POLYNOMIALS WHOSE ZEROS LIE ON THE UNIT CIRCLE

By P. Erdös, F. Herzog and G. Piranian

1. Introduction. Let

(1)
$$P(z) = \prod_{i=1}^{n} (1 - z/\omega_i),$$

where the points ω_i lie on the unit circle *C*. It has been shown by Cohen[1] that, on some path Γ which joins the origin to *C*, the inequality |P| < 1 holds everywhere except at z = 0. In an oral communication, C. Loewner has established the existence of a polynomial (1) for which every radius of the unit disc passes through a point at which |P| > 1.

We will describe (see Theorem 1) a very simple example of a polynomial (1) with the property that on each radius of the unit disc there exist two points z' and z'' such that |P(z')| < 1 and |P(z'')| > 1.

In connection with Theorem 1, the following question might be asked: Does there exist a universal constant L such that for every polynomial (1) the inequality |P| < 1 holds on a path which connects the origin to C and has length at most L? This question has recently been answered in the negative by G. R. MacLane [2].

Section 3 deals with the polynomials (1) in the cases $n \leq 4$. In these cases there always exist two half-lines from the origin on which

(2) $|P(z)| \le |1 - |z|^n|$ and $|P(z)| \ge 1 + |z|^n$,

respectively. Here we point out the problem of determining the greatest degree n for which a polynomial (1) always satisfies the inequalities (2) on two appropriate radii of the unit disc or on two half-lines from the origin.

2. The example. The polynomial to be described is of the form

(3)
$$P(z) = \prod_{i=1}^{q} \left[1 + (z/\omega_i)^i \right]^{k_i} \quad (|\omega_i| = 1; j = 1, 2, \cdots, q).$$

Roughly speaking, each factor determines a set of directions θ , of total range slightly less than π , such that on every radius in one of these directions P(z)takes values of modulus greater than 1. The crucial problem in the construction is this, to choose the integers k_i in such a way that each factor bears the sole responsibility, on some circular arc concentric with the unit circle, of determining the signum of log |P(z)|.

Let A_j be the set of all ω on C for which

(4)
$$-\pi/3 \leq \arg(\omega/\omega_i)^i \leq \pi/3$$
, modulo 2π

Received September 13, 1954; revision received January 8, 1955.

and let B_i be the set of all ω on C for which

(5)
$$2\pi/3 \le \arg(\omega/\omega_i)^i \le 4\pi/3$$
, modulo 2π .

 $(A_i$ is the union of j disjoint, closed arcs, each of length $2\pi/3j$; the same is true of B_i .)

We write

(6)
$$\log \left[1 + (z/\omega_i)^2\right] = (z/\omega_i)^i \phi_i(z),$$

where $\phi_i(0) = 1$ and $\phi_i(z)$ is holomorphic and different from zero in |z| < 1. With each index j we associate a number r_i ($0 < r_i < 1$), to be determined below. Then by (3) and (6) we have, for $|\omega| = 1$ and $p = 1, 2, \dots, q$,

(7)
$$\log P(r_y\omega) = \sum_{i=1}^{n} k_i r_y^i (\omega/\omega_i)^i \phi_i(r_y\omega)$$

$$= k_p r_p^p \left(\frac{\omega}{\omega_p}\right)^p \phi_p(r_p \omega) \left\{ 1 + \sum_{i \neq p} \frac{k_i}{k_p} r_p^{i-p} \frac{(\omega/\omega_i)^i}{(\omega/\omega_p)^p} \frac{\phi_i(r_p \omega)}{\phi_p(r_p \omega)} \right\}.$$

If $\omega \in A_p$ or B_p , the factor $(\omega/\omega_p)^p$ satisfies the inequality (4) or (5), respectively; the factor $\phi_p(r_s\omega)$ is arbitrarily close to 1 if r_p is small enough; and, as we shall show below, the modulus of the sum $\sum_{i \neq p} in$ (7) can be made arbitrarily small by the proper choice of the k_i and the r_i . It follows then that, for $\omega \in A_p$,

$$-\pi/2 < \arg \log P(r_{\nu}\omega) < \pi/2$$
, that is, $|P(r_{\nu}\omega)| > 1$;

and that, for $\omega \in B_{\rho}$,

$$\pi/2 < \arg \log P(r_r\omega) < 3\pi/2$$
, that is, $|P(r_r\omega)| < 1$.

It remains to show that the sum $\sum_{i \neq p}$ in (7) can be made arbitrarily small. It will suffice to show that, if the k_i and the r_i are properly chosen, then the q(q-1) quantities $(k_i/k_p) r_p^{i-p}$ $(j \neq p)$ are arbitrarily small.

With m a positive integer to be determined below, let

$$k_i = 2^{m(2q-i)(i-1)}, \quad r_i = 2^{-m(2q-2i+1)} \quad (i = 1, 2, \dots, q),$$

so that $r_i \leq 2^{-m}$. It is easily verified that, for $j \neq p$,

$$(k_i/k_p)r_p^{i-p} = 2^{-m(i-p)^*} \le 2^{-m}$$

Thus we need only choose m sufficiently large, in order to accomplish our purpose.

Since $\sum_{i=1}^{\infty} 1/j = \infty$, it is possible to choose a finite q and a corresponding set of points ω_i $(j = 1, 2, \dots, q)$ such that each of the sets $\bigcup A_i$ and $\bigcup B_i$ covers C. The following result is now immediate.

THEOREM 1. There exists a polynomial (1) such that on every radius of the unit disc there exist points z' and z'' with |P(z')| < 1 and |P(z'')| > 1.

POLYNOMIALS

3. Polynomials of degree at most four.

THEOREM 2. Let $P(z) = \prod_{r=1}^{n} (z - z_r)$, with $|z_r| = 1$. If $n \leq 4$, there exist two values θ' and θ'' such that

$$|P(re^{i\theta'})| \le |1 - r^n|$$
 and $|P(re^{i\theta'})| \ge 1 + r^n$

for $0 \leq r < \infty$.

We omit the trivial cases n = 1 and n = 2. In the case n = 3, let α , β , γ denote the three angles formed by the radii 0z, , with $2\pi \ge \alpha \ge \beta \ge \gamma \ge 0$ and $\alpha + \beta + \gamma = 2\pi$.

To show the existence of θ' , we write $z_1 = 1$, $z_2 = e^{i\beta}$, and $z_3 = e^{-i\gamma}$, and we prove that $|P(r)| \leq |1 - r^3|$ for $0 \leq r < \infty$. Since

$$|P(r)| = |1 - r| (1 - 2r \cos \beta + r^2)^{\frac{1}{2}} (1 - 2r \cos \gamma + r^2)^{\frac{1}{2}},$$

it will suffice to show that

$$\begin{aligned} \Delta' &= (1 - r^3)^2 - |P(r)|^2 \\ &= (1 - r)^2 [2r(1 + r^2)(1 + \cos\beta + \cos\gamma) + r^2(1 - 4\cos\beta\cos\gamma)] \ge 0. \end{aligned}$$

Now

(8) $0 \le (\beta - \gamma)/2 \le \beta/2 \le \pi/2$ and $0 \le (\beta + \gamma)/2 \le 2\pi/3$, and therefore

 $1 + \cos \beta + \cos \gamma = 1 + 2 \cos[(\beta + \gamma)/2] \cos[(\beta - \gamma)/2]$ $\geq 1 - \cos[(\beta - \gamma)/2] \geq 0;$

and because $1 + r^2 \ge 2r$, it follows that

$$\begin{aligned} \Delta' &\geq r^2 (1-r)^2 [4(1+\cos\beta+\cos\gamma)+1-4\cos\beta\cos\gamma] \\ &= r^2 (1-r)^2 [9-4(1-\cos\beta)(1-\cos\gamma)] \\ &= r^2 (1-r)^2 [9-16\sin^2(\beta/2)\sin^2(\gamma/2)]. \end{aligned}$$

But, by (8),

$$\begin{aligned} 0 &\leq 4 \sin(\beta/2) \sin(\gamma/2) = 2 \, \cos[(\beta - \gamma)/2] - 2 \, \cos[(\beta + \gamma)/2] \\ &\leq 2 - 2(-\frac{1}{2}) = 3, \end{aligned}$$

and therefore the value $\theta' = 0$ has the required property.

To show the existence of θ'' in the case n = 3, let α, β, γ be the same as above. We write $z_1 = e^{i\alpha/2}$, $z_2 = e^{-i\alpha/2}$, and $z_3 = e^{i(\alpha/2+\beta)}$; and we will show that $|P(r)| \ge 1 + r^3$ for $0 \le r < \infty$. If $\alpha \ge \pi$, then $|P(r)| \ge (1 + r^2)^{3/2} \ge 1 + r^3$. In what follows we therefore restrict α to the interval $2\pi/3 \le \alpha < \pi$; and we write $\cos(\alpha/2) = t$, so that $\cos(3\alpha/2) = 4t^3 - 3t$ and $0 < t \le 1/2$. Since $\pi \le \alpha/2 + \beta \le 3\alpha/2$, we have $|r - z_3| \ge |r - e^{3i\pi/2}|$, and therefore $|P(r)| \ge (1 - 2rt + r^2)[1 - 2r(4t^3 - 3t) + r^3]^{\frac{1}{2}};$

it remains to show that the quantity

$$\Delta'' = (1 - 2rt + r^2)^2 [1 - 2r(4t^3 - 3t) + r^3] - (1 + r^3)^2$$

is nonnegative for $0 \le r < \infty$ and $0 < t \le 1/2$.

A simple computation shows that $\Delta'' = A_1 r (1 + r^4) + A_2 r^2 (1 + r^2) + A_3 r^3$, where

$$\begin{aligned} A_1 &= 2t(1 - 4t^2) \ge 0, \\ A_2 &= 3 - 20t^2 + 32t^4 = (1 - 4t^2)(3 - 8t^2) \ge 0, \\ A_3 &= -2 + 4t + 8t^3 - 32t^5. \end{aligned}$$

Since $1 + r^2 \ge 2r$,

$$\begin{aligned} \Delta^{\prime\prime} &\geq r^3 (2A_2 + A_3) \\ &= 4r^3 (1 + t - 10t^3 + 2t^3 + 16t^4 - 8t^5) \\ &= 4r^3 (1 - 2t)(1 - 2t^2)(1 + 3t - 2t^2) \geq 0. \end{aligned}$$

In the case n = 4, let α , β , γ , δ denote, in cyclical order, the four nonnegative angles formed by the radii 0z, with $\alpha + \beta + \gamma + \delta = 2\pi$.

In order to establish the existence of θ' , we assume that the notation has been chosen in such a way that $\gamma + \delta \leq \pi$. We write $z_1 = 1, z_2 = e^{it}, z_3 = e^{i(\delta+\alpha)} = e^{-i(\beta+\gamma)}, z_4 = e^{-i\gamma}$, and we will show that $|P(r)| \leq |1 - r^4|$ for $0 \leq r < \infty$. We note that $|r - z_1| = |1 - r|$ and $|r - z_3| \leq 1 + r$. Since $0 \leq \delta \leq \pi - \gamma \leq \pi$, we have the inequality

$$|r - z_2| \le |r - e^{i(r-\gamma)}| = |r + e^{-i\gamma}|,$$

and therefore

$$|(r-z_2)(r-z_4)| \leq |r^2 - e^{-2i\gamma}| \leq 1 + r^2.$$

The required result is now immediate.

To show the existence of θ'' in the case n = 4, let α , β , γ , δ be the same as above; assume that the notation has been chosen in such a way that

(9)
$$\alpha + \beta \ge \pi \ge \gamma + \delta, \quad \alpha + \delta \ge \pi \ge \beta + \gamma, \quad \beta \ge \delta.$$

We write $z_1 = e^{-i\alpha/2}$, $z_2 = e^{i\alpha/2}$, $z_3 = e^{i(\alpha/2 - \beta)}$, $z_4 = e^{-i(\alpha/2 + \delta)}$. We note that (9) implies

(10)
$$\pi - \alpha/2 \le \alpha/2 + \delta \le \alpha/2 + \beta \le \pi + \alpha/2.$$

Two cases arise. If $\alpha \ge \pi/2$, we shall show that $|P(r)| \ge 1 + r^4$ for $0 \le r < \infty$. For $\alpha \ge \pi$, the matter is trivial. For $\pi/2 \le \alpha < \pi$ and $\nu = 3, 4$, the inequalities (10) give

$$|r-z_{r}| > |r-e^{i(\tau-\sigma/2)}| = |r+z_{1}|;$$

350

POLYNOMIALS

therefore

$$|P(r)| \ge |r - z_1|^2 |r + z_1|^2 = |r^2 - z_1^2|^2$$

= $1 - 2r^2 \cos \alpha + r^4 \ge 1 + r^4$.

If $\alpha < \pi/2$, we shall show that $|P(ir)| \ge 1 + r^4$ for $0 \le r < \infty$. By (10), $ir - z_1 |\ge |ir - e^{i(\alpha/2+\delta)}| = |ir + z_4|$, hence

$$|(ir - z_{a})(ir - z_{4})| \ge |r^{2} + z_{4}^{2}|$$

= $[1 + 2r^{2} \cos(\alpha + 2\delta) + r^{4}]^{\frac{1}{2}}$
 $\ge (1 + 2r^{2} \cos \alpha + r^{4})^{\frac{1}{2}}.$

Also,

$$(ir - z_1)(ir - z_2) \mid = (1 + 2r^2 \cos \alpha + r^4)^{\frac{1}{2}},$$

so that

 $|P(ir)| \ge 1 + 2r^2 \cos \alpha + r^4 \ge 1 + r^4.$

This completes the proof of Theorem .

In conclusion, we note that in the c e n = 4 the inequality $|P(z)| \ge 1$ does not necessarily hold everywhere on the bisector of the greatest of the four angles involved. To see this, let $z_1 = e^{i\pi/3}$, $z_2 = -1$, $z_3 = z_4 = e^{-i\pi/3}$. Then $|P(1/2)| = (9/16) 3^{1/2} < 1$. Considerations of continuity show that even if $\alpha > \beta > \gamma > \delta > 0$, the inequality $|P(z)| \ge 1$ need not hold everywhere on the bisector of α .

References

- PAUL COHEN, Modulus of an analytic function, American Mathematical Monthly, vol. 59(1952), pp. 704-705.
- GERALD R. MACLANE, On a conjecture of Erdös, Herzog, and Piranian, Michigan Mathematical Journal, vol. 2(1953-1954), pp. 147-148.

UNIVERSITY OF NOTRE DAME, MICHIGAN STATE COLLEGE, AND UNIVERSITY OF MICHIGAN