
A LIMIT THEOREM FOR THE MAXIMUM OF NORMALIZED 
SUMS OF INDEPENDENT RANDOM VARIABLES 

BY D. A. DARLING AND P. ERD~S 

1. Introduction. The main purpose of this paper is to prove the following 
theorem: 

THEOREM 1. Let X, , X, , = 1’ be independent rnndom variables with mean 
0, variance 1, and a uniformly bounded third absolute moment. Put S, = Xl +X, 
+ . . . + X, and let 

0.1) 

Th.en 

U, = max $ . 
1<k<n 

lim Pr U, 
n-m { 

log log log n 
< (2 log log v-l+ + z2 log log nj1/2 + 

(2 log Ikg Y$1’2 > 

= exp (-e-‘/2(r)+), --m< t <mm 

The corresponding. limit theorem for U: = max,,,,, Sk/n+ is well known [3], 
but the distribution of lr is considerably more delicate, mainly beca.use, speaking 
roughly, S,+/lz$ att’ains its maximum for a relatively small index, and the usual 
crude application of the central limit, theorem will not work. Indeed, the above 
theorem is probably false if we drop the condition on t,he third absolut’e moment, 
even in the case of identically di&ributed Xi . 

Theorem 1 solves? in an asymptotic form, the classical opt,ional stopping 
problem (for example see Robbins [?‘I). Robbins gave a one-sided inequality 
for t’he distribution of Ui’ = max,,,,,, 8,/k”, 0 < t < 1, in the case of normally 
distributed Xi . In the case the Xi satisfy only the central limit theorem, Darling 
and Siegert [2] found the limiting distribution of VA’ in terms of a Laplace 
transform, namely they found an explicit expression for 

The evaluation of t,he limiting dist,ribution of U,, , given by (l.l), is however a 
qualitatively different matter. 

This problem is also closely related to a problem posed by Levy [G] (footnote 
19) on the law of the it,erat.ed logarithm for the Wiener process. Theorem 1 
sheds some new light on the law of the iterated logarithm, and it, may be true 
that the requirement on t’he third absolut’e moment could be replaced by the 
condition that the Xi are such that the law of the iterated logarithm holds. 

Received June 24, 1955. This research was supported in part by the United States Air 
Force under Contract Ko. dF18(600)-685 monitored by the Office of Scientific Research. 

143 



144 D. A. DARLING AND P. ERDijS 

2. The method of proof. The idea behind the proof is quite simple though its 
execution is somewhat devious. We suppose first the Xi are Gaussian, independ- 
ent, with mean 0 and variance 1. We then show there is a sequence { th] and a 
stationary Gaussian stochastic process (the Uhlenbeck-Ornstein process) X(t) 
such that the sequence {&/I?‘), k = 1,2, . . . , n, has the same joint distribution 
as X(&J, k = 1, 2, b . . , n. It turns out’, because certain machinery is available 
for stochastic processes, that the limiting distribution of max,i,il X(T) can be 
computed asymptotically when 1-+ a,. And it is possible further to show that 
this limiting distribution is the same as the limiting dist.ribution of max,SkSn 
X(t,) when n + ~0 , and so t,he same for iY,, when 72 -+ 03. P\‘ext an application 
of the so-called invariance principle of Erdijs-Kac will conclude the proof. 

In Sect,ion 3 below, the first part of t,his program is carried out by proving 
Theorem 1 in the special case of Gaussian random variables. In Section 4 the 
invariance principle is applied. In Section 5 we conclude with a few addit,ional 
remarks, stated without proof. 

3. Proof of Theorem 1 for Gaussian variables. For simplicity we have or- 
ganized the exposition of this section in a series of 10 lemmas which culminate 
in the proof of Theorem 1 for Gaussian variables, 

Let X, , X, , + . . be independent Gaussian random variables with means 0, 
variance 1; put S, = X, -I- X, f b . - + X, . Let X(t), 0 5 t < a, be the 
Uhlenbeck stochastic process, that is, X(t) is Gaussian, stationary, Markoffian 
with mean 0 and covariance E(X(s)X(t)) = exp (- j t - s I); X(0) has its station- 
ary distribution. Let U,, be as in (1.1). 

We define 

(3.1) fk = 3 logk. 

LEMMA 3.1. The sequences { S,/k4 1, { X(t,) }, k = 1, 2, . . * , n, have the same 
joint distribution. 

Proof. Both are Gaussian chains with mean 0 and 

min (Iz, j) 
= ---1/2 = exp (- 13 logj - 

W 
+ log k I) = E(X(t,)X(tj)). 

We define 

(3 2) N(cy) = integer Nsuch that X(t,) < 01, k = 1,2, ... ,N - 1 

X(hd 2 a, N = 1,2, *-’ . 

That is, N(a) is the smallest positive integer such that X(t,) > a. 

LEMMA 3.2. Pr{r/‘n < a) = Pr(N(tr) > 7~1. 

Proof. Obvious. 
We define 

(3 -3) T(a) = sup { t 1 X(T) < LY, 0 I T i t1, 

(3 ‘4) K(cu) = integer K such that t-] 5 !/‘(a) < tx . 
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These last, two definitions make sense since the process X(E) is continuous with 
probability one. 

We define 

(3.5) WI = hxcr) - k(m)-1 . 
Using (3.1) to (3.5) the following relat,ionships are easily established: 

(3.6) K(a) = p*y + 1 = eZTCa) + 6, O<S<l 

L(a) = 3 log K(a) - 3 log (K(cY) - 1) < & , m4 2 2; 

(3.7) L(a) < e-2T(a); 

(3.3) N(a) > K(a). 

Denote by Z’,(Q) a random variable defined the same as T(cY) in (3.3) but 
place of having X(0) with its st,ationary distribution we have X(0) = x. 

LEMMA 3.3. 

in 

where D,(z) is the Weber junction, cf. Whit,t.aker and Watson [8; 3471. 

Proof. This is given in Darling-Siege& [2]. 
We define 

(3 4 

LEMMA 3.4. lim,,, PP{ T(a) > ILL] = e-‘, 0 < y < m, where T(a), 
p(a) are given in (3.3), (3.9). 

Proof. Let 

Now I&(t) = e-12/r and since ~(a) --+ m, LY -+ 0~ the numerator in da([) ap- 
proaches 1 when (Y -+ m for any x. We use the asymptotic expansion of 
D-.(- LY) eaa’4 for (Y -+ CD, 0 5 s < M given in [8; 3481 as follows: 

A 1 --.9(-s - 1) = - 
2a2 + 6.. , B = 1 + (Is + l)(--’ + 2, + 

2a2 
.“ 

and since l/r(s) = s + O(s’), s -+ 0, we get from (3.9) 
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Hence 4,(E) 4 l/(1 -I- 8, u -+ a for all 2. Since (1 + i)-’ is the Laplace trans- 
form of e-’ we obtain the lemma. 

LEMMA 3.5. 

liiPr{Tb) > +} = 1. 

Proof. Follows easily from Lemma 3.4. 

LEMMA 3.6. If E = ~(a) approaches 0 sz@cientZy slowly, lim,,, Pr(N(cu) < 
K(a + e) } = 1. It will su$ce to take t = l/ar2. 

Proof. We calculate the conditional probability p 

p = Pr N(cY) . 

Now !/‘(a) > ~ll(u)/a! means by (3.7) that 

L(ol) 5 exp[-%] = CXP[-?@$e”-/2] =x(a), 

and we denote the two right members by x(a). The event N(a) > K(u + E) 
implies that X(t) having reached the value zy + e has decreased to a value less 
than or within a time interval less than x(a). Then, recalling the stationarity 
of X@>, 

p 5 Pr IX(x(oL)) < a I xKo = a + El . 

The conditional distribution of X(x(a)), given X(0) = QI + E is Gaussian with 
mean and variance, respectively, 

m(a) = (a + e)ebX’ &) 

c*(a) = (1 - e -2x(p)) 5 2x(4. 
Hence 

where 
5: = (a + e)emxcol) , (a + iE)emXca) 

44 - @x(4) 1’2 

+1 - e-“‘“‘) &X(Q) 
= 

@xw1’2 + (2xb~Y 
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where LYE is independent, of E, E < 1, say. Consequently, if e{cu) is such that 
~/x*(a) -+ m then p + 0. It is a.mpIy sufficient to have c = l/a2 from the 
above definition of x(a). Using Lemma 3.5 we thus obtain Pr { N(a) > K(CX + E) } 
+ 0, (Y -+ 00 for such an c, and Lemma 3.6 is proved. 

LEMMA 3.7, lf E = e(cr) approaches zero suficiently rapidly, T(CY f e) - 
T(a) 4 0 in probability. It will sufice to take E = I/Q’. 

Proof. It is sufficient t.o prove E{exp[--s{T(cw + E) - T(a))]) --+ 1, s > 0. 
By t’he same formula used in Lemma 3.3 and the same expansion used in the 
proof of Lemma 4, 

--Sri e or-“8 + s exp ((Y”/~)cY”-‘B 
--(rr+r)=) - --~- --- 

e-““i(a + E)-*A + s 
N pe 

exp [(a + c)“/2](a + E)“-‘B 

and hence if E = 0(1/a) the last expression approaches 1, and the lemma is 
proved. 

LEMMA 3.8. log N(a) - 2T(a) 4 0 in probability. 

Proof. Using (3.8) and Lemma 3.6 we have, for E = l/as, 

Pr {K(a) < N(a) < K(a + E)] + 1, CY 4 m 

and by (3.6) 

pr 

where 0 5 6, < 1, i = 1, 2, and by Lemma 3.7 

in probability. Hence log N(cr) - IT * 0 in probability as asserted. 

LEMMA 3.9. lim,,, Pr(log N(cu) > 2&)y} = e-‘. 

Proof. This follows directly from Lemma 3.4 on using Lemma 3.8. 
We are now ready to prove Theorem 1 for Gaussian random variables. Since 

by Lemma 3.2 we want an expression for Pr (N(a) > n}, by Lemma 3.9 we need 
to solve Z~(ty) y = log n with respect to a! for large n. 
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LEMMA 3.10. If ZJL(LY)Y = log n, Y > 0, then GOT n -+ CD 

a = (2 1oglogn)f + 
log log log n 1% ((4r) $Y)>> 

(3.10) 
2(2 log log n)l” - (2 log log n)“’ 

+ O((log lctg n)l/* > * 

Proof. From (3.9) we have to solve 

2(27# 
-ea2’*y = logn 

a! 

asymptotically for n -+ ~0 with respect to (Y, and this yields after some calculation 
(3.10). 

Now from Lemmas 3.2, 3.9 Pr{ U, < Q) = Pr(N(cr) > nj = Pr{log N(Q) 
> log nf = Pr(log N(a) > 2p(cu)yJ + e+so that 

Pr 
{ 

urn 
log log log n 

< (2 log log n>* + 2(2 log log n)1,2 - 
log ((47#YN 

1 (2 log log n)l” * e-y 

and Theorem 1 follows by putting t = - log (47r)“y). 

4. Use of the invariance principle. In the preceding section we have proved 
Theorem 1 in the special case of Gaussian variables. xu’ow if in the case of 
general X, satisfying the hypotheses of Theorem 1 we prove that the limiting 
distribution of tVm exists and is independmt of the parent distribution of the 
X, we have proved the theorem in the general case. This is the so-called in- 
variance principle of Erd&-Kac [3]. 

In the following, rl , e2 , . . . will denote positive numbers which can be chosen 
independently and arbitrarily small, and c1 , cz , . * . will be positive quantities, 
depending on various parameters, but independent of the distribution of the. 
X, and of n. 

We suppose that X, , X, , *.a are independent, with mean 0, variance 1,. 
E( / Xj I”) < cl . Let 

s, = Xl + x2 + * * - + x, , 

@p(x) = & -1 e+"* dt. 
s 

We need the following two known theorems: 
(a) the Berry-Esseen estimate [l], [4], 

and its multidimensional analogue; cz is independent of k, z and the distribution 
of the Xi ; 
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(b) the “law of the iterated logarithm”; Feller [5], 

Pr 
i 

8% lim (2n log log +H = 1 
> 

= 1. 

We define the function jn(y) 

and the events Ak = AI,,,(y), k = 1, 2, - *. , n, 

(4.2) Ak = A,,(y) = event that Sk/ki > j,,(y) 

and the function g,(y) 

(4.3) g&j = Pr u A, . 
i 1 k<n 

Thus g,,(y) = Pr { t;:, > y 1 where U,, is given by (1.1) and we need to show that 
lim g,(y) exists and is independent of the distributions of the Xi . 

LEMMA 4.1. Given cl > 0 there exists a c3 > 0 such that n > c3 implies 
Pr(Uksch,,,a Ah] < ~,jorally20. 

Proof. Given any c4 there exists a cj such that n > c5 implies Pr (&,. A,) 
< ~,/2 and there exists c6 such that Pr{Sk < 3(k log log Ic)~, k > c,) > 1 - e1/2 
by the law of the iterated logarithm, (b) above, for n > ce . Then 

1 - z 5 Pr {S,/k+ < 3(log log Ic)%, (logn)3 >_ k > cef 

_< Pr (Sl/k” < c7(log log log n>+, (log n)” 2 k > Ca) 

s Pr Lk-Eanlb ALf = 1 - pr ‘r&ggnlj -fikJ- 

Hence given e1 > 0 choose c6 such that Pr (~c6Cb~~logn~J Ak} <E 1/2 then cs 
such that n > c5 implies Pr {uksC. A,) 5 ~,/2 so that finally n > c5 implies 

pr (,&!a)* Ak} ’ +kg Ak} + Pr {,.<kiiwW Ak} < ” 

which proves the lemma. 

LEMMA 4.2. For k > (log n)3 
e --II 

Pr {A,} = 
2 di log n log log n 

(1 + 41)) 

where o(l) -+ 0 uniformly in y and n 2 k > (log n)3, n -+ 0~ . 

Proof. Since Pr fAb] = 1 - Fk( j,(y)) the Berry-Esseen estimate, (a) give8 

1 fi (Ad - (1 - Wn(Y>>) I < j$ 
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and from the elementa.ry formula 

we obtain on using (4.1) 

1 - Nfn(YN = 2(7$‘” 1,;: log log 72 (I + O(1)) 

so that for k > (log n)” we obtain the lemma. 
Let l > 0 be given. We define a,n integer N = N,(c;) and a sequence of 

integers Ylj = ni,,(.$ as follows 

(4.4) N = iv*(() = 
[ 

log n log log n 

(4.5) n, =n,,&) = [exPci,~ogn)],' 
1 , 

j= 1,2, a.- ,-v. 

LEMMA 4.3. Given ez > 0 there exist c8 ) cg > 0 such that n > c8 , f < cg imply 

Pr U 9, - U A,, < E2 . 
i b<n 1 < v i 

where h, + 0 uniformly in j, y, 6 (but not f) from Lemma 4.2. It follows then 
that 

P(Z) 2 max PLC,,, ,,(Y) I &,,(Y + 6)) -I- 1 - 6’ + h, . 
(loun)~<nicn 

n’ow given Ed > 0 choose 6 so that 1 - em6 = e,/3. We have clearly 

W:,+,,~Y) I A,(Y + 6)) I WL+, - S,, < (ni+l)ifn(y) - (nJ4f,(y + S)) 

and from (4.1) and (4.5) it follows that, for any t > 0, 

h+l>“2f7iY> - h>““fn(Y + 6) = 3 p2 
(n,,, - nj)“2 - $2 + k&I 
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where h-, + 0 uniformly in j, 6. We notice that S,,,, - S,< has mean 0 and 
variance ni + I - ni , and that for any random variable Y n:it,h mean CI and 
variance 1, and any M > O! 

P(Y 5 -M) < & * 

Choose then M > 0 such tha’t 

1 
m=;, 

then cg , cl0 such that’ $j < cD , n > cl0 imply 

3 p2 - t$ + It, 5 -iv 

for all nj > (log n>3. Finally choose es (2 cl”) such that n > c8 implies h, 
< ~,/3 and the lemma is est,ablished. 

LEMMA 4.4. Given -zg > 0, f > 0, there exist cl1 and cl2 such that n > cl1 , 
a > cl2 imply Pr tuniSn Aj.n (Y + a>) I ~3 . 

For any a > 0 the first, t,erm can be made less than es/2 by making n > c13 
(Lemma 4.1) and since 

Pr I14ni.n(y + 4) = 2;$qq (1 f f-m, nj > (log@ 

by Lemma 4.2 and (4.4), the second term is less than c,* e-“/i for n > c,~ . Thus 
choose n > cl1 = max (cl3 j c,~) and cl2 such that cl4 e-““/[ < ca/2 and the 
lemma is proved. 

Let us next define events Bj for any a > 0, E > 0, j = 1, 2, m.. . 

(4.6) Bj = -&j,,(y) - ~4,j.J~ + 4 ifn, 5 n 

= null event ifn, > n. 

The preceding four lemmas assert that given el > 0 there exist n, a sufficiently 
large and E > 0 sufficiently small so that 

j cJiL(Yl - p~{~i>~Jq < Eq * 

LEMMA 4.5. Given Ed > 0, a > 0, f: > 0 there exist r, cl0 such that n > cl6 
implies 

where T < v < (log log n)2 and (log n)” < n, . 
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where 

p 
v 

= hj+y)“2.fn(y) - h)‘?f~(y + a> 
(nj;, - nj)1’2 

= (nj+J*‘* - (ny 

@j+y , 

_  ,):/2 fn(Yl - G, ‘“i ,,)“’ (2 log ;gn)l/ i * 

I*” 

We consider ni > (log n)3 and treat two cases separately. 
1. r < v < log log n. Now when u < log log n using (4.4) a simple est,imate 

shows 

&) I'2 - (ni)1'2 Cl9 l/2 

bj+v - 4 i7r- 2 (log log n)l’z 

and hence 

p, > c1gP - $ > c,gv*‘2 

for allj, cl9 independent ofj, when c 22 < v < log log n, cz2 independent of j. Thus 

by(j) < c23e-vcaa, c2z > v > log log n, Go > 0 

where czocz3 depend on E, 8, a but not on j, n. Consequently there exists an 
r independent of j, n such that for any c5 > 0 

2. log log n 5 v < (log log n)“. In this case we obtain 

P” 2 (1 - ($z)f*(Y) - C2*($-)“^ I C,,f”(Y>, 

where cz5 is independent of n, j, so that 

by(j) < cp6 exp C-c27 log log 4 5 C26 
(log n)“’ ’ 

and hence for n > czg , c2g independent of j, 
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Combining these two results the lemma is proved. 
Also, when (log log n)’ < v we have p, = fn(g)(l -I- o(l)) and 

and hence 

Tq>(1&n)3 

where czO is independent of j. 
An easy extension of this last result, using the multidimensional central 

limit theorem, shows that, the events B, are asymptotically mut.ually independent 
if the indices are sufficiently separated. We have, namely, from the preceding 
lemmas 

Pr {Bit = $ (1 + o(l)) and Pr (Bi,Bjz ... Bjk) = t$)*(l + O(l)) 

if min 1 j, - j, 1 > (log log n)? cB, depends on y, a, f but not the distribution 
of the Xi nor on n. The function o(l) may depend on the distribution of the 
Xi and not approach zero uniformly in the parameters. 

Now introduce events Dk as follows, for any r 2 1. 

(4.8) Dk = &II:-1B:-, s -1 B:-, ?c>r 

D, = B,B:-, . . . B: k _< r. 

Clearly Pr (ukSN Bk] = Pr {Vi,, Di] and also Pr {Dj,Di, .. . Dik} = 0 
unless min, , , 1 j, -j,I > r;butinanycasePr (Di, ..a D;,] 5 Pr (Bi, .*. Bi,). 

Given ee > 0 there exist 6, a, T, cS2 such that 

and 

Pr { u 
n>ni>(lopn)’ 

Di} = ul - up + u3 - . = * 

where 

Now, as with the events Bi , the Di are asymptotically independent if the 
indices have a mutual separation at least (log log n)2, and u1 = c33 (1 + o(l)) 
where cS3 depends on r, a, f but is independent of t,he dist,ribut,ion of the Xi . 
It is well known that, in addition 
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We now suppose k 2 2 a,nd write trk = a: + a;‘. The following estimates 
result directly from the preceding lemmas: 

where c3., is independent of the dist,ribution of t,he X, I and of n. It follows 
that lim,,, g& = 76 exists, but the TV may be unbounded functions of [, a, T. 

The final argument proceeds as follows: choose et > 0 arbitrary, then choose 
<, n, a so that 1 g,(y) - Pr {untn,,(Logina 0, ] j < r7/2 which is possible by 
Lemmas 4.1-4.4. Then choose Ic, n so large that a:’ < ~,/4, and finally by 
Lemma 4.5 and the above inequality on LT: , choose r so large that a: < +/4. 
We have then / g,(y) - u1 + u2 - - * 1 + (- I)k ukml i < E: and hencelim g,(y) = 
g(y) exists, and since lim gi = 7i is independent of the distribution of the X; 
so is g(y), and the proof of Theorem 1 is complete. 

5. Additional remarks. It is possible to get a theorem for V,, = maxISkSn 
1 S, I,&? similar to Theorem 1 following an identical pattern as above. We 
get,, in fact 

THEOREM 2. Let the Xi be us in Th.eorem 1 and set 

V, = max 1 X, I/k”‘. 
1ik<n 

Then 

lim Pr 
72-m 1 

log log log n 
Jim < (2 log log 4”: + 2(2 log log n)l/5 + (2 log :og n)l” 1 

= exp (- -$e-‘). 

We indicate also t,he two following strong analogues to Theorem 1, which 
we state here as conjectures. Define Cm as in (1.1) and let the X, be as in 
Theorem 1. 
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1. There exists a c1 > 0 such that the inequality 

log log log n 
II, > (2 log log n)1'2 + 2(2 log tog n)l,a + 

(c, - /I.) log log log log n 
(2 log log n)1’2 

holds for infinitely many n, or only finitely many n, according as h > 0 or h < 0, 
with probability 1. 

2. There exists a cz > 0 such that the inequalib 

log log log n 
U% > (2 log log nY + 2(2 log log n)1,2 - 

(cp + Il.) log log log log ‘n -- 
(2 log log n)1’z 

holds for all except finitely many n, or fails for infinitely many n, with probability 
1, according as h > 0 or h < 0. 
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