SOIE PROBTIEIS ON TH:C DISSRIBUTION OT PRINE
 NUIBERS

In this lecture I will talk about some recent questions on the distribution of primes. It is not claimed that the problems I will discuss are necessarily important ones.I will mainly speak about problems which hava occupied me a great deal in the last few years.

Denote by $\pi(X)$ the number of primes not exceeding x. The prime number theorom gtates that $\pi(X) / X / \log x \rightarrow 1$ as $x \rightarrow \infty$. It is well known that $\sum_{k=2}^{x} 1 / \log k$ gives a much better approximation to $\Pi(x)$ than $x / \log \mathrm{x}$. The statement that for $\mathrm{X}>x(\varepsilon)$

$$
\begin{equation*}
\left|\pi(x)-\sum_{k=2}^{x} \frac{1}{\log k}\right|<x^{1 / 2+\varepsilon} \tag{1}
\end{equation*}
$$

is equivalent to the \mathbb{E} emanm hypothesis. In ove lectures we will not deal with problems like (1) but will rather consider problems of distribution of primes in the small (o.g. problems on consedutive prime numbors).

An old and very difficult problem on primo nombors requires to find to every integer n a prime number $p>n$, or in other words to be able to write down arbitrarily large prime numbers. The largest prime number which is known is $2^{2281}-1$, this number was proved to be a prime numbor by the electronic computer of the Institute for Numerical Analysie the S. W.A.C. in the spring of 1953. It is an unsolved problom whothor there are infinitely many primes of the form $2^{p}-1$.

A few years ago Mills ${ }^{1)}$ proved that there exists a constant c> 1 so that for all integers $n,\left[c^{3 n}\right]$ is a prime. Unfortunately it seems impossible to determine c explicitely. Very likely for every $\mathbb{C}>1$ there are infinitely many integers n for which [c^{n}] is composite.

Put $d_{n}=p_{n+1}-p_{n}$. It imnediately followe from the prime
number theorem that $\overline{\operatorname{lima}}_{n} / \log n \geqslant 1$. Backluna ${ }^{2)}$ proved that the above limit is $\geqslant 2$ and Braver and Zeitz ${ }^{3)}$ proved that it is $\geqslant 4$. Westzynthius ${ }^{4)}$ proved that $\overline{\lim } \alpha_{n} / \log n=\infty$. I proved ${ }^{5}$) using Braun's method that for infinitemy many n

$$
a_{n}>c \log n \log \log n /\left(\log \log \log n_{i}\right)^{2}
$$

and When ${ }^{6}$) proved the same result much simpler without the use of Braun's method. Finally Rankin ${ }^{7}$) proved that for infinitety many n

$$
\begin{equation*}
d_{n}>c \log n \log \log n, \log \log \log \log n /(\log \log \log n)^{2} . \tag{2}
\end{equation*}
$$

It seems very hard to improve (2). In the opposite directti on Ingham ${ }^{8)}$ proved that for $n>n_{0} d_{n}>n^{5 / 8}$. Creamer ${ }^{9)}$ conjectoured that

$$
\overline{\lim } d_{n} /(\log n)^{2}=1
$$

Using the Riemann hypothesis Crammer ${ }^{9}$) proved that

$$
\sum_{k=1}^{n} d_{k}^{2}<\operatorname{cn}(\log n)^{4}
$$

I conjectured ${ }^{10)}$ that

$$
\begin{equation*}
\sum_{i=1}^{n} d_{k}^{2}<c n(\log n)^{2} \tag{3}
\end{equation*}
$$

$\sum_{k=1}^{n} d_{k}^{2}>\operatorname{ch}\{\operatorname{lognfis}$ an immediate consequence of the prime number theorem, thus (3) if true is best possible. A simpler conjecture ${ }^{10}$) which I also can not prove is the following: Let n be any integer, denote by $a_{1}, a_{2}, \ldots a a_{(n)}$ the integers $\leqslant n$ which ere relatively prime to n. Then there exists a constant 0 independent of n so that

$$
\begin{equation*}
\sum_{i=2}^{\varphi p(n)}\left(a_{i}-a_{i-1}\right)^{2}<c \frac{n^{2}}{\varphi(n)} \tag{4}
\end{equation*}
$$

Another conjecture which seems very deep is that $d_{n} / \log n$ has
a continuous distribution function i.e. that for every $c \geqslant 0$ the density $f(c)$ of integers n for which $d_{n} / \log n<c$ exists and is a continuous function of c, for which $f(0)=0, f(\infty)=1$. Here is another problem which has the same relation to the previous one as (4) has to (3): Put $n_{k}=2 \cdot 3.5 \ldots p_{k}, a_{1}, a_{2}, \ldots a_{\varphi}\left(n_{k}\right)$ aretho integers, $<n_{k}$ relatively prime to n_{k}. Denote by $A\left(c, n_{k}\right)$ the number of a's satisfying

$$
a_{i}-a_{i-1}<c n_{k} / \varphi\left(n_{k}\right), 2 \leqslant i \leqslant \varphi\left(n_{k}\right) .
$$

Then $\lim A\left(c, n_{k}\right) / \varphi\left(n_{k}\right)$ exists and is a continuous function of c.
$\mathrm{k}=\varphi_{t}$ follows from the prime number theorem that lime ${ }_{\mathrm{n}} / 10 \mathrm{~g}$ $n \leqslant 1$, and $I^{10)}$ proved that $\lim d_{n} / \log n<1$. It is of course to be expected that him $d_{n} / \log \mathrm{i}=0$, in fact a well know ancient conjecture states that $d_{n}=2$ for infinitely many $n . I^{11}$) further proved that
$\overline{\lim }\left(\min \left(d_{n}, d_{n+1}\right)\right) / \log n=\infty$
I could not prove that

$$
\begin{aligned}
&\left.\lim \left(\min \left(d_{n}, d_{n+i}, d_{n+2}\right)\right)\right) \log n=\infty, \text { on that } \\
& \underline{\lim }\left(\max \left(d_{n}, \alpha_{n+1}\right)\right)(\log n<1 .
\end{aligned}
$$

Turan and $I^{12)}$ proved that $d_{n+1}>(1+\varepsilon) d_{n}$ and $d_{n+1}<(1-\varepsilon) d_{n}$ have both more than $c_{1} n$ solutions in integers $m \leqslant n$. Ono would of course conjecture that $\overline{\text { nim }} d_{n+1} / d_{n}=\infty$ and that lin $d_{n+1} / d_{n}=0$ and that the density of integers n for which $d_{n+1}>d_{n}$ is $1 / 2$, but those conjectures seem very difficult to prove. Renyi and I^{13}) proved that the number of solution of $d_{m+1}=d_{m}, m \quad n$ is less than c. $n /(\log n)^{3 / 2}$, the right order of magnitude for the number of solution is very likely c.n/log n, but it is not even known that the equation $d_{n+1}=d_{n}$ has infinitely many solutions. All the
rosults montioned hore are obtainod by Bran's mothod.
In our papor with Thran ${ }^{12 \text {) }}$ we romork that we are unable to prove that the inequalitics $d_{n+2}>d_{n+1}>d_{n}$ have infinitcly many solutions. In fact we are even unable to prove that at least one of tho inoqualities $d_{n+2}>d_{n+1}>d_{n}, d_{n+2}<d_{n+1}<d_{n}$ hnvo infinitely many solutions.

It sooms cortain thet $a_{n} / \log n$ is everywhere dense in the interval $(0, \infty)$. We prove the follawing

Theorem. ${ }^{14)}$ The set of limit points of $A_{n} /$ los n form a set of positive measure.

Remark. Despite the fact that the set of limit points of $d_{n} / \log n$ has positive measure, I can not lecide about any given number whether it actually belongs to ous get, thus in particular I do not know if 1 is a limit point of the numbers $d_{n} / \log n$.

First of all it follows from the prime number theorem that there are at least $x / 4 \cdot \log x$ values of m for which

$$
\begin{equation*}
\frac{x}{3}<p_{m}<x, \quad d_{m}<2 \log x \tag{5}
\end{equation*}
$$

We shall show that the set of limit points s of $d_{m} / \log m$ (or what is the same thing of $d_{m} / \log x$) of the m satisfying (5) have positive measure. (A point z is in S iff there exists an infinite sequence $x_{k} \rightarrow \infty$ and $m_{k} \rightarrow \infty$

$$
\begin{aligned}
& \frac{1}{3} x_{k}<p_{m}<x_{k}, d_{m m_{k}}<2 \log _{k} x_{k} \text {, polhet } 2_{m_{k}}\left(\log _{k} \rightarrow 2\right) \text {. The } \\
& \text { set } s \text { is dearly, in }(02) \text {. }
\end{aligned}
$$

If our Theorem is false then by the Heine-Borel theorem S can be covered for evory ε by a fintte number of intorvals the sum of the Iength of which is less then ε. Iet $\left(a_{k}, b_{k}\right)$, $k=1,2, \ldots, N, \sum_{i=1}^{N}\left(b_{i}-a_{i}\right)<\varepsilon$ be tho intervals which cover S. Let $\eta<\delta / 2 N$. Clearly for all sufficiontly large x the d_{m} which
satisfy for some $1 \leqslant k \leqslant \mathbb{N}$

$$
\begin{equation*}
a_{k}-\eta<d_{m} / \log x<b_{k}+\eta \tag{6}
\end{equation*}
$$

Now we estimate the number of integers $m\left(p_{m} \leqslant x\right)$ which satisfy $/ 6 /$.
A well known result of Schnirelmenn ${ }^{15 \text {) }}$ states that the number of solutions of $d_{m}=I, p_{m} \leqslant x$ is less than

$$
c_{1} \frac{x}{(\log x)^{2}} \prod_{1 / 2}(1+1 /+2)
$$

Thus the number of solutions is m of $p_{m} \leqslant x, d_{a_{a}}$ satisfies $/ 6 /$ is less than

$$
\begin{align*}
& c_{1} \frac{x}{(\log x)^{2}} \sum_{k=1}^{N} \sum_{\left(a_{k}-\eta\right) \log x}^{\left(\log _{x} x\right) \log x} \Pi_{r / k}\left(1+\frac{1}{1}\right)<c_{2} \frac{x}{\left(\log _{y} x\right)^{2}} \sum_{k=1}^{N}\left(b_{k}-a_{x}+2 \eta\right) \log x e \tag{7}\\
& <2 \varepsilon c_{2} \frac{x}{\log x} .
\end{align*}
$$

since it is well known that

$$
\sum_{a y}^{n y} \prod_{p l e}\left(1+\frac{1}{q}\right)=c(b-a) y+\sigma(y) .
$$

For sufficiently small $\varepsilon / 7 /$ contradicts $/ 5 /$, thus our Theorem is proved,

Before finishing my lecture I mention a few problems on additive number theory.

Romanoff ${ }^{16)}$ proved that the density of i integers of the form $a^{k}+p$ a integer, is positive. This result is surprising since the number of solutions of $a^{k}+p \leqslant x$ is less than $\bar{c} x$. Generalising this result I proved ${ }^{17)}$ the following result : Let a_{1}, a_{2}, \ldots be an infinite sequence of integers satisfying $a_{k} \mid a_{k+1}$, then the necessary and sufficient condition that the density of $p^{2}+\mathrm{a}_{\mathrm{k}}$ is positive is that for a certain c and all k

$$
a_{k}<c^{k}, \prod_{\mu \mid a_{k}}\left(1+\frac{1}{p^{2}}\right)<0 .
$$

Kalmar ${ }^{18)}$ raised the problem whether for every $a>1$ the density of integers of the form $p+\left[a^{k}\right]$ is positive. At present I can not answer this question.

Following a question of Tuman I proved ${ }^{17 \text {) }}$ that if $f(n)$ denotes the number of solutions of $n=p+2^{k}$ then $\overline{\lim } f(n)=\infty$, in fact for infinitely many $n f(n)>c . \log \log n$. One would guess that . $f(n) / \log n \rightarrow 0$; but I can not even prove that there do not exist infinitely many integers n so that for all $2^{k}<n, n-2^{k}$ is a prime, it seems that $\mathrm{n}=105$ is the largest auch integgr.

Let $a_{1}<a_{2}<\cdots$ be an infinito sequence of integers satisfying $a_{k}<c^{k}$. Denote again by $f(n)$ tho number of solutions of $n=p+a_{k}$. It seems likely that $\overline{\text { Iim }} f(n)=00$.

Van dor Corput ${ }^{19)}$ and $I^{18)}$ proved thet there exist infiniteIy many odd integers n not of the form $2^{k}+p$, in fact I^{18}) proved that there exists an arithmetic progression consisting only of even numbers no texm of which is of tho form $2^{k}+p$. I also wanted to pro ve that for every r there exists an axithmetic progression no term of which is of the form $p+q_{r}$ where q_{r} has not more than r prime factors. This result would casily follow if I could prove the following conjecture on congruonces which seoms intoresting in itself: To overy constant c thorc exists a system of congruences

$$
\begin{equation*}
a_{i}\left(\operatorname{man} n_{i}\right), c \leqslant n_{1}<n_{2}<\cdots<n_{k} \tag{8}
\end{equation*}
$$

so that every integer satisfics at loast ono of the congruences (8). The simplest such systom is $0(\bmod 2), 0(\bmod 3), 1(\bmod 4)$, $5(\bmod 5), 7(\bmod 12)$.
Doan Swift constructed such a systom with $c=6$, hut the genoral quostion secms vory fifficult.

Linnik ${ }^{20)}$ recently proved that thore exists a number r so that every intogor is off the form $p_{1}+p_{2}+2^{k_{1}}+\ldots+2^{k_{r}}$. It seems very
likoly that for overy r there aro infinitcly many integors not of the form $p+2+\ldots+2^{k_{\text {s }}}$.

One final problom: Is it true that to overy c_{1}, c_{2} and sufficiontly large x thore exist more than $\varepsilon_{1} \log x$ consocutive primes $\leqslant \mathrm{x}$ so that the fifforence botwoon any two is greator than $c_{2}{ }^{2}$. If c_{1} can be chosen sufficiontiy small this is woll known ${ }^{21}$.

FOOTNOTES

1) Bull.Amer.liath. Soc. 53, 604 (1947).
2) Commentationes in honorom. Jrnst Leonardi lindel8f, Helsinki 1929.
3) Sitz. Borliner Math. Ges.29, 1930, 116-125. See also H.Zeits. Blomentare Botrachtungon tbor oine zahlenteoretischo Behauptung von Legendre.
4) Comm. Phys.-Math., Holsingfors, 5625/1931.
5) Quartorly Journal of Math. Oxford Series , 1935, 124-128.
6) Schrifton des Math. Seminars und des Institutos fur angowandte Wath. Bor Univ.Borlin 4, 1938, 35-55.
7) Iondon Hath. Soc. Joumal, 13, 1938, 242-247.
8) Quarterly youmal of Nath. Oxford Sorics 8, 1937, 255-266.
9) Acta Arithmetica, $\underline{2}, 1937,23-45$;
10) Duke Math. Journal 6, 1940, 438-441.
11) Publ. Math. 1, 1949, 33-37.
12) Bull.Ameriliath. Soc. 54, 1948, 371-378. See further P. Erdds ibid 54, 1948, 885-889.
13) Simon Stevin, Wis. Natunrk. Tijdschr. 27, 1950, 115-125.
14) Professor Ricci informed me in the discussion follwing my lecture, that this result is an easy consequence of some previous rosults of this. (Rivista di Mat. Univ. Rarma, 5 (1854) 3-54).
15) E. Iandau, dic Goldbachsche Vermutung und dor Schnirolmannsche Satz, G8ttinger Machrichten, 1930, 285-276. In fact Schnurelmann proves that the numbor ifif solutions of $p_{1}-p_{2}=\xi_{2}, p_{1}<x$
is lose than c $x /(\log x)^{2} \prod_{p / 2}\left(1+\frac{1}{p}\right)$.
16) INath. Annalen, 109 (1934) 668-678.
17) Surma Brasilionsis Mathomaticae, II (1950) 113-123.
18) Oral Communitation.
19) Van der Corput, Simon Stevin, 27 (1950) 99-105, (in Dutch). P. Erdys (in Hungarian) Math. Lapok III (1952) 122-128.
20) Irudy Math. Inst. Steklov, 38, 1951, 152-个69.
21) P. \#rads, Acta Szoged, 15 (1949), 57-63. Sec also M. Cugiani Annali di INatomatica Soric IV, 38 (1955), 309-320.
