and } \quad|P(z)| \geq 1+|z|^{n} \text {, } \tag{2}
\end{equation*}
$$

respectively. Here we point out the problem of determining the greatest degree n for which a polynomial (1) always satisfies the inequalities (2) on two appropriate radii of the unit disc or on two half-lines from the origin.
2. The example. The polynomial to be described is of the form

$$
\begin{equation*}
P(z)=\prod_{j=1}^{e}\left[1+\left(z / \omega_{i}\right)^{i}\right]^{k_{i}} \quad\left(\left|\omega_{i}\right|=1 ; j=1,2, \cdots, q\right) . \tag{3}
\end{equation*}
$$

Roughly speaking, each factor determines a set of directions θ, of total range slightly less than π, such that on every radius in one of these directions $P(z)$ takes values of modulus greater than 1. The crucial problem in the construction is this, to choose the integers k_{7} in such a way that each factor bears the sole responsibility, on some circular are concentric with the unit circle, of determining the signum of $\log |P(z)|$.

Let $A j$ be the set of all ω on C for which

$$
\begin{equation*}
-\pi / 3 \leq \arg \left(\omega / \omega_{i}\right)^{\prime} \leq \pi / 3, \quad \text { modulo } 2 \pi \tag{4}
\end{equation*}
$$

Received September 13, 1954; revision received January 8, 1955.
and let B_{i} be the set of all ω on C for which

$$
\begin{equation*}
2 \pi / 3 \leq \arg \left(\omega / \omega_{i}\right)^{i} \leq 4 \pi / 3, \quad \text { modulo } 2 \pi . \tag{5}
\end{equation*}
$$

(A_{j} is the union of j disjoint, closed arcs, each of length $2 \pi / 3 j$; the same is true of B_{i}.)

We write

$$
\begin{equation*}
\log \left[1+\left(z / \omega_{i}\right)^{i}\right]=\left(z / \omega_{i}\right)^{i} \phi_{i}(z), \tag{6}
\end{equation*}
$$

where $\phi_{i}(0)=1$ and $\phi_{i}(z)$ is holomorphic and different from zero in $|z|<1$. With each index j we associate a number $r_{i}\left(0<r_{i}<1\right)$, to be determined below. Then by (3) and (6) we have, for $|\omega|=1$ and $p=1,2, \cdots, q$,

$$
\begin{align*}
\log P\left(r_{\nu} \omega\right) & =\sum_{i=1}^{n} k_{i} r_{p}^{j}\left(\omega / \omega_{j}\right)^{i} \phi_{i}\left(r_{v} \omega\right) \tag{7}\\
& =k_{p} r_{p}^{n}\left(\frac{\omega}{\omega_{p}}\right)^{p} \phi_{p}\left(r_{i} \omega\right)\left\{1+\sum_{i=n} \frac{k_{j}}{k_{p}} r_{j}^{j \rightarrow} \frac{\left(\omega / \omega^{\prime}\right)^{i}}{\left(\omega / \omega_{n}\right)^{p}} \frac{\phi_{i}\left(r_{j} \omega \omega\right.}{\phi_{p}\left(r_{p} \omega\right)}\right\} .
\end{align*}
$$

If $\omega \varepsilon A_{p}$ or B_{p}, the factor $\left(\omega / \omega_{p}\right)^{p}$ satisfies the inequality (4) or (5), respectively; the factor $\phi_{p}\left(r_{p} \omega\right)$ is arbitrarily close to 1 if r_{p} is small enough; and, as we shall show below, the modulus of the sum $\sum_{i \alpha_{p}}$ in (7) can be made arbitrarily small by the proper choice of the k_{i} and the r_{i}. It follows then that, for $\omega \in A_{p}$,

$$
-\pi / 2<\arg \log P\left(r_{i} \omega\right)<\pi / 2, \quad \text { that is, } \quad|P(r, \omega)|>1 ;
$$

and that, for $\omega \in B_{p}$,

$$
\pi / 2<\arg \log P(r, \omega)<3 \pi / 2, \quad \text { that is, } \quad|P(r, \omega)|<1 .
$$

It remains to show that the sum $\sum_{l x_{0}}$ in (7) can be made arbitrarily small. It will suffice to show that, if the k_{i} and the r_{i} are properly chosen, then the $q(q-1)$ quantities $\left(k_{i} / k_{p}\right) r_{p}^{i-p}(j \neq p)$ are arbitrarily small.

With m a positive integer to be determined below, let

$$
k_{i}=2^{m(2 \alpha-i)(i-1)}, \quad r_{i}=2^{-m(2 q-2 j+1)} \quad(j=1,2, \cdots, q),
$$

so that $r_{i} \leq 2^{-m}$. It is easily verified that, for $j \neq p$,

$$
\left(k_{i} / k_{p}\right) r_{p}^{i-p}=2^{-m(i-p)} \leq 2^{-m}
$$

Thus we need only choose m sufficiently large, in order to accomplish our purpose.
Since $\sum_{1}^{\infty} 1 / j=\infty$, it is possible to choose a finite q and a corresponding set of points $\omega_{j}(j=1,2, \cdots, q)$ such that each of the sets $\cup A_{i}$ and $\cup B_{j}$ covers C. The following result is now immediate.

Theorem 1. There exists a polynomial (1) such that on every radius of the unit disc there exist points z^{\prime} and $z^{\prime \prime}$ with $\left|P\left(z^{\prime}\right)\right|<1$ and $\left|P\left(z^{\prime \prime}\right)\right|>1$.

3. Polynomials of degree at most four.

Theorem 2. Let $P(z)=\prod_{v=1}^{n}\left(z-z_{v}\right)$, with $\left|z_{v}\right|=1$. If $n \leq 4$, there exist two values θ^{\prime} and $\theta^{\prime \prime}$ such that

$$
\left|P\left(r e^{i \theta^{\prime}}\right)\right| \leq\left|1-r^{n}\right| \quad \text { and } \quad\left|P\left(r e^{i \theta^{\prime \prime}}\right)\right| \geq 1+r^{n}
$$

for $0 \leq r<\infty$.
We omit the trivial cases $n=1$ and $n=2$. In the case $n=3$, let α, β, γ denote the three angles formed by the radii $0 z$, , with $2 \pi \geq \alpha \geq \beta \geq \gamma \geq 0$ and $\alpha+\beta+\gamma=2 \pi$.

To show the existence of θ^{\prime}, we write $z_{1}=1, z_{2}=e^{i \beta}$, and $z_{3}=e^{-i \gamma}$, and we prove that $|P(r)| \leq\left|1-r^{3}\right|$ for $0 \leq r<\infty$. Since

$$
|P(r)|=|1-r|\left(1-2 r \cos \beta+r^{2}\right)^{\frac{1}{2}}\left(1-2 r \cos \gamma+r^{2}\right)^{\frac{1}{4}}
$$

it will suffice to show that

$$
\begin{aligned}
\Delta^{\prime} & =\left(1-r^{2}\right)^{2}-|P(r)|^{2} \\
& =(1-r)^{2}\left[2 r\left(1+r^{2}\right)(1+\cos \beta+\cos \gamma)+r^{2}(1-4 \cos \beta \cos \gamma)\right] \geq 0
\end{aligned}
$$

Now

$$
\begin{equation*}
0 \leq(\beta-\gamma) / 2 \leq \beta / 2 \leq \pi / 2 \quad \text { and } \quad 0 \leq(\beta+\gamma) / 2 \leq 2 \pi / 3 \tag{8}
\end{equation*}
$$

and therefore

$$
\begin{aligned}
1+\cos \beta+\cos \gamma & =1+2 \cos [(\beta+\gamma) / 2] \cos [(\beta-\gamma) / 2] \\
& \geq 1-\cos [(\beta-\gamma) / 2] \geq 0
\end{aligned}
$$

and because $1+r^{2} \geq 2 r$, it follows that

$$
\begin{aligned}
\Delta^{\prime} & \geq r^{2}(1-r)^{2}[4(1+\cos \beta+\cos \gamma)+1-4 \cos \beta \cos \gamma] \\
& =r^{2}(1-r)^{2}[9-4(1-\cos \beta)(1-\cos \gamma)] \\
& =r^{2}(1-r)^{2}\left[9-16 \sin ^{2}(\beta / 2) \sin ^{2}(\gamma / 2)\right] .
\end{aligned}
$$

But, by (8),

$$
\begin{aligned}
0 & \leq 4 \sin (\beta / 2) \sin (\gamma / 2)=2 \cos [(\beta-\gamma) / 2]-2 \cos [(\beta+\gamma) / 2] \\
& \leq 2-2\left(-\frac{1}{2}\right)=3
\end{aligned}
$$

and therefore the value $\theta^{\prime}=0$ has the required property.
To show the existence of $\theta^{\prime \prime}$ in the case $n=3$, let α, β, γ be the same as above. We write $z_{1}=e^{i \alpha / 2}, z_{2}=e^{-i \alpha / 2}$, and $z_{3}=e^{i \alpha / \alpha+\beta)}$; and we will show that $|P(r)| \geq 1+r^{3}$ for $0 \leq r<\infty$. If $\alpha \geq \pi$, then $|P(r)| \geq\left(1+r^{2}\right)^{3 / 2} \geq 1+r^{3}$. In what follows we therefore restrict α to the interval $2 \pi / 3 \leq \alpha<\pi$; and we write $\cos (\alpha / 2)=t$, so that $\cos (3 \alpha / 2)=4 t^{3}-3 t$ and $0<t \leq 1 / 2$.

Since $\pi \leq \alpha / 2+\beta \leq 3 \alpha / 2$, we have $\left|r-z_{3}\right| \geq\left|r-e^{3 \gamma \alpha / 2}\right|$, and therefore

$$
|P(r)| \geq\left(1-2 r t+r^{2}\right)\left[1-2 r\left(4 t^{3}-3 t\right)+r^{2}\right]^{\frac{1}{2}}
$$

it remains to show that the quantity

$$
\Delta^{\prime \prime}=\left(1-2 r t+r^{2}\right)^{2}\left[1-2 r\left(4 t^{3}-3 t\right)+r^{2}\right]-\left(1+r^{3}\right)^{2}
$$

is nonnegative for $0 \leq r<\infty$ and $0<t \leq 1 / 2$.
A simple computation shows that $\Delta^{\prime \prime}=A_{1} r\left(1+r^{4}\right)+A_{2} r^{2}\left(1+r^{2}\right)+A_{3} r^{3}$, where

$$
\begin{aligned}
& A_{1}=2 t\left(1-4 t^{2}\right) \geq 0 \\
& A_{2}=3-20 t^{2}+32 t^{4}=\left(1-4 t^{2}\right)\left(3-8 t^{2}\right) \geq 0 \\
& A_{3}=-2+4 t+8 t^{3}-32 t^{5}
\end{aligned}
$$

Since $1+r^{2} \geq 2 r$,

$$
\begin{aligned}
\Delta^{\prime \prime} & \geq r^{3}\left(2 A_{2}+A_{3}\right) \\
& =4 r^{3}\left(1+t-10 t^{2}+2 t^{3}+16 t^{4}-8 t^{5}\right) \\
& =4 r^{3}(1-2 t)\left(1-2 t^{2}\right)\left(1+3 t-2 t^{2}\right) \geq 0
\end{aligned}
$$

In the case $n=4$, let $\alpha, \beta, \gamma, \delta$ denote, in cyclical order, the four nonnegative angles formed by the radii $0 z^{2}$, with $\alpha+\beta+\gamma+\delta=2 \pi$.

In order to establish the existence of θ^{\prime}, we assume that the notation has been chosen in such a way that $\gamma+\delta \leq \pi$. We write $z_{1}=1, z_{2}=e^{i t}, z_{3}=e^{i(\delta+\alpha)}=$ $e^{-(\langle\beta+\gamma)}, z_{4}=e^{-c \gamma}$, and we will show that $|P(r)| \leq\left|1-r^{4}\right|$ for $0 \leq r<\infty$.

We note that $\left|r-z_{1}\right|=|1-r|$ and $\left|r-z_{3}\right| \leq 1+r$. Since $0 \leq \delta \leq$ $\pi-\gamma \leq \pi$, we have the inequality

$$
\left|r-z_{2}\right| \leq\left|r-e^{i(r-\gamma)}\right|=\left|r+e^{-i \gamma}\right|
$$

and therefore

$$
\left|\left(r-z_{2}\right)\left(r-z_{i}\right)\right| \leq\left|r^{2}-e^{-2 i r}\right| \leq 1+r^{2}
$$

The required result is now immediate.
To show the existence of $\theta^{\prime \prime}$ in the case $n=4$, let $\alpha, \beta, \gamma, \delta$ be the same as above; assume that the notation has been chasen in such a way that

$$
\begin{equation*}
\alpha+\beta \geq \pi \geq \gamma+\delta, \quad \alpha+\delta \geq \pi \geq \beta+\gamma, \quad \beta \geq \delta . \tag{9}
\end{equation*}
$$

We write $z_{1}=e^{-i \alpha / 2}, z_{2}=e^{i \omega / 2}, z_{3}=e^{i(\alpha / 2+\beta)}, z_{4}=e^{-i(a / 2+\delta)}$. We note that (9) implies

$$
\begin{equation*}
\pi-\alpha / 2 \leq \alpha / 2+\delta \leq \alpha / 2+\beta \leq \pi+\alpha / 2 \tag{10}
\end{equation*}
$$

Two cases arise. If $\alpha \geq \pi / 2$, we shall show that $|P(r)| \geq 1+r^{2}$ for $0 \leq r$ $<\infty$. For $\alpha \geq \pi$, the matter is trivial. For $\pi / 2 \leq \alpha<\pi$ and $\nu=3,4$, the inequalities (10) give

$$
\left|r-z_{r}\right| \geq\left|r-e^{\langle\langle r-a / z)}\right|=\left|r+z_{1}\right| ;
$$

therefore

$$
\begin{aligned}
|P(r)| & \geq\left|r-z_{1}\right|^{2}\left|r+z_{1}\right|^{2}=\left|r^{2}-z_{1}^{2}\right|^{2} \\
& =1-2 r^{2} \cos \alpha+r^{4} \geq 1+r^{4} .
\end{aligned}
$$

If $\alpha<\pi / 2$, we shall show that $|P(i r)| \geq 1+r^{4}$ for $0 \leq r<\infty$. By (10), $\left|i r-z_{n}\right| \geq\left|i r-e^{i(\alpha / 2+b)}\right|=\mid$ ir $+z_{4} \mid$, hence

$$
\begin{aligned}
\left|\left(i r-z_{\mathrm{a}}\right)\left(i r-z_{\mathrm{s}}\right)\right| & \geq\left|r^{2}+z_{\mathrm{s}}^{2}\right| \\
& =\left[1+2 r^{2} \cos (\alpha+2 \hat{\delta})+r^{4}\right]^{\frac{1}{2}} \\
& \geq\left(1+2 r^{2} \cos \alpha+r^{4}\right)^{\frac{1}{2}}
\end{aligned}
$$

Also,

$$
\left|\left(i r-z_{1}\right)\left(i r-z_{2}\right)\right|=\left(1+2 r^{2} \cos \alpha+r^{4}\right)^{\frac{1}{2}}
$$

so that

$$
|P(i r)| \geq 1+2 r^{2} \cos \alpha+r^{4} \geq 1+r^{4}
$$

This completes the proof of Theoren.
In conclusion, we note that in the e e $n=4$ the inequality $|P(z)| \geq 1$ does not necessarily hold everywhere on the bisector of the greatest of the four angles involved. To see this, let $z_{1}=e^{i \approx / 3}, z_{4}=-1, z_{5}=z_{4}=e^{-i \pi / 3}$. Then $|P(1 / 2)|=(9 / 16) 3^{1 / 2}<1$. Considerations of continuity show that even if $\alpha>\beta>\gamma>\delta>0$, the inequality $|P(z)| \geq 1$ need not hold everywhere on the bisector of α.

References

1. Paul Cohen, Modulus of an analytic function, American Mathematical Monthly, vol. 59(1952), pp. 704-705.
2. Gerald R. MacLane, On a conjecture of Erdös, Herzog, and Piranian, Michigan Mathematical Journal, vol. 2(1953-1954), pp. 147-148.

Universtry of Notre Dame, Michigan State College, and
Universtyy of Michonn

