בעירת אחדות בתררת המספרים *

פאול ארד

רצים
$b_{1}<b_{2}<\ldots$, $a_{1}<a_{2}<\ldots$ (1

$$
\mathrm{S}_{\alpha}=\left\{2^{\mathrm{n}}+\left[\mathrm{n}^{\alpha}\right]\right\}, \mathrm{n}=1,2, \ldots(, \quad(\operatorname{p}, 0<\alpha)
$$

טתרחקות. הרטמן [1] הוכיח שתים טן הסדרות
 . $\left[a_{t}{ }^{n}\right]$
הרפסן [1] העיר סטאם הסדרות [1, מתרחקות, ים ל-

$$
\begin{equation*}
\left|\frac{\log a}{\log b}-\frac{p}{q}\right|<1 / b^{p} \tag{1}
\end{equation*}
$$

א
 כי ל ל .(q $\log b=$ b
 הת

סן הסדרות [טספר טעםי α בקרא

$$
\begin{equation*}
\left|\alpha-\frac{p}{q}\right|<1 / q^{m} \tag{2}
\end{equation*}
$$

פתיר לכל m>0 בטספרים סלטים p ו .q

$$
x_{t}=\sum_{n=1}^{\infty} 1 / 2^{\left[u_{n} t\right]}, 9 / 10<t<1 .
$$

טשטםטת

$$
\begin{align*}
& \text {, } a_{n} \text { aיף } \\
& b_{n+1}<b_{n}^{c_{1}},\left|a-\frac{a_{n}}{b_{n}}\right|<1 / 2 b_{n}^{2}, \quad\left(a_{n}, b_{n}\right)=1 \tag{3}
\end{align*}
$$

 $\left|\alpha-\frac{p}{q}\right| \geqslant\left|\frac{p}{q}-\frac{a_{n}}{b_{n}}\right|-\left|\frac{a_{n}}{b_{n}}-\alpha\right|>\frac{1}{q b_{n}}-\frac{1}{2 b_{n}^{2}} \geqslant \frac{1}{2 q b_{n}}>\frac{1}{2 q{ }^{1+c_{1}}}$ ，
 טספר－ליוביל，טה שהיה להוכיח，

$$
\begin{align*}
& f_{n}<22^{\left[u_{n} t_{1}\right]} \cdot \text { • } \\
& 2^{u_{n}\left(t_{2}-t_{1}\right)-1} \leqslant 2^{\left[u_{n} t_{2}\right]-\left\lceil u_{n} t_{1}\right]} \leqslant b_{n}^{\prime}<2.2^{\left\lceil u_{n} t_{2}\right]}<2^{u_{n}+1} \tag{4}
\end{align*}
$$

$$
\begin{align*}
& \left|x_{t_{2}} / x_{t_{1}}-a_{n}^{\prime} / b_{n}^{\prime}\right| \leqslant c_{2} / 2^{u_{n+1} t_{1}}<1 / 2 b_{n}^{\prime 2} \tag{5}
\end{align*}
$$

בנסר צתה את $n>n_{0}$ ליショロッ

$$
\begin{equation*}
c_{1}>q /\left(t_{2}-t_{1}\right)^{2} \longrightarrow b_{n+1}<b_{n}^{c_{1}} \tag{6}
\end{equation*}
$$

 $2^{u_{k}} \geqslant \frac{1}{2} m^{1 / 3}$.

$$
\begin{align*}
& m>b_{r} \geqslant \frac{1}{2} 2^{u_{k}\left(t_{2}-t_{1}\right)} \geqslant \frac{1}{4} m\left(t_{2}-t_{1}\right) / 3 \tag{8}
\end{align*}
$$

$$
\begin{align*}
& 2^{u_{1}}<(2 m)^{3 /\left(t_{2}-t_{1}\right)} . \tag{9}
\end{align*}
$$

$$
\begin{align*}
& m \leqslant b_{s}<2 \cdot(2 m)^{3 /\left(t_{2}-t_{1}\right)} . \tag{10}
\end{align*}
$$

 לטדי，טה שמשלים את הו כחת（6）（6）

 （ $1 / \alpha$

א n א

 －（2－
（3

$$
\lim _{n \rightarrow \infty} A(n) / n^{2}=0
$$

כאמת，נוכ

$$
\begin{equation*}
\left.A(n)=n^{\prime} n^{2} /(\log n)^{\alpha}\right) \tag{11}
\end{equation*}
$$

 םיף
 ．$O\left(n /(\log n)^{\alpha}\right)$

$$
a \cdot b, \quad 1 \leqslant a, b \leqslant n
$$

 （

 ．$o\left(n /(\log n)^{\alpha}\right.$ кוֹ
 שםשלים את הוכ כחת (11)

 וז נכּ
 (mod 4) $1=1=0$ (man . (mod 4) 3=

SONE REMARKS ON NUMBER THEORY (Summary)

Paul Erdös

1) Hartman defines that two sequences $a_{1}<a_{2}<\ldots$ and $b_{1}<b_{2}<\ldots$ are far apart if for any A there are only a finite number of solutions of $\left|a_{i}-b_{j}\right|<A$. He proves that there exists a set of real numbers $\left\{a_{\alpha}\right\}, \alpha<\Omega_{1}$ of power κ_{1} so that any two of the sequences $\left[a_{\alpha}{ }^{n}\right], n=1,2, \ldots$ are far apart.

We show without using the axiom of choice that there exists a set $\left\{a_{t}\right\}$ of real numbers of power c so that any two of the sequences $\left[a_{t}\right], n=1,2, \ldots$ are far apart. In connection with the proof the following question arises: Does there exist a field of real numbers of power c no element of which is a Liouville number? I could not decide this question.
2) Let $1 \leqslant a_{1}<a_{2}<\ldots<a_{2 n} \leqslant 4 n$ be $2 n$ arbitrary integers. b_{1}, b_{2}, \ldots $b_{2 n}$ are the other 2 integens of the interval (1, $4 n$). I show that there exists an integer x so that there are at least $n / 2 \mathrm{~b}$'s among the integers $a_{i}+x$. Scherk improved this to $(2-\sqrt{2})$ n. It is not known whether this can further be improved to n.
3) I prove that the number of integers not exceeding n^{2} which gan be written as the product of two integers not exceeding n is $o\left(n^{2}\right)$. I also state the following conjecture: Let $a_{1}<a_{2}<\ldots<a_{x} \leqslant n$; $b_{1}<b_{2}<\ldots<b_{i v} \leqslant n$ be two sequences of integers for which all the products $a_{i} B_{j}$ are different. Is it then true that

$$
x \cdot y<c \frac{n^{2}}{\log n} ?
$$

