
A PARTITION CALCULUS IN SET THEORY

P. ERDÖS AND R. RADO

1 . Introduction . Dedekind's pigeon-hole principle, also known as
the box argument or the chest of drawers argument (Schubfach-
prinzip) can be described, rather vaguely, as follows . If sufficiently
many objects are distributed over not too many classes, then at least one
class contains many of these objects . In 1930 F. P. Ramsey [12] dis-
covered a remarkable extension of this principle which, in its simplest
form, can be stated as follows . Let S be the set of all positive integers
and suppose that all unordered pairs of distinct elements of S are dis-
tributed over two classes . Then there exists an infinite subset A of S such
that all pairs of elements of A belong to the same class . As is well known,
Dedekind's principle is the central step in many investigations . Simi-
larly, Ramsey's theorem has proved itself a useful and versatile tool
in mathematical arguments of most diverse character . The object
of the present paper is to investigate a number of analogues and ex-
tensions of Ramsey's theorem. We shall replace the sets S and A by
sets of a more general kind and the unordered pairs, as is the case al-
ready in the theorem proved by Ramsey, by systems of any fixed
number r of elements of S. Instead of an unordered set S we consider
an ordered set of a given order type, and we stipulate that the set A
is to be of a prescribed order type . Instead of two classes we admit
any finite or infinite number of classes . Further extension will be ex-
plained in §§2, 8 and 9 .

The investigation centres round what we call partition relations
connecting given cardinal numbers or order types and in each given
case the problem arises of deciding whether a particular partition
relation is true or false. It appears that a large number of seemingly
unrelated arguments in set theory are, in fact, concerned with just
such a problem . It might therefore be of interest to study such rela-
tions for their own sake and to build up a partition calculus which
might serve as a new and unifying principle in set theory .

In some cases we have been able to find best possible partition
relations, in one sense or another . In other cases the methods avail-
able to the authors do not seem to lead anywhere near the ultimate
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Eastern Sectional Meetings ; received by the editors May 17, 1955 .
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truth . The actual description of results must be deferred until the
notation and terminology have been given in detail . The most con-
crete results are perhaps those given in Theorems 25, 31, 39 and 43 .
Of the unsolved problems in this field we only mention the following
question . Is the relation X-*(wo2, wo2) 2 true or false? Here, A denotes
the order type of the linear continuum .

The classical, Cantorian, set theory will be employed throughout .
In some arguments it will be advantageous to assume the continuum
hypothesis 200=K, or to make some even more general assumption .
In every such case these assumptions will be stated explicitly .

The authors wish to thank the referee for many valuable sugges-
tions and for having pointed out some inaccuracies .

2 . Notation and definitions . Capital letters, except A, denote sets,
small Greek letters, except possibly ir, order types, briefly : types,
and k, 1, m, n, K, A, A, v denote ordinal numbers (ordinals) . The letters
r, s denote non-negative integers, and a, b, d cardinal numbers
(cardinals) . No distinction will be made between finite ordinals and
the corresponding finite cardinals . Union and intersection of A and
B are A +B and AB respectively, and A CB denotes inclusion, in
the wide sense. For any A and B, A -B is the set of all xEA such
that xJB. No confusion will arise from our using 0 to denote both
zero and the empty set . If p(x) is a proposition involving the general
element x of a set A then (x :p(x) } is the set of all xEA such that
p(x) is true .
n and A are the types, under order by magnitude, of the set of all
rational and of all real numbers respectively . A will also be used freely
as a variable ordinal in places where no confusion can arise . The rela-
tion a <of3 means that every set, ordered according to 0, contains a
subset of type a, and a$ 0 is the negation of a <= f3. To every type a
there belongs the converse type a* obtained from a by replacing every
order relation x < y by the corresponding relation x>y . We put

[m, n] = {v :m<_v<n}

	

for m<n.

The symbol

I xo, xi, . . . } <

denotes the set { xo, x 1 , • • • } and, at the same time, expresses the
fact that xo <x, < • • • . Brackets { } are only used in order to define
sets by means of a list of their elements . For typographical con-
venience we write

E [x C- A ]f(x)
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instead of ExEA f(X), and we proceed similarly in the case of products
etc. or when the condition x CA is replaced by some other type of
condition .

The cardinal of S is I SI , and the cardinal of a is I al . For every
cardinal a, the symbol a+ denotes the next larger cardinal . If a = b+
for some b, then we put a =b, and if a is not of the form b+, i .e . if
a is zero or a limit cardinal, then we put a=a. Similarly, we put
k- = l, if k=l+1, and k- =k, if k=0 or if k is a limit ordinal . If S
is ordered by means of the order relation x < y, then the type of S
is denoted by S< and, if no confusion can arise, by S . For any a>1
we denote by a' the least cardinal I n I such that a can be represented
in the form E[v<n]a, where a.<a for all v<n. This cardinal a', the
cofinality cardinal belonging to a, is closely related to the cofinality
ordinal cf(/) of an ordinal 3 introduced by Tarski [17] . A regular
cardinal is a cardinal a such that a' =a . The least ordinal of a given
cardinal a is the initial ordinal belonging to a . Initial ordinals are
the finite ordinals and the infinite ordinals co of cardinal N Y . We put

[S]- = {X :XCS ; I X I = a} .

In particular, [S] a=0 if I SI <a. The relation

A = J:'[v < k]A,. = Ao +'A l +'

means, by definition, that A = E [v < k ]A Y and, also,

A,A,.=0

	

()1<v<k) .

Fundamental throughout this paper is the partition relation

a-* (b, d) 2

introduced in [6] . More generally, for any a, b,, k, r the relation

(1) a --> (bo, bi,

is said to hold if, and only if, the following statement is true . The
cardinals b, are defined for v<k . Whenever

ISI=a;

	

[S]r=Z[v<k]K,

then there are B CS; v < k such that

I B I = b, ;

	

[B]r C K,.

For k <coo we also write (1) in the form

a -+ (bo, b1, . . . , bk-1 )r l
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and if k is arbitrary, and b,=b for all v<k, then we may write (1) in
the form

a -* (b) k .

We also introduce partition relations between types . By definition,
the relation

(2)

	

a

	

($o, 01, . . . )k

holds if, and only if, f3, is defined for v <k and if, whenever a set S is
ordered and

S=a ;

	

[S]r=~[v<k]K„

there are B CS ; v < k such that

B = #Y,

	

[B]r C Ks,.

If k <wo, or if all 0, are equal to each other, we use an alternative
notation for (2) analogous to that relating to (1) . The negation of (1),
and similarly in the case of (2), is denoted by

r
a -- (bo, b1, . . . ) k .

We mention in passing that the gulf between (1) and (2) can be
bridged by the introduction of more general partition relations re-
ferring to partial orders . These will, however, not be considered here .

If a >=Ro then, clearly, a' is the least cardinal M n such that a+->(a) "n .
Also, tt,„ is regular if, and only if, for all n <m . Finally,
the relation a-00', bi , • • • )t is equivalent to E[P<k]b,<a.

We now introduce some abbreviations . Let S be ordered . Then, for
xES,

L(x) = { y : {y, x}< C S} ;

	

R(x) = {y : {x, y}< C S} .

If, in addition, [S]I=E [v < k ]K„ then, for B CS; v < k,

F,(B) _ I :! : A C B ; [A ]r C K, } ,

[K,] = F,(S) .

In the special case r = 2, we put, for x E S; v < k, L,(x) _ { y : { y, x } <
EK, } ; R,(x) = { y : { x, y } < GK, } ; U, = L,+ R, . U, is independent of
the order of S . If 0P6ACS, and if W(x) is any one of the functions
L, R, L,, R„ U„ then we put

W(A) = 11 [x E A ]W(x) .

Also, W(0) = S . If n <wo, then we write W(xo, • • , x.- I ) instead of
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W({ xo, • • • , x .-i I) . It will always be clear from the context to
which ordered set S and to which partition of [S]r these functions
refer. We shall occasionally make use of the notation and the calculus
of partitions (distributions) summarized in [5, p . 419] . The meaning
of canonical partition relations

a _ * (O) r

and that of polarized partition relations

ao I (boo bol . .

at--11

	

l bt_l .o

	

. . . , x

will be given in §§8 and 9 respectively. The relation a---((3)a will be
defined in §4 .

3. Previous results .

THEOREM 1 . If k <wo then

	

[12, Theorem A] .

THEOREM 2 . If k, n <wo, then, for some f =f (k, n, r) <No,

f -> (n) I

[12, Theorem B] .

THEOREM 3. (i) If a >t No, then a-*(No, a)2 .
(ii) two)'

(i) is proved in [2, 5 .22] . This formula will be restated and proved
as Theorem 44 .

(ii) is in [3, p . 366] and will follow from Theorem 36 (iv) .

THEOREM 4. (i) If a>_No, then (aa)+-->(a+) a .
(ii) If a>_No, then aa-i-3(3)Q .
(iii) If 2s"=N„+1, then ~,+2-~( »+1, Kri+2)2

(i) is given in [3 ] and will be deduced as a corollary of Theorem 39 .
(ii) is in [3, p . 364 ], and (iii) is [3, Theorem I I ] and follows from

Theorem 7(i) .'

THEOREM 5 . If 0 SX ; 10 ( >No, then, for a <wo2 ; ,Q <wo ; y <w,,
(i) 0-(wo, y)2 •

(ii) 0-1(a, R)2 .

1 The partition relations occurring in (i) and (ii) are to be interpreted in the ob-
vious way . Their formal definition is given in §4 .

43 1



432

	

P. ERDÖS AND R . RADO

	

[September

(i) is [5, Theorem 5 ], and (ii) is [5, Theorem 7 ] . Both results will
follow from Theorem 31 .

THEOREM 6 . 77-(No, n) 2.

This relation, a cross between (1) and (2), has, by definition, the
following meaning . If 5=97 ; [S]2=Ko+Ki, then there is ACS such
that either

JAI =No ; [A ] 2 C Ko

or
A=n;[A]zCK1 .

This result is [5, Theorem 4] .

THEOREM 7. If a _>_ N o , and if b is minimal such that ab >a, then
(i) a+-(b, a+) 2
(ii) a'-->(b+, a+) 2 .

These results are contained in [6, p. 437] . (i) will follow from
Theorem 34 . 2

THEOREM 8 . If 2 14 =N,+ 1 for all v, and if a is a regular limit number'
then, for every b<a, a--~, (b, a) 2 .

This result is [6, Lemma 3], and will follow from Theorem 34 .

THEOREM 9. If OSX ; 1 ,01 =IAI, then

	

4)1 .

This result is due to Sierpinski who kindly communicated it to
one of us . It will follow from Theorem 29 . Our proof of Theorem 29
uses some of Sierpinski's ideas .

THEOREM 10 . For any a, a-+*(No, No)t~0 .

This is in [5, p . 434] . The last result justifies our restriction to the
case of finite "exponents" r .

4. Simple properties of partition relations .

THEOREM 11 . The two relations

(1) a _> (130, 01, . . . )k

are equivalent.

(u) a -> (130, l31 , . . . ~ k

2 By methods similar to those used in [17] one can show that (i) b ;5a' for all
a > 1, (ii) b =a' for those a > 1 for which d <a implies 24 <a .

' It is not known if regular limit numbers >No exist or not . Cf . [13, p. 224] .
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PROOF. Let (i) hold ; 3<=a* ; [S]r= E[v<k]K, . Then S> =a.

Hence, by hypothesis, there are ACS ; v<k such that A> =(3, ;
[A]rCK, . Then This proves (ii), and the theorem follows
by reasons of symmetry .
THEOREM 12 . Let a- (0o, 01,

	

)k ; a-<_a (1) ; k>_k(1) ;

Then
(1)

	

(1) ,~(u

	

r
a

	

•-"> (00 , N1 ,

	

)k(1) .

An analogous result holds when the types a, 0, are replaced by cardinals .

PROOF . It suffices to consider the case of types . Let

S(1) = a(1) ;

	

[S
(1) ]r = Lr[v < k (l) ]Kp1) .

Then there is SCS(1) such that S=a. Then
[S]r =E [v < k]K„

where K,=K(1'[S]r for v<k(1) , and K,=O otherwise. By hypothesis,
there are ACS; v < k such that

A = (3, ;

	

[A ]r C K,.

If P>F) ,k (1) , then I A I = 10,1 z r ; 05z [A ]r CK, which is a contradiction .
Hence v<k (1) . There is A (1) CA such that A(1)=~3(1) . Then [A(1)]r
C [A]rCK,CKy 1) , and the assertion follows .

THEOREM 13. If a-->(O0 , fl1, • • )k then

1 «I-~(I$oJ, I~1~, . . .)

PROOF . Let I SI = Jul ; [S]'= E [v < k ]K,. We order S so that
S=a. Then there are ACS; P <k such that 7=0, ; [A ]'CK, . Then
A I = 10,1 , and the theorem follows .

THEOREM 14 . If (3, is an initial ordinal, for all v < k, then the two rela-
tions

(3)

	

m , Pot oil . . . )x,

(4)

	

I m I - (I l3o I , loll , .

are equivalent .

PROOF. By Theorem 13, (3) implies (4) . Now suppose that (4)
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(v < k (1) ),
(k (1) < v < k) .
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holds. Let 3=m ; [S]r=E [v <k]K, . Then SI = I m I, and hence, by
(4), there are ACS ; v < k such that I A I = 0,1 ;[A ]TCK, . Then, as
/3, is an initial ordinal, A z(3„ and there is BCA such that W=O,. This
proves (3) .
THEOREM 15 . If i +a-*(1 +0o , 1+#,,

	

then

a

	

Q p
- (NO, N1, . . . )k

r

In this proposition, 1+a and 1+13, may be replaced by a+1 and 0,+1
respectively . Also, the types a, 0, may be replaced by cardinals .

PROOF . Let S=a. Let xo be an object which is not an element of S,
and put So = S+ { xo } . The order of S is extended to an order of So
by stipulating that x0EL(S) . Then 30=1+a. Now let [S] r
= E[v<k]K, . Then [S o ] 1+r= E[v<k]K0„ where Ko,= { {yo, • • • ,
yr } < : { y1i • • • , yr } EK,} . If 1+a , (1+,do, 1+J31, . . . )k' +r , then
there are AoCSo ; v<k such that Ao=1+#,; [Ao] 1+

TCK0,. Then
Ao= {yo} +A ; yo EL(A) ;

A = 0, ;

	

[A ]r C K, .

This proves the first assertion .
Next, if a+1-3(13o+1, • • • )k'}1 , then, by Theorem 11 and the

result just obtained, we conclude that

1+a -~(1+00, 1+$i, . . .)kr

a* --~ ( NO, . . . )k ;

	

a- (00, . . . )k,

Finally, let 1 +a-->(1 +bo, 1 +b 1 , Let a and ,B, be the initial
ordinals belonging to a and b, respectively. Then, by Theorems 14
and 13, l+a-+(1-~-~io, • . . )lk+r

r
a -, (80, . . . )

r
k ;

	

a - (b0, . . . ) k ,

THEOREM 16. If

	

(31,

	

)i+a ; l3o--'(?o, Y1,

	

)i, then

02,a --4 (y0, 71i .

	

, 01),

	

. . . )
r
l+k •

In this proposition the types a,

	

y, may be replaced by cardinals.

In formulating the last theorem we use an obvious extension of the
symbol (2) .
PROOF . We consider the case of types . Let S=a,

[S]r=Z[x<I]Kox+Z[0<v<1+k]K, .

Put Ko =E [)t < l ]Koa . Then, by hypothesis, there are A CS; v < 1 +k
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such that A =(3, ; [A ] rCK,. If v>0, then this is the desired conclusion .
If v=0, then A =ao ; [A ]rC F, [A <l]Koa and so, by hypothesis, there
are B CA ; A < l such that B =y,, ; [B ]rCKoa which, again, is a conclu-
sion of the desired kind . This proves the theorem .

It is clear that, instead of replacing in the relation a- 3 o ,
0i, • • • )i+, a single type /3o by a well-ordered system of types
To, I, • • • , we could have replaced simultaneously every type 0, by
a system of types and in this way obtained a more general form of the
transitive property of the partition relation than that given in Theo-
rem 16 .

THEOREM 17. If a-->(13o, #j , (A<l), where A-->p), is a
one-one mapping of [0, 1] into [0, k] such that r for vE [0, k]
-{pa :A<l}, then

ra-> (yo, 7i,

	

. . ) t .

In particular, the condition on the mapping A-+p), is satisfied
whenever this mapping is on [0, k] .

The types a, 0, may be replaced by cardinals .
PROOF . Let N= {p ?, :A < l } , and let v+o- , be the mapping of N on

[0, 1] which is inverse to the given mapping 'X--*px . Now let 3=a ;
[S]r=>[A<l]Kx . Then

[S]r = E [v C N]K,, + ~ [v C [0, k] - N]0 .

By hypothesis, there are ACS; v < k such that A =0, and either
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In case (ii), r $ A =fl, which contradicts the hypothesis . Hence (i)
holds, A=y?, ; [A]rCKx , where A=v,<l, and the result follows .

We note that the hypothesis relating to 0,Zr cannot be omitted,
as is seen from the pair of the obviously correct relations 4->(1, 3, 3) 2 ;
4+>(3, 3) 2.

COROLLARY . If

	

I kI = I II, then

This shows that, as far as k is concerned, the truth of the relation
depends only on I k I . We are therefore able to introduce the

relation

a -> (0) a
which, by definition, holds if, and only if,

(i)

or
(ii)

vCN ;

v EE N ;

[A]rC K,,

[A] , = 0.
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a - (0)k
for some, and hence for all, k such that I ki =d . A similar remark
applies to the relation

a --0 (b)a .

THEOREM 18 . Let k <coo ; a-5($o, 01, - - - ) k' ;

S=a ;

	

[S]r=Ko+ . . . +Kk-1.

Then there are sets 117, NC [0, k ] such that I MI + I NI > k,

0,G [K Y ]

	

form EM;vEN.

In the special case k = 2 we have either

(i)

	

po E [Ko] [K1]

	

or

	

(ii) 01 E [Ko] [K1]

or
(iii)

	

Oo, 0 1 E [Ko ]

PROOF . Let

or (iv) $o, 01 E [K1] .

P, _ {µ :p. < k ;$,, E [K,]},

Q,

	

[0,k]-P,

	

(v<k) .

We have to find a set NC [0, k ] such that 111 [v E N]P4 I > k - I NJ
or, what is equivalent, I Z [vEN]Q,I < I NJ . If no such N exists, i .e .
if I Z [vEN]Q,.I __>- I NJ for all NE [0, k], then, by a theorem of
P. Hall [8], it is possible to choose numbers p,EQ, such that p„5zp,

(ta <v < k) . Then $, y EF [ K,] (v < k) . On the other hand, by Theorem 17
and the hypothesis, a-(Op, ,0,,, • • )'A; . This is the required contra-
diction .
THEOREM 19 . Let a---> (0, y) 2 , and suppose that m is the initial ordinal

belonging to I a I . Then at least one of the following four statements
holds .'

(i) 0 < wo

	

(ii) 7 < coo

	

(iii) $, 7 < a, m

	

(iv) $, 7 < a, m* .

PROOF . Let S be a set ordered by means of the relation x <y and
also by means of the relation x<<y, and let the corresponding order
types of S be S=a; S<.= m. Then [S] 2 =K o+'K1 where Ko = { {x,
y } < : { x, y } << C S } . Then, by Theorem 18, we have at least one of the
following four cases .

Case 1 . 0E [Ko ] .< [K1 ]< . Then there are sets A, B ES such that
T<=A«=$ ; B< =B» =$, and hence 0=A«<<S«=m . Then $ is

4 (iii) means that (3_<_a ;,6S m ; y_<_a ; y_<_m .
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an ordinal. If (3 2--!:coo, then the contradiction c6* :-50* =B<< S S« = m
follows. Hence (3 <wo .

Case 2 . y E [Ko ]< [K1 ]< . Then, by symmetry, y <wo .
Case 3 . 0, yE [Ko]<. Then, for some sets A, BCS, A<=A« =(3 ;

B< = B<<=y, and 0, y5 a, m .

Case 4. 0, yE [K 1 ]< . Then, similarly, A<=A,~=B ; B<=B„=y ;
3, y<a,=a, m* . This proves the theorem .

COROLLARY . For every a,

(5)

	

(r - 2) + a -+-> (co o , (r - 2) + coo`)'

	

(r >= 2) .

For none of the relations (i)-(iv) of Theorem 19 holds if (3=wo ;
y=wo* . Hence a-->(wo, Coo * ) 2 , and Theorem 15 yields (5) .

The method employed in the proof of Theorem 19, i .e. the defini-
tion of a partition of [S] 2 from two given orders of S, seems to have
been first used by Sierpinski [15] . In that note Sierpinski proves
K,-F->(81, N1 ) 2. Cf. Theorem 30 .

THEOREM 20. (i) If 0o 5a ; 10o ' <r, then a->(f3o, 01, . . . )k holds for
any k, (31, /32,

(ii) If 3,=r for v <k, then the two relations
r

(6)

	

a --* (/3o,
/~
N1,

. .
. , yo, 71, . . . )k+t,

(7)

	

a -* (yo, yi, . . . ) t

are equivalent .

PROOF OF (i) . If S=a ; [S]'= E [v <k]K , then there is ACS such
that A =(30. Then [A ]' = 0 C K o .

PROOF OF (ii) . By Theorem 12, (6) implies (7) . Now suppose that
(7) holds . Let S=a ; [S]r= E[v<k+l]K, . If there is v<k such that
K,X 0, then we can choose AEK„ and we shall have ACS; A=(3, ;
[A]rCK, . If, on the other hand, K,=O for all v<k, then [S]'
=E[X<l]Kk+T, and there exist, by (7), BCS; X<l such that
B=yx ; [B]'CKk+x . This proves (6) .

THEOREM 21 . Let

(8) a

	

,q- (No, Rl, . . . ) k" -

Then either (i) there is vo<k such that 3 0 S a ; I(3, o 1 <r, or (ii) (3,5a
for all v<k .

REMARK. If (i) holds then (8) is true trivially. For, let S=a ;
[S]'= E [v < k ]K, . Then we can choose B CS such that Then
[B]r=OCK,, . We see, therefore, that the relation (8) need only be
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studied in the case in which (3, <ca for all v <k. In particular, if a is an
an ordinal, then we may assume, if we wish, that every ,Q ; is an
ordinal .
PROOF. Suppose that (ii) is false . Then there is vl<k such that

j3,, ;$a. Let 3=a, and put [S]r= E' [v<k]K,, where K,,= [S]'' .
Then, by (8), there are BCS; vo<k such that [B]'CK,, .
Then #, o =B<S=a ;vo54v, ; [B]''=0 ; 10,1 =IBI <r . Hence (i) holds.

THEOREM 22 . The following two tables give information about a num-
ber of cases in which the truth or otherwise of any of the relations

(9)

	

a , (po, 01 . . . .
) k,

(10)

	

a ---+ (bo, b 1 , . . .
)k'

can be decided trivially .

k=0 :

k>0 :

#,<a
b,5_a

w=a
b,=a

wZa;Po$a
b,Za; bo>a

3 a
b,>a

,Bola
b o <a

j3o :5a
bola

04-
bo>a

tio ;hr
bo<r

r=0 + -

0<r<lal
O<r<a

- ± +

r=Iai>0
r=a>0

+ -

r> 1 . 1

-

r>a
- +

r < __ IaI
r 5 a

r > I aI

r > a
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The proofs may be omitted . When a row or column is headed by
two lines of conditions the first line refers to (9) and the second line
to (10) . Every condition involving the suffix v is meant to hold for
every v <k . An entry + means that both, (9) and (10) are true, and
an entry - means that both, (9) and (10) are false . The one entry ±
marks the only case worth studying, i .e. the case in which (9) or (10)
can be either true or false, and this for nontrivial reasons . In each
row the entries are chosen in such a way that all possibilities are
covered . In the column headings we may, of course, replace (3o and
bo by (3,, and b, respectively, for any choice of vo < k . The case k = 0
has, obviously, only curiosity value but is included for the sake of
completeness .

5 . Denumerable order types .

PROOF . We may assume n > 0 .
(a) In order to prove (12), consider the set S= {(v, X) :v<n ;

A <wo } , ordered alphabetically : (v, X) < (v,, A,) if either (i) v <v, or
(ii) v=v, ; X<A,. Then [S]2=Ko+'K,, where K, is the set of all sets
1(p, A), (v, ),,) }ACS. Then, clearly, 3=w on ; n+1(E[Ko] ; wo+1
E [K, ], and (12) follows .
(b) We now prove (11) . Let the set A= [v<n]A, be ordered,

A,=wo for v <-n, and A,CL(A,+,) for v-{-1 <n . Suppose that [A] 2
=Ko+K, ; nEF [K o ] ; aEE [K, ] . We want to deduce a contradiction .
By Theorem 1, there is, for every v <n, a set B,C [A, ] 140 such that

[B, ] 2 CK,,, for some p,<2 . Since n EE [Ko ], we have p, =1 . Let
A<µ<n. We define an operator p au as follows . There is at least one
set BCB,,+B„ such that I BB, =No ; [B] 2 CK,. For instance, Ba is
such a set B. Since aEE [K, ], we have, for every such B, wo SB<a
<wo2 . Hence we can choose B such that B is maximal . We fix such
a B by any suitable convention and put

PA„(Bo, B1, . . . , B.-I ) _ (Co, C1, . . . , Cn-,),

where Cx=BB,, ; C„=B„-B, and C,=B, for v5-,~X, tc . Then C,=wo ;
CxL,(x) I <Ko for v <n ; xEC,, . We now apply, in turn, all

(_)

THEOREM 23 . If n <wo ; a <wo2, then

(11) won -> (n, a) 2 ,

(12) won -'4 (n + 1, coo + 1) 2 .
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operators px,,, corresponding to all choices of X, u, to the system
(Bo, . • . , B,,_1), applying each one of the operators, from the second
onwards, to the system obtained by the preceding operator, and
obtain, as end product, the system (Do, . . . , D„_1 ) . Then D,CA,;
D,=wo (v<n) ; I D~L I (x)I <Koforv<n ;xED,+1+ . . . +D„_1 . Hence
it is possible to choose, in this order, elements x„_l, xm-2,

	

xo such
that

x, C D~Lo(xv+l, x,+2,

	

. , x„-1)

	

(v < n) .

Then, putting D= {x,, :v<n } , we have D=n ; [D] 2 CKo and therefore
n E [Ko ] which is the required contradiction .

THEOREM 24. If a <wo4, then

(13)

	

a +> (3, wo2) 2 ,

(14)

	

wo4-i (3, coo2) 2 .

This theorem is a special case of the following theorem .

THEOREM 25 . Let 2=<m, n<coo, and denote by lo =lo(m, n) the least
finite number l possessing the following property .5

Property P,,,,, . Whenever p(X, µ) <2 for {a, u} C [0, l], then there is

Moreover, if 11--->(m, m, n) 2 , then lo < h .

Deduction of Theorem 24 from Theorem 25 . We have to prove that
l 6 (3, 2) =4. (i) By considering the function p defined by

p(0, 1) = p(l, 2) = p(2, 0) = 0 ; p(2, 1) = p(l, 0) = p(0, 2) = 1,

we deduce that 3 does not possess the property P32 . (ii) Let us assume
that 4 does not possess P 32 . Then there is p(X, u) such that the condi-
tion stipulated for P32 does not hold, with I=4 . If

I The existence of such a number 1 follows from Theorem 2 . It will follow from
Theorem 39 that we may take 1= (1 x-3 1- 4 5)/2 .

either { x o , . . . , A,,,_1 J,, C [0, l ] such that

or there is { Ao,

Then

(15)

X,

p(X,Aft)=0

} # C [0, l ] such that

p(X , As) = 1

wolo - (m, won) 2 ,

for a<0<m,

for {a, 13}0 C [0, n] .

(16) 'Y

	

(no, won) 2 for y < wolo .
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{ a, 0, y } # C [ 0 , 4 ] ;

	

p(a, fi) = p(a, y) = 0,

then the assumption p(3, y) =0 would lead to

p(a, fi) = P(fl, y) = p(a, y) = 0,

i .e. to a contradiction . Hence p(3, y)=1 and, by symmetry, p(-Y, (3)
= 1. This, again, is a contradiction . This argument proves that

(17)

	

if {a, /3, y} # C [0, 4] ;

	

p(a, 6) = 0,

	

then p(a, y) = 1 .

Since at least one of the numbers p(0, 1), p(1, 0) is zero, there is a
permutation a, 0, ,y, 6 of 0, 1, 2, 3 such that p(a, (3) =0 . Then repeated
application of (17) yields p(a, y) =p(a, 6) = 1 ; p(-y, a) =0; p(y, S) =1 ;
p(6, a) =p(5, y) =0, which contradicts (17) . This proves to(3, 2) <4
and, in conjunction with (i), lo(3, 2) =4 .
PROOF OF THEOREM 25 . 1 . We begin by proving the last clause . Let

(18)

	

11--* (m, m, n) 2.

Suppose that p(X, p) < 2 for { A, ,u } # C [0, 1J . Then

[S] 2 = Ko + K1 + K2,

where S = [0, h ], and K, is the set of all { A, p } < C [0, ll ] such that

By (18), there is S1= {Ao, . . • , Ax-1 } < C S such that one of the follow-
ing three statements holds .

(19) implies that p(Aa , A#) = 0 for a < $ < m ;
(20) implies that p(Am_i_a, Am-1_0) = 0 for a < 0 < m;
(21) implies that p(Aa , As) = 1 for {a, Q} # C [0, n] .

This shows that lo(m, n) <i i .
2 . We now prove (15) Let l=lo(m, n) ; A= [0, cool] ; N= [0, wo] ;

[All = Ko +'K1

	

(partition A) .

We use the notation of the partition calculus given in detail in
[4, p . 419 ] which can be summarized as follows . If A is an equivalence

(19) k = m ; [Sl] 2 C Ko,

(20) k = m; [S i ll C K1,

(21) k = n ; [S1]2 C K2-

p(A, µ) = 0 (v = 0),

P(A, µ) > P(µ, X) (v = 1),

p(A, u) = p(u, X) = 1 (v = 2) .
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relation on a set M or a partition of M into disjoint classes then I A I
denotes the cardinal of the set of nonempty classes, and the relation

x = T( . A)

expresses the fact that x and y belong to M and lie in the same class
of A. If, for pER, A, is a partition of M, and if t-->f,(t) is a mapping
of a set T into M, then the formula

Y(t)
=11

[p E R]~P(fo(t))

	

(t E T)

defines that partition A ' of T for which

s == t( • d')
if, and only if,

f,(s)= f,(t)(-A)

	

for p C R .

We continue the proof of (15) by putting

o'({ T}) _ ll[A, J.6 < l]o({WOA + woo .+'r})

	

(a < T < WO) .

By Theorem 1 there is N'E [N]~4o such that IA'I =1 in [N'] 2. Then,
by definition of A ' , there is p(A, p) <2 such that

{ woX + Q, woµ + T } E KP(X,,,)

	

for X, µ < l ; { v, r } < C N'.

By definition of l this implies that there is a set { Ao,

	

, Ak_,
C [0, 1] such that either

(22)

	

k = m ;

	

p(A a , AO) = 0

	

for a < li < m

or

(23)

	

k = n;

	

p(A,, As) = 1

	

for { a, O },4 C [0, n] .

If (22) holds, then we put

A' = {woX a + o', :a < m},

where a« is chosen such that f 9o, al, , • , , v,,,_, } < C N' . Then
[A' ] 2 CKo, so that the desired conclusion mE [Ko ] is reached .
If we now assume that mE [K o ], then p (A, A) =1 for A < 1, and,

furthermore, (23) holds. Then we put N'= { v o , u1i • • • I< ; A"
_ {woXa+aa+a,, :a<n ; t<wo} . We find that [A"]2 <Kl ; won=A"
E [K,] . This proves (15) .

3 . Finally, let y <wolo . Then there is 1<1o such that wol
cy<cwo(l+1) . Then, by definition of lo, there is p(X, y)<2 for
{A, µ},,C [0, l] such that, whenever {Ao,

'X'.-1},C[0,
1], then

(24)

	

p(A«, NO 1 0
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for some { a, #) < C[0, m], and, whenever { Ao,
then

(25)

	

p(Aa, X) 3-~ 1

for some { a, 0 J,, C [0, n ] . Then, if A = [0, y ], we have [A ] 2 =Ko +'K1 ,
where Ko is the set of all { w0A+o, woµ+T } such that { A, o } ,~ C [0, 1] ;
o<T<wo ;p(A, o) =0. If, now, A'C[A]m ; [A'] 2 CKo,then

A' = { wOAa + 0a : a < m } ;

	

0,0 < . . . < p•m-1 < coo ;

{A0, . . . , Xm-1}, C [0, l] ;

p(Xa , X) = 0

	

for a < Q < m,

which contradicts (24) . If, on the other hand,

A" C A ;

	

A" = won ;

	

[A"]2 C K1,

then there is {Ao, • • • , X.-11<C [0, l] such that B a =wo for a<n,
where Ba =A" [woXa, wo(Aa+ 1) ] (a <n). Then p(Aa , As ) = 1 for
{a, 0}¢C[0, n], which contradicts (25) . Hence neither A' nor A"
exist, with the properties stated, so that (16) follows . This completes
the proof of Theorems 24 and 25 .

6. The linear continuum . Our object is to investigate relations of
the form

X - (ao, al, . . . )k

and their negatives . It turns outs that every positive relation we were
able to prove holds not only for the particular type A of the set of all
real numbers but for every type 0 such that

(26)

	

1 0 I > No ; w1, w1* $0.

This fact seems to suggest that, given any type q5 satisfying (26),
there always exists A 1 such that

X1 :X, (b ;

	

jX1l >No,

i.e ., that every nondenumerable type which does not "contain" w 1 or
w 1* contains a nondenumerable type which is embeddable in the real
continuum. This conjecture has, as far as the authors are aware,
neither been proved nor disproved .'

Throughout this section S denotes the set of all real numbers x
such that 0 <x < 1, ordered by magnitude . The letters x, y, z denote
elements of S, and A=S.

I Cf. Theorems 31, 32 .
7 Since this paper was submitted E. Specker has disproved this conjecture .
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THEOREM 26 .

(i)

(ii)

A +3 (w l) k

	

for r > 0 ; k > 0 .
A +' (r -{- 1)„ o

	

for r > 2 .

PROOF . (i) is trivial, in view of w 1 :A. In order to prove (ii) it
suffices, by Theorem 15, to consider the case r = 2 . Let { xv : v <wo } be
the set of all rational numbers in S, and denote, for n <wo, by K.,, the
set of all { x, y } < such that the least v satisfying x <xp < y is v =n.
Then [S] 2 = E [v <w0 ]Kv . Also, if [ { x, y, z } < ]2CK, , then the con-
tradiction x <x, <y <x ., <z follows. Hence 3 EF [K„], and Theorem 26
is proved .

THEOREM 27. X-- (coo, we +2)' for r>3 .

PROOF. By Theorem 15, we need only consider the case r=3 . We
have [S]3=Ko+'K1 i where K0 = { { x, y, z}< :y-x<z-y} .
ASSUMPTION 1 . Let [ { xo, x1, • • , } < ] 3 CKo . Then lim x,, = u as

v---> oo , and we have, for 0 < m <wo,

{ x0, xm, xm+1 } E Ko ;

	

xm - xo < xvn+1 - xm .

If m-> -, then the contradiction u -xo < u -u follows .
ASSUMPTION 2 . Let ACS ; A=wo+2 ; [A] 3 CK1 . Then A

=B+{y,z}< ;B={xo,x1i • • • } < CL(y) ;limx,=u as v-* ,and
we have, for m<wo, {xm, xm+1, z} EE K1 ; xm+1 - xm>Z- xm+1 . If -m--> oo,
then the contradiction u-u>=z-u follows. This proves Theorem 27 .

THEOREM 28. X--*(r+1, wo+2)' for r>4 .

PROOF. It suffices to consider the case Y=4 . We have [S] 4
=Ko+'K1, where Ko= { {x0, x1, x2, x3}< :x2- x1<x3 - x2, x1 -x0} .
ASSUMPTION 1 . Let [ { xo, x1, x2, x3, x 4 } < ] 4CKo. Then { xt, x 1 , x2, x 3 }

EKo, and hence x2-x1 <x3 -x2 . Also, {x1 , x2 , x3i x4 } EKo, and hence
x3-x2<x2-x1. This is a contradiction .
ASSUMPTION 2 . Let ACS; A =wo+2 ; [A ] 4 CK1 . We define B, y,

z, x,, u as in the proof of Theorem 27 . Then there is me <wo such that,
for mo <m <wo, u-xm <xm-xo . Then, for rrmo 5m <coo, {xo, xm, xm+1, z}
GK, ; xm+1-xm<u - xm <x,,, -xo ; X.+1 - xm>z- xm+1, and if m--4oo,
then the contradiction u-u >z-u follows. This proves Theorem 28 .

The next two theorems are extensions of results due to Sierpinski .

THEOREM 29 . If 2 :5= I k I <= I X I ; I a,.I ? I X I (v < k), then
1

(ao, al, . .

	

)k .

Sierpinski proved that A-i->(a, a)' if a _<_A ; I al = I XI (Theorem 9) .
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PROOF.
Case 1 . There is µ<k such that cY„~tA . We consider the partition

S=F,' [v<k]Kn , where K„=S. We have a„ ~$X=K, and, for v X i,

a, 0 = KY . Hence a, $ K. (v < k) .
Case 2 . a,SA (v<k) . We choose a fixed set A o CS such that

Ao =ao . Generally, the letter _A denotes sets such that ACS; A =ao .

Corresponding to every A, there is a real function fA(x), defined and
strictly increasing for xEA o , such that x-fA (x) is a mapping of A o
onA . We extend the definition of fA by putting f ,,(x) =0 for xEL(Ao)
and

fA(x) = sup [y < x ; y C- Ao]fA(y)

	

for x CE L(Ao) .

Then fA(x) is nondecreasing in S. The set A is uniquely determined
by the function fA and the set Ao . Let D(A) be the set of those xo for
which fA(x) is discontinuous at x =xo . Then I D(A) I <No. The func-
tion fA is uniquely determined by (i) the set D(A) and (ii) the values
of fA(x) for xED(A) and (iii) the values of fA(x) for all rational x .

Therefore

I E{A} I= I E{fA} I< I xI3K = i aI S I Z(A} I,
and I E { A } I =JAI

=N., say. Now we can write E { A } =[A,, :
p < W n. } . By symmetry, we have, for every v < k, a set { A„p : p < w„ }
whose elements are all subsets of S of type ay .

The set N= { (v, p) :v < k ; p <w n } satisfies I NJ = I k I N n =N,. We
order N in such a way that N=W,,. Then we can find, inductively,
x, such that, for (v, p) E N,

xyp C App - { x„ s . (A, U) < ( v, p) } .

For, I { (to, a) : (A, a) < (v, p) I I < I NI _5 I A„0 I . We have xyp0xµa for
(v, p) O(A, v). Now, S = E [v < k ]K,, where K, = S- { x vp : p <W.}. For,
if x(=- S, then, since k>=2, there is v<k such that xEK, . If, now,

for some P <k, then there is p such that x,pEA„p CK,,, which is
the required contradiction. This proves Theorem 29 .

THEOREM 30 . J XI -t-_>(N1'
Nl)T for r>2 .

PROOF . The substance of this theorem is due to Sierpinski [15] . By
Theorem 15 we need only consider the case r=2 . Let x < y be, as
throughout this section, the order of S by magnitude, and let x<<y
be an order of S such that S<< =w,, where IXI =K,, . Then [S] 2
=Ko-I-'K1, where Ko = { { x, y} < :x<<y} . Now let ACS ; [A] 2 CK,, .
If v=0, then A< <S< =A ; A< =A<< <<= w , and hence A<<wi ;

A <Ni. If v=1, then A> <=S>=A~ ; A>=A«<=S<<=W„ ; A> <wi ;
A <Nj .
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This proves Theorem 30. We note that this theorem is, in fact, an
easy corollary of [5, Example 4A] .

7 . The general case. We shall consider relations involving certain
types of cardinal Ri as well as relations between types of any cardi-
nal. We begin by proving a lemma. We establish this lemma in a
form which is more general than will later be required, but in this
form it seems to possess some interest of its own . We recall that a'
denotes the cofinality cardinal belonging to a which was defined in §2 .

LEMMA 1 . Let S be an ordered set, and I SI' = 'k,; w n , wn $_ S . Then,
corresponding to every rational number t, there is StCS such that
I S,I = ISI ; S,CL(S.u) for t <u .

Sierpinski, in a letter to one of us, had already noted the weaker
result that, if I S( =N1 ; w 1 , w* $ S, then n S S.

PROOF . Case 1 . There is ACS such that
I AL(x) I< JAI = I S I

	

(x E A) .

Then we define x, for v<w n inductively as follows. Let vo <wn ;
x,EA(v <vo) . Then, by definition of n,

E[v < vo](AL(x,) + {x,}) I < I A I,
and hence there is x,,EA-E[v<vo](L(xo)+{x,}) . Then xp,<x,
(A < v <wn) and so con ;5 S, which is false .

Case 2 . There is A CS such that

I AR(x) I< JAI= I S I

	

(x E A) .

Then, by symmetry, the contradiction w,* _< S follows .
Case 3 . There is A CS such that

min (I AL(x) I, JAR(x)J) < JAI = I S I

	

(x E A) .

Then we put

Ao = {x :x E A ; I AL(x) I< I A 11,
A1= {x :xEA ; IAR(x)I < IAI} .

Then A =A o+A, .
Case 3.1 . I A o I= I SI . Then I AoL(x) I <= I AL(x) I< I SI = I Ao I

(xEAo), and hence, by Case 1, we find a contradiction .
Case 3 .2 . I A0I z ISI . Then I Ail = ISI and, by symmetry, a con-

tradiction follows .
We have so far proved that, if A CS ; I A I = (SI , there is zEA such

that I AL(z) I = I AR(z) I = I S1 . Then A =A'+A", where A'=AL(z) ;
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A'I = I A"I = I SI ; A'CL(A") . By applying this result to A' we find
a partition A=A(0)+A(1)+A(2) such that

IA(v) I = IS I (v<3) ; A(v) C L(A(v + 1))

	

(v < 2) .

Repeated application leads to sets

A(Ao, X 1 , . . . , Ak_1)

	

(k < coo ; A v < 3)

such that

A (Ao, . . . , Ak-1) I= I S I ;
A (Ao, . . . , Ak-1) _ E [v < 3 ]A (A	Ak-1, P) ;

A(Ao, . . . , Ak-1, P) C L(A(Ao, . . . Ak-1, v + 1))

	

(v <2) .

Let N be the set of all systems (AO,

	

, Ak) such that k <wo ;
X, G 10, 2 } (v <k) ; A k =1, ordered alphabetically. More accurately, if
p = (Ao, • • • , Ak ) and q = (to, • • • , p j) are elements of N, then we put
p < q if E [v < k ]A,3-'' < F, [v < l ]u,3 -• . Then we have A (Ao, • • • , Ak)
CL(A(p o , • • • , ui)), if (Ao, • • • ) < (uo, • ) . It now suffices to show
that N is dense in itself . In fact, if { (AO, , Ak), (AO, ui) I <CN,
then

(Ao, . . . , Ak) < CUD,
. . . , 91-1, 0, 2, 2, . . . , 2, 1) < (Ao, . . . , ul),

provided only that the inner bracket contains a sufficiently large
number of two's . Lemma 1 is proved .

THEOREM 31 . Suppose that 0 is a type such that

10I > Ro ;

	

w1, w1 % 0 .

THEOREM 32. Let 0, a, y be as in Theorem 31. Let S be an ordered
set, 5=0, and [S] 2 =Ko+K1. Then

(a) there is VCS such that either

(i) V = a ; [V]2 C Ko,

or

(ii) 71 = 'Y ; [V] 2 C K1,

Let a <wo2 ; 0 <wo ; y <w1 . Then

(27) 0- (a, a, a) 2 ,

(28) 0 _ (a, ,8) 2,

(29) .0 --1 (wo, Y) 2 ,

(30) QS -* (4, a) 0.
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or

(iii) V = woy* ; [V]2 C K1,

and
(b) there is WCS such that either

(i) IV = wo + wo ; [W] 2 C Ko,

or

(ii) W = y ; [W] 2 C K1 ,

or

(iii) W = y* ; [W]2 C K1 .

In proving Theorems 31 and 32 we may assume that

	

There
is m such that

4<m<wo ;

	

a<wo+m ;

	

,B<wom .

Let 5=q5. The letters A, B, P, Q denote subsets of S, and we shall
always suppose, in the proofs of the last two theorems, that

I A I= IBI=KI ;

	

P=Q=wo.

PROOF OF THEOREM 31, (29) . Let [S] 2 =K0+K1, and

(31)

	

coo

	

[K0] •

We want to deduce that

(32)

	

y E [K~] •

There is B such that

(33)

	

I BR0(x) < ~ko(x C- B) .

For otherwise there would be elements x. such that

xo C S ;

	

' Ro(xo) I = Kl,

x l C Ro(xo) ;

	

I Ro(xo, x1) _ 1,

generally, xeERo(xo, • • . , x,_ 1 ),
Ro(xDxv) I = 111

	

(V < WD) .

Then [ Ix,, .x 1 ,

	

} < ] 2C Ko , and hence co o C- [Ko ] which contradicts
(31) .

By hypothesis, w l , wl* B. Hence, by Lemma 1,
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[t rational ]B(t) C B

for some sets B(t) such that B(t)CL(B(u)) (t<u) .
There is a set T of rational numbers which, if ordered by magnitude,

is of type y. Let T = { t" :,4 < ,y } where t, < t, for A < v <,y . We define
inductively elements x,(v <y) as follows. Let vo <y, and suppose that
x,EB(v <vo) . Then, by (33),

I Z[v < vo]BRo(x,) I < Ko < B(t VO) ,

and therefore we can choose xg 0EB(t,,)-E[v<vo]Ro(x v) . Put
X = { x, : v <y } . Then 7=,y ; [X]2CK,. Hence (32) holds, and (29)
follows .
PROOF OF THEOREM 32 (a) . Let the hypotheses be satisfied but

suppose that (a) is false, i .e. that

(34)

	

a EE [Ko ] ;

	

y EE [Ki ] ;

	

woy * EE [K1 ] .

ASSUMPTION . If ACS, then there is xoEA such that

AL0(xo) I > N o .

Then there are xv , A,(v =< m) such that

xo C Ao = S ;

	

AoLo(xo) = A1 ;

	

x1 C A1 ;

	

A,L o (xj ) = A2

and so on, up to
A m = Am-,Lo(xm_i) = AoLo(xo, x,,

Then, by (29), Am-->(wo, y) 2 ; yEEF,(A .), and hence woEFo(Am) .
There is PCA m such that [P ] 2CK0. Then [P+ {x o , . . . , xm_ j }] 2
CKo which contradicts (34) . Hence our assumption is false, and there
is A such that
(35)

	

I ALo(x) < No

	

(x E A) .

By Lemma 1, there is B(t) CA, for rational t, such that B(t) CL(B(u))
(t <s) . There are rational numbers t, (v <,y) such that t,, >t, (o < v <,y),
We define sets P. (v <y) as follows. Let vo <y, and suppose that
P,CB(t,) (v <vo) . Then we may put, by (35),

B' = B(tp o)Lj(l[v < vo]P,) .

Then, by (29), B'-(a, co o )' ; aEEFo(B') ; woEF1 (B'), and there is
PW oCB' such that [P, o ] 2 CK, . This definesPv for p < ,y. Put E [v < y ]P .
=X. Then X=woy* ; [X ]2CK,. But this contradicts (34), and so
(a) is proved .
PROOF OF THEOREM 32 (b) . Let the hypotheses be satisfied but

(b) be false. Then
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(36)

	

wo + wo EE [Ko ] ;

	

y E [K,] ;

	

-y * EE [K,

Choose any A .
ASSUMPTION . I ARo(x) I :!g No (xEA) .
Then, by Lemma 1, there are sets B(t) CA, for rational t, such that

B(t)CL(B(u)) (t<u) . There are rational numbers t, (v<y) such that
t,, <t, (u <v <y) . We define x, (v <y) as follows . Let vo <y, and sup-
pose that x,EB(t,) (v<vo) . Then, by our assumption, there is

x, o C B(t, 0) - L. [v < vo]Ro(x,) .

Then the set X = {x, :v <y } satisfies X =y ; [X]2CK1 which is a
contradiction against (36) . Hence our assumption is false, i .e ., given
any A, there is xEA such that I ARo(x) I =111 . By symmetry, it
follows that there also is yEA such that' ALo(y) I ="1 . By alternate
applications of these two results we obtain elements x,, y, and sets
A„ B,(v <wo) such that the following conditions are satisfied .

xoES ; yoERo(xo) = Bo ; xiEBoLo(yo)=A1 ; ylEAiRo(xl)=B1 ;

generally, for v <wo,

x,+l E B,Lo(y,) = A,+1 ;

	

y,+1 E A,+,Ro(x,+1) = B,+1 .

Then the set F,[v<wo]{x„ y,} D satisfies D=wo+wo ; [D]2 CKo.
This contradiction against (36) completes the proof of Theorem 32 .

PROOF OF THEOREM 31, (27) . Let [S] 2 =Ko+K1+K2,
(37)

	

a EE [K,]

	

(v < 3) .

Our aim is to deduce a contradiction . We shall reduce the general
case to more and more special cases. For the sake of convenience of
notation we shall use the same notation for the sets in question at
each stage .
We put K12 =K1+K2 . The functions F12, L12, R12 refer to K1 2 in

the same way as the functions F„ L,, R, refer to K, .
Let A CS. By Lemma 1, there are sets Ao, A1CA such that

AoCL(A1) . Let xoEA1 . Then I AL(xo) I =„1, and there is vo <3 such
that I AL,o (xo ) I =k1 . By repeating this argument we find numbers
v, <3 and elements x, (p <wo) such that

x, E SL,,,(xo)L,1(xl) . . . L,p_1(x,_1),

SL,o(xo) . . . L , ,( xP) I = R1

	

(P < wo) .

There are p o <p, < • • •p._1 <wo such that P,,,

	

P,._,. We may
assume v, o =0. Put Lo(x, o, . . . , xPm-1) = Ao.
ASSUMPTION 1 . woEFo(Ao) .
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Then there is PCAo such that [P] 2CKo. Then a<C; [C]2CKo,
where C=P+{xp1 :v<m}, which contradicts (37) . Hence the As-
sumption 1 is false, and we have woEEFo(Ao). We may assume that

(38)

	

wo E [K,] .

For a later application we remark that in what follows we may re-
place S by any nondenumerable subset of S without any of the con-
clusions becoming invalid .
Now let ACS. Then, by (29), A- (wo, a)k Also, wo-*(wo, co o)' .

Therefore, by Theorem 16, A-*(wo, w o , a) 2 . Hence at least one of the
following three relations holds .

ASSUMPTION 2. There are xY, A Y (v <coo) such that xoEAo ; AoRo(xo)
=A1 ; x1EA1 ; A1Ro(xi) =A2 ; x2EA2, etc .
Then [{xo, x 1 , • • • } < ] 2CKo which contradicts (38) . Hence the

Assumption 2 is false, and there are vo<wo ; x.ES (P <;,o) such that
we may put A =Ro(xo, . . . , x YO_1 ) and we then have I A R0(x) No
(xEA) . We may assume that

(41)

	

I Ro(x) I _::9 N o

	

(x G S) .

By Lemma 1, there are sets A, B such that A CL(B) . By (39), there
is PCA such that [P] 2CK1 . For a later application we remark that
at this stage we might have applied (40) in place of (39) and
in this way could have interchanged the roles of K 1 and K2. By (41),
I E [xEP]Ro(x) I <Mo, and hence IBR12(P) I = !\1 . Therefore we may
assume

(42)

	

[P]2 C Kl ;

	

P C L12(S - P) .

ASSUMPTION 3. If QCP; A CS, then there is xEA such that

I QL1(x) I = Mo .

Now we argue as follows . By Lemma 1, there are sets A .CS-P such
that A,CL(A.) (µ <v <wom) . We define inductively x,, P. (v <wom)
as follows . There is xoEAo such that, if Po=P, we have I PoL1 (xo)I
=No. Let 0 < vo <wom, and suppose that

(i) wo C Fo(A),

	

(ii) wo E F1(A),

Since (i) and (iii) are false, it follows that

(iii) a C F2(A) .

(39) w o C F1(A) (A C S) .

By symmetry,

(40) coo E F2(A) (A C S) .
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xY C AY ;

	

P„ C P

	

(v < vo),

P,-P„I <!lo

	

(A < v < v0) .

Then we can write [0, P,]= { px :X <wo } . We can choose yx such that

Ya C P, oP,, . . . PPX - I YO, . . . , Ya-1 }

	

(A < No ) .

By (41) and Assumption 3, there is x v0 EA ; 0 - E[v<vo]Ro(xy) such
that I { yo, y,, . . . } L, (x vo) I =bo. We put P,,= {yo, yi, . . . I L&,) .
Then, if v<vo, there is X<cwo such that P=p?, . Then IPvo -P,I
< I {yo, y,, • • • } -P,T I <so . This completes the definition of
x,., P~ (v <wom) .
We have IP,-P,I <No (o<v<wom) ; P,CPL,(x,) (v<wom) . Put

X= {x' :v<wom} . Then, by (11), [X] 2CK1+K2 ; X=wom-}(m, a) 2 .
Case 1 . There is D= {x„ o , . . . , x,,,,_ 1 } < CX such that [D] 2 CKi.

Then we put P'= P,,, and have, for r < m,

I P' - L,(x„T) I < I P' - P,,,, I + I P,,,,. - L,(x,,,) I < No -+- 0.

By summing over r we obtain I P'-L, (D) I <so. Hence we may put
P'Li(D)=Q, and we then have Q+D_>a ; [Q+D]2CK, which con-
tradicts (37) .

Case 2 . There is DCX such that D=a ; [D] 2CK2 . This, again,
contradicts (37) . Hence the Assumption 3 is false, i .e ., there are
P'CP; A'CS such that

I P'L,(x) I < No

	

(x E A') .

Then there is A"CA' such that the set P'Ll (x) is constant for
xEA" . Then there is P" such that P'L2 (x) =P" (xEA") . We have
therefore proved that there is P", A" such that
(43 )

	

[P"]2 C K1 ;

	

P" C L2(A ") .

The whole argument from (38) onwards remains valid if S is replaced
by any set A . Hence it follows from (43) that if A CS, then there are
P, A' CA such that

(44)

	

[P] 2 C K, ;

	

P C L2(A') .

By Lemma 1, there are Ao, Bo such that AoCL(Bo) . By repeated
application of (44) we obtain sets P,, A„' (v <wo) such that

generally, P,+A'CA,-, ; [P,] 2 CK, ; P,CL2(A,) (0<o'<wo) . Then
P,CAoCL(Bo) (v<wo),

Po -}- AO' C Ao ; [Po] 2 C K, ; Po C L2(Ao ),
P, + Al' C AO' ; [P,] 2 C K, ; P, C L2(Ai ),
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P, C L2(A,) C L2(Ay-1) C L2(P,) (p < v < wo) .
We put B1=BoR12(Po+P1+ • • • ) . Then we have the result that
there are sets P„ B1 (v <wo) such that

([P,] 2 C K1 ;

	

P, C L12(B1)

	

(v < co o),
(45)

	

P' C L2(P,)

	

(µ < v < wo) .

Now let vo <wo ; B2CB1 ; PCP, .
ASSUMPTION 4. I P'L2 (x)I <No (x(E B2) .
Then there is B3CB2 such that the set D=P'L2(x) is constant for

xEB 3 . By (39), there is QCB3 such that [Q] 2 CK1. Then [(P'-D)

i Q]2CK1 ; wo2E [K1] which contradicts (37) . Hence the Assumption
4 is false, i .e .

if vo < coo ;

	

P C P,,, then
(46)

	

I } x : x C BI ; I P'L2(x) I < Ro } I _< No .

To B 1 the same argument applies as to S, from (38) onwards. The
only, change we make is that, after (41), we apply (40) instead of
(39), so that now the roles of K 1 and K2 are interchanged. We find
sets Q„ B2 CB, such that, in analogy to (45), (46), the following state-
ments are true .

(47)

	

[Q , ] 2 C K2 ;

	

Q, C L12(B2)

	

(v < wo),

Q,j C L1(Q,)

	

(µ < v < (0o) .

If vo<wo ; Q'CQ,o , then

I i x : x C B2 ; I Q'L1(x) I < Ro } I< No .

By Lemma 1, there is XCB2 (v <wo) such that B' CL(B, )
(µ <v <wo) . Let P' CP,; Q' CQ, (v <wo) . Then, by (46), (48), there
are at most No elements x EB 2 such that at least one of the relations

I P' L2(x) I < so ;

	

I Q' L1(x) I < No
holds. By using this result repeatedly we find elements xx (X <wo) such
that, for all v <wo,

xo C Bo ;

	

I P,L2(xo) I = I Q,L1(xo) I = No,

x1 C Bi ;

	

I P,L2(xo, x1) I = I Q,L1(xo, x1) I = No,

generally, x xEB„ ;

I P,L2(xo, . . . , X) I = I Q,L1(x	xT) I = No

	

(v, X < coo) .

Since wo-->(wo)a, there is a number v < 3 and a sequence Ao <A1 < .

	

;

(48)
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X, <wo, such that 1(x)',, xx, • • • } < ] 2 CKr . By (38), v54-0 . We can
choose y, z„ such that, forµ <wo,

y, E P,,L2(xo, x1, . . . , x), m_,) ;

	

z, E Q,,L,(xo,
Put X=}xx :p<m} ; Y=[y,~ :µ<wo} ;Z=}z, :µ<wo ) .

Case 1 . v=1 . Then [Z+X] 2 CKi ; aE [Ki ] .
Case 2. v=2 . Then [Y+X] 2CK2 ; aE [K2] . In either case, a con-

tradiction against (37) follows. This proves (27) .
PROOF OF THEOREM 31, (28) . If [S] 2 =Ko+K1 and if we put

y =wom then we have, by Theorem 32 (a), either (i) aE [Ko ] or
(ii) 05yE[Ks ] or (iii),35wom5woy * [K1] . This proves (28) .
PROOF OF THEOREM 31, (30) . Let [S]3=Ko+'Ki,

(49)

	

4 EE [Ko ] ;

	

a EE [Ki ] .
We shall deduce a contradiction .

By Theorem 2, there is n <wo such that n-(m, m)3 , and p such that
(50)

	

(n - 1) (1 + m + m(m - 1)/2) < p < wo .
By Lemma 1, there is zoES such that

i L(zo) I, I R(zo) > No
and then there is CCR(zo) such that C=n .

The following diagram shows the relative position in S and the in-
clusion relations between the various sets to be considered in the
argument that follows . It might be of help to the reader .

S
L(zo)
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ASSUMPTION . If DE[C]P, then I fl [xI, x2ED] { xo : xo < zo ; (x,, x1,

X21 EEKo } I SNo. Then there is z1 <zo such that

(51)

	

if D C [C]", then { z7 i x1, X21 E Ko

	

for some x1, x2 C D.

Then [C]2=Ko +K1 , where

K' = { { x1, x2 } : xI, x2 E C; { z7, x7, X21 E K,}

	

(v < 2) .

By (11), C=n>__wop-+(wo+m, p) 2 . Hence there are two cases .
Case 1 . There is ECC such that E=cwo +m ; [E] 2CKo . Then,

since, by (49), E'=wo+mEE [K7], there are x0', x1', x2 EE such that
{ xo , X11 , x2 } EKo • Then [ { zI, xo , x1 , x2 I,,

]3CKo which contradicts
(49) .

Case 2 . There is GE [C]P such that [G] 2CKi . Then {z1, X1, X21 EEKo
for all x 1 , x2EG, which is a contradiction against (51) .

It follows that our assumption is false, and that there are HE [C]P
and A CL(zo) such that

{ xo, XI, X21 (F Ko for xo E A ; x1, x2 E H.

Put

V (xo, XI) = { x2 : x2 C H; { xo, XI, X2) C K1 }

	

for xo, x1 C A .

Then [A ] 2 = Ko' +'Ki', where Ko' is the set of all { xo , x1 } < CA such
that I V(xo, x1)I >>_n . By (28), wo+m) 2 . Hence there are two
cases .

Case 1. There is PCA such that [P]2CKo' . Then

I V (xo, xI) I > n

	

for { XD, X1) < C P,

[P] 2 = Z[W C H]KW~,
where K(W3) = { { xo, x 7 } < : xo, x1 EP ; V(xo, xi) = W } . The number k of
sets W is finite, and Wo- *(wo) 2 , by Theorem 1 . Hence there are
P'CP ; JCH such that [P']ICKj'3',

V(xo, x I) = J

	

for { xo, x1 } < C P' .

Then

I J I

	

n ,
{ xo, xI, X21 E K1

	

for { xo, x1}< C P' ; x2 C J.

Since [P'] 3 CKo+K1 and, by Theorem 1, coo--*(coo, co o )', there are
QCP' ; v<2 such that [Q] 3CK,. By (49), woEE[Ko] . Hence v=1 ;
[Q ]3CKI .
Furthermore, [J] 3CKo+K7 ; J=n--+(m, m)3 . Hence there are



4 56

	

P. ERDÖS AND R . RADO

	

[September

MME[J]m ; p<2 such that [M] 3 CK, . Since mz4EE[K o ], we have
p =1 . Then, in view of Q CP' CP CA ; MC JCH,

[Q+M] I CK1 ; worm=Q+MC-[K1]
which contradicts (49) .

Case 2 . There is NCA such that N=wo+m ; [N] 2 CKi' . Then
I V(xo, x1) I < n - 1

	

for xo, x1 C N.

Then
N =Q1+T ;

	

Q1CL(T) ;

	

I Tj =m .

We have [Q,] 2 =I:' [K<k,]KKl), where K."'5,4-0 (rc<kl), and two
elements Zo, Z, of [Q,] 2 belong to the same K,(l) if, and only if, for
every x2 EH, the sets Zo+ {x2 } and Z,+ { x2 j belong to the same class
K,. Then k, <wo and, by cwo-*(wo)Y,, there are Q2C Q1 ; K2 <k, such that
[Q2 ]2CKx2) . This means that, for some p(x 2) < 2,

{ x0, xl, X21 C Kp(2)

	

for {X0, X11< C Q2 ; x2 C H.

Similarly, we have
Q2 = E' [K < k2]KKc", where K,(') 0 0

	

(K < k2),

and two elements xoo and xo1 of Q 2 belong to the same KK2) if, and
only if, for every x 1 ET ; x2EH, the two sets 1X11, X1, X21 and jx, j ,
x1 , X21 belong to the same class K, . Then k2 <wo and, by coo ->(wo);~,
there are Q3CQ2 ; ,c3<k2 such that Q3 CKx3). This means that, for
some o (x1, x2) < 2,

{x0, x1, x2} C KQ(z,,=2)

	

for xo C Q3 ; x1 C T ; X2 C H.

Put U=Q3+T, and choose { xo' , x11' } < CQ3 .
Consider any x2CH such that there are xo, x, E] U satisfying

{x0, x1, x2}<CK, . If xo, x1CQ3, then p(x2)=1 ; {x0", xi ' , x2} (=-K1;
x2E V(xo', xi') . If xoEQ3 ; x,ET, then v(x,, x2) =1 ; {xo ' , x1, x2} CK1 ;
x2 C V(xo' , x 1 ) . If xo, x1 C T, then f X0, x1, x2 } EK1 ; x2 C V (xo, x1)
Hence, in any case,
x 2 C V(xo', xi') + E. [x C T)V(xo', x) +

	

[{x, y}< C T]V(x, y)

and therefore, in view of the definition of x2 and the relations I TI =m
and (50),

E [X0, X1 C U] { x2 : x2 C H; { x0, xi, x2 } < C K1 }

<<-(n-1) {-(n-1)~ 1 )

	

(n-1)~2)<p= IHI .
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We deduce the existence of x2" EH such that

{ X 0 , X 1 , X211 J1 EE K,

	

for all x o , x, C- U .

Since U=wo+mEF [K1], there are yo, yl, y2E U such that {yo, y 1 , Y21
EKo . But then [{y o , yl, Y2, x2" } # ] 3CKo which contradicts (49) . This
proves (30) and thus completes the proof of Theorems 31 and 32 .

THEOREM 33 . Let a <wo2 • Then wl-(a, a) 2 .

PROOF . Let 3=w1; [S]2=Ko+'Ki ; 2_<m<wo ; aSwo±m,

(52) n El= [K, ] (v < 2) .

We have to deduce a contradiction . Let the conventions concerning
the use of the letters A, B, P, Q be the same as in the proofs of
Theorems 31 and 32 . Choose any P .
ASSUMPTION . Let [P] 2 CKo . Suppose that, if P'CP, then there is

A such that

P'Lo(x) I = No

	

(x C A) .

Then we define x, P, (v <c 1 ) as follows. There is x o such that
I PL0(xo) I =No. Put Po =PLo(xo) . Now let 0 <vo <wl, and suppose
that x,ES ; P,CPLo(x,) (v<vo ) ;

I P,-P„I «o

	

(µ<v<vo).

Then we can write [0, v o ] = {, ox : X <(o,,1 . We can choose elements
yx(X <wo) such that y xEP, 0P, 1 . . . P„a - { y, : p <X } (X <wo). Put
P' _ { y x :X <wo } . Then, by our assumption, there is A such that
IP'Lo(x)I =No (xEA) . We can choose

x, o C A - Y, [v < vo]({x,} + L(x,)) .

We put P,o=P'Lo(x,o) . If, now, v i <vo, then there is X <wo such that
Vi =,ua . Then

I P, 0 - P, 1 < I {yo, yi, . . . } - P,,, I < No .

Also, P, 0 CPLo (x, o ) . This completes the inductive definition of
x„ P,(v <wl) such that

P,, C PLo(x,,) ;

	

I P, - P, I < No

	

(µ < v < w1) .

Put X = { x, : v <wl } . Then, by Theorem 23, 7=w1 >cwom-->(nz, co o
+m) 2 . Since, by (52), wo+mE)=F1(X), we have mEFo(X), and there
is D E [X ]'" such that [D ] 2 CKo . Let x, = max [x CD ]x . Then, for
any x,ED, I P,-Lo(x,) I < I P, -P, I + I P,-Lo(x,) I <No . Hence we
may put Q=P,Lo(D), and then we have Q+D=wo+m>=a ; [Q+D]2
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CKo. This is a contradiction against (52) . Therefore our assumption
is false .
Now let ACS. Then, by Theorem 3, I A I =N'- (t`to, 111) 2 and

hence, by Theorem 14, A =w 1->(wo, w,) 2 . Since w,EEFI(A), we con-
clude that woEFo(A), so that there is PCA such that [P] 2CKo. As
the assumption made above is false, there is P' CP such that there
are at most No elements x such that I P'Lo(x) I =No . Then there is
A' CA such that I P'Lo(x) I <No (x CA') . Hence there are at most
No distinct sets P'L o (x) for varying values xEA', and there is
A" CA' and E such that

P'Lo(x) = E

	

(x E A") .

Since I E I <so, we may put P"=P'-E, and since ;!"=w1; P"=COO ,
we may put A"'=A"R(P") . Now let xEA"' ; yEP" . Then

x E A "' C A " ;

	

y EE E = P'Lo(x) ;

	

y E Lo(x) .
Also,

x E A "' C R(P") C R(y) x> y
Hence

y E LI(x) ;

	

P" C Ll(A"') .

So far we have proved that, given any A, there are sets P"', A"CA
such that P"CL,(A"') ; [P"] 2 CKo, and, moreover, there are at most
No elements x such that I P"Lc(x) I =No.

By applying the last result repeatedly, starting with A= S, we
obtain sets P,(v <wo) such that

[Pµ] 2 C Ko ;

	

Pµ C LI(P,)

	

(µ < v < WO) .

There is Q, such that

IP,Lo(x)I <No

	

(P< )o ;xES-Q,) .
We can choose BCS- F,[v<wo]Q, such that P,CL(B) (v<wo) .
Then, by Theorem 23, B=w,>wom->(wo+m, m) 2 ;

wo + m EE Fo(B) ;

	

m E FI(B),
and there is DE[B]- such that [D] 2CK1. Then, for every v<wo,
I E [xED ]P,Lo(x) I <No . Therefore we can choose y,EP,L I (D)
(v<wo) . If we put Q= {y, :v<wo{ then Q+D=wo+m>=a ; [Q+D]2
CK1 . This contradiction against (52) completes the proof of Theorem
33 .

The next theorem, while perhaps appearing to be of a rather special
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and complicated nature, is of interest in that it implies Theorem 7 (i)
and Theorem 8 . It may well be capable of further worthwhile applica-
tions .

THEOREM 34 . Let a, /9, y be ordinals, and a-"(/3, y) 2 . Then there are
ordinals as (A </3- ) such that, if

Ik„I=f[X<A]I«„I

	

(p</9-),
then

a +-> (ao + 1, al + 1, . . . )d ;

	

a), -14 (y)~

	

(X < 0-)
We begin by dedueing (i) of Theorem 7 or, rather, a slightly

stronger proposition, from Theorem 34 .

COROLLARY 1 . Let m and n be such that Kn <==Kn (d <N.) . Then
wn+l>(a'm+1, wn+l) 2 .

This implies, a fortiori,w.+1--+(w., wn+i)2 which, in its turn, by
Theorem 14, is equivalent to Theorem 7 (i) .
Deduction of Corollary 1 from Theorem 34 . Let us suppose that

wn+i1(wm+1, wn+ 1) 2. Then, by Theorem 34, there are ordinals ax, k a
such that I k,,l =11 [A <u ] I a), j (p <w.) ;

1
(53)

	

wn+1 -- (ao + 1, a l + 1,

	

. ) Wm

(54)

	

aµ -i-> (&)n+1)kµ

	

(M < wm) .

Then, for A <wm,

(55)

	

aA < wn+1 .

For, let µ <w., and suppose that (55) holds for A <M . Then, using
lµl < Km and the hypothesis, we find that I k µ l <Nn . Now, by
(54), we can write I a„ I = E [v < k„ ] I p, f , where p,. <wn+1 (v < k,) .
Hence I a„I _<KnI k„I SKn. This proves (55) for all A <w.. Now, by
(53) and the obvious relation m ;5n,

I wn+1 I 5 Z [x < 10.1 1 ax I < Knllm = Kn
which is the required contradiction .

COROLLARY 2 . Let K„ = Nn ; 2N•< Kn for all v <n. Then

Co . - ( 0, wn)2

	

(/9 < wn) .

By Theorem 14, this proposition implies Theorem 8 .
Deduction of Corollary 2 from Theorem 34 . Let 0 <wn . Suppose that

wn-+4((3, co.)' . Then, by Theorem 34, there are ordinals ax, ka such that
Ik,,l =II[A<bt]laxI (u<f-) ;
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w ,b --> (ao + 1 , .

	

)s

	

aµ -H (wn)ku

	

(p < N ) •
Let us assume that, for some p <13-, we have ax <w„ (X <p) . Then,
putting d=E[X<p]Iaxl, d<k,, ; Ik~I <_di~i_<<2djµl<R„ ; Ia,,I
_ E [v <k„] I p,I , where pp <w,, . Then a I <h,, . This proves, by in-
duction, that ax <w„ (X <a-) . Now, l w„ I = L [X <i3- ] I ax I , where
o-xI < Ia),I . Therefore Iw„I <N„ which is the required contradiction .
The proof of Theorem 34 depends on a lemma .

LEMMA 2. Let T be a well ordered set, and [T]2=Ko +Kl . Then there
is' a set B=B(T)CT which has the following properties . We have
[B] 2 CK, . If xET-B, then there is yEB such that {y, x} < EKo .

PROOF . We may assume TAO. Choose l such that 111 > I T1 . We
define, inductively, yx (X<l) as follows . Let p<l ; yxET (X<p) .

Case 1 . There is y E T such that { yx, y } EK, (X <p) . Then we take
as y,, the first element y of this kind .

Case 2 . If YET, then there is X <A such that {yx , y } EK,. Then
we have u > 0 . We put yµ =yo .

Let B = { y?, : X < l } . Then there is m < l such that
B = {yx :X < ml ;

I In fact, there is exactly one such set .

{ yx, yv } < E K, (X < u < m) .

For, m is the least p such that 0<p<l ; y„=y o . We have [B] 2CK,.
Now let xET-B. Then, by definition of ym , there is a least p<m
such that { y,,, x } EKo . Then {yx , x } EK, (X <p) and hence, by defini-
tion of y, x>y,,. This proves Lemma 2 .

PROOF OF THEOREM 34 . There is an ordered set S such that

[S] 2 = Ko + K, ;

	

0 EE [Ko] ;

	

y G [K,] .
We choose an ordinal p such that I p I > I a I . Let x E S. We define
f, (x) (p<p) as follows . Let v<p, and suppose that

f , ( x) E S (p < v),
{ f,,(x), x } < E Ko if p < v ; f„ (x) ~ x.

Then we define f,(x) by the following rule . If f„(x) =x for some
p <v, then put f~(x) =x. Now let f„(x) 5-!~x (p <v) . Let T be the set of
all YES such that {f„(x), y} < EKo (p<v) . Then xET. Let B=B(T)
be the set given in Lemma 2 . Then BCT ; [B] 2 CK, ; B<-y. If xEEB,
then put f,(x) =x. Now let xEB. Then, by Lemma 2, there is a first
element zEB such that { z, x } < EKo . We put f, (x) =z. We have now
defined f,,(x) for v<p ; xES, and we have
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{fv(x), fv(x) }< C Ko (A < Y < p ;ff(x) 0 x),

f,(x) < x

	

(v < p ; x E S) .

If, for some x, f,(x) <x (v <p), then the contradiction

PI = I {f,(x) :v<p}I s I S I = IaI
follows. Hence, given xES, there is o(x) <p such that

fy (x) < x (v < o(x)) ;

	

fa(x)(x) = x (x E S) .

Then, for fixed x, [ { f,(x) : v < a (x) } ] 2CKo ,

a(x) + 1 < $ ;

	

o(x) <

Put M,= {f,(x) :o(x)>=v} (v<p) . Then M0 CB(S) ; Mo<y ;

S=E[v<1-]M,;

	

a- (Mo+1,Ml+1, •

Let 0 <v <(3-. Then

M, = Z [y,, C- My for A < v ] { f,(x) : o(x) >= v; fx(x) = ya for X < v } .

Now, for every choice of y„EM„ (a<v), the corresponding term in
the last sum is a set contained in some set of the form B(T) . In order
to see this, consider an element x such that a -(x) >=v ; f, (x) =y„ (p <v) .
We shall have f, (x) <x (A<a(x)) and hencef„(x) <x (u <v). Let T be
the set used above in the inductive definition of f,(x), i .e. the set of
all yES such that {f„(x), y} < EKo (µ<v) . Then, by definition of
f,(x), xET and either

x C B(T) ;

	

f,(x) = x C- B(T)

or
x E B(T) ;

	

f,(x) = z E B(T) .

In either case, f,(x)EB(T) . In fact, the set T does not depend on x
since T is the set of all yES such that

l y., y } < C Ko

	

(A < v) .

All this proves that, given y„EM„ (µ<v), there is T such that, when-
ever

x C S ;

	

-(x) >_ v ;

	

fv(x) = yN

	

(u < Y),

then

ff(x) C B(T) .

By definition of B(T), we have [B(T) ] 2CK1 and therefore B(T) <y .
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Hence ill, is a sum of II [A<v]I M„I sets each of type less than y .
This shows that when k, is any ordinal such that I k,I
= 11 [it <P] I M,1. It now follows that the conclusion of Theorem 34
holds for ax =M,, (X<0- ) .

THEOREM 35 . Suppose that 0>=r>=3 ; (3, f3* a ; s>(r-1) 2 . Then, for
any type 45 such that 1451 = I aI ,
(56)

	

0-(s'0)"-

COROLLARY . If r ? 3 ; s > (r -1)2 , then

(57)

	

n -i-* (s, WO + 1)',

(58)

	

4, - (s, Wi) r,

where 45 is any type such that 101 = I a I

The negative results (57) and (58) are not too far from the ultimate
truth as is seen by comparing them with the following positive re-
sults. By Theorem 1,

(59)

	

WO -+ (WO, wo,

	

COO) k"

	

(k < coo) .

By Theorem 31,

(60)

	

4j -+ (wo, 7) '-

	

(7 < wi),

where 0 is any type such that

	

>Ro ; w,, w* dt4 .
PROOF OF THEOREM 35. The corollary follows by applying the

theorem to the following two cases .
(i) (3=wo+1 ; a=wo ; 45 = n,
(ii) a =wt ; a =A .
The proof of the theorem depends on the following lemma due to

Erdös and Szekeres [7] . Throughout, we put

s = (r - 1) 2 + 1 .

LEMMA 3 . If S is an ordered set, r>0, and if z(a)ES (a<s), then
there is { 0'0, oI ,

	

, ar_1 } < C [0, s ] such that either

z(a' ) < z(o )

	

(p + 1 < r)

or

z(so) ? z(a o+1)

	

(p + 1 < r) .

We now prove the theorem . Let S< =4; S<< =a. Then

[S ]r = Ko +'Kt;

	

Kl = Kio + Ku,
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where

K10 = { x0,

	

xr_1 } < . { xo,

	

xr-1 } << C S } ,
K11 = { { xo, . . . , xr-1 } < : { x0, . . . , xr-1 } >> C S } .

Case 1 . There is A E [S]8 such that [A ]rCKo . Then, if A = { z(a)
a < s } , an application of Lemma 3 shows the existence of B E [A ]r
such that BEK1 , which is a contradiction .

Case 2. There is A CS such that A<=3 ; [A]rCK1 . We shall prove
that one of the two relations

holds. If both (61) and (62) are false, then there are sets X, YCA
such that

(63)

	

X =
(64)

	

Y
{ xo, . . . , xr_1 } < - { xo, . . . , xr_1 I<<,
l yY"}< { yo, . . . , yr-1 I>> .

Then there is a < r such that xp = yp (p <a) ; x, may, . We choose X and
Y such that a is as large as possible. We may assume that x, <y, .
Then, if we suppose that a+1 <r, we find that {yo, . . . , y,-1, x„
y„ • • • , yr-2 } < and therefore, by the maximum property of a,
{yo, . . . , ye-1, x„ y	yr-2 I<< . Hence {yo, . . . , Ye-1, y o, . . . ,
Y'-21 << and therefore, since r-2 > 0, yo«yr-2 which contradicts (64) .
Therefore a+1=r, and xo=yo>>yi=x1 . But this contradicts (63) .
This shows that at least one of the relations (61), (62) holds. Now
(61) implies f3=A< = T<< << =a, and (62) implies /3*=A>
= A« < S<< =a . Both conclusions contradict the hypothesis . We
have proved that neither Case 1 nor Case 2 is possible, so that (56)
is established . This proves Theorem 35 .

[S] 2 = Ko +'K1 ;

	

K1 = E [v < n] [A,] 2 .

Then [X] 2 CKo implies I XA,I 51 (v<n) ; IXI < Inj, and [X] 2 CK1
implies the existence of v <n such that X CA, ; I XI _<_ I A,i <d. This
proves (i) .
PROOF OF (ii) . By definition of a', the hypothesis of (i) holds for

(61) [A ]r C K10,

(62) [A] , C K11

THEOREM 36 . (i) If a,<d (v<n), then E[v<n]a,+>(Ini+, d) 2 .
(ii) a-~-(a'+, a) 2 for a>1 .
(iii) ab-+-(a+, b+) 2 for any a, b .
(iV) N ._( I nI+ , R. ) 2 ' if n = n->0.

PROOF OF (i) . Let I A,I =a,(v<n) ; S= ~' [v<n]A, ;
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some a„ n, with I nI =a' ; d=a= Ea, . Hence (ii) follows from (i) .
PROOF OF (iii) . Let Inj =a ; a,=b(v<n) . Then, by (i),

ab = E a, -+-> (a+, b+) 2 .

PROOF OF (iv) . Since h„= E[v<n] 7 , (iv) follows from (i) . This
proves Theorem 36 .

THEOREM 37 . (i) Let a=>=Ko ,Ko, and let b be minimal such that ab>a .
Let a<Nk <1`ZkSa'. Then

(65)

	

N,,,E -~+ (b+, R.,,) 2 .

A possible value for „k is a+ .
(ii) ll, ,n+yt~ (~~,n++i,~M,„m+t)2for all m .
(iii) If 1,0<~lk ~11k 2K0, then

	

„ k)2 . A possible value
is k = 1 .

Deduction of (ii) from (i) . Let a=Km, and let b be minimal such that
ab>a . Then, if k=m+1, we have a<btk =Nk<ab and therefore, by
(i), x-m+li->(b+,

	

This implies (ii) .
Deduction of (iii) from (i) . Put, in (i), a=b=No . Then (iii) follows .
Before proving (i) we establish a lemma. For the sake of further

applications later on the lemma is more general than is needed for the
present purpose .

LEMMA 4 . Ifs >= 2 ; (3o, /3* ao ; I a, j = I al j , then

al+>(00,N1,S+1,S+1, . . .,g+ 1)B~ •

PROOF . Let 3< = a, ; 3<< =a0. Then to every set XE [S]' there be-
longs a permutation 7r(X) :X- (r(A) defined by

x = { X0, x1, . . xa_1 } < = I x6(0), x 0(1), . . . , xa(8_1) } << .

Let Ira (X < s!) be all permutations of [0, s ] and, in particular,

7ro : A --> A ;

	

7r1 :A -> s - 1 - A

	

(A < s) .

Then [S]'= E[v<s!]K„ where K,= {X :XE [S]' ; 7r(X) =7r,} . Now
suppose that A CS ; v <s! ; [A ]'CK,. We shall deduce a contradiction
in each of the three cases that follow and so establish the lemma .

Case 1 . v = 0 ; A< =/30 . Then the contradiction $o = A <<_:5 S<< =ao
follows .

Case 2 . P =1 ; A < =(3 1 . Then the contradiction 13* = :T<< :_5 S<< =«o
follows .

Case 3 . 2 :gv<s! ; A< =s+1 . Let 7r, :X->a(A) . Then A={xo,
x t , • • • , x3 } < and therefore, putting yx=xl+x (X <s), we have
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(66)

	

{ xo, X1, . . . , x,-1 < _ { x0'(0), x0'(1), . . . , xu(,-1) } «,

{ X1, x2,

	

, x, } < _ { yo, yl, , . , ya-1 } <

(67)

	

_ { y0'(o), yo(1), .
. , y0'(8-1) 1<<

_ { X1+' (0), x1+0'(1), . . . , x1+0'(a-1) f <<
If x o<<x1 , then alternate applications of (66) and (67) lead to

xo«x1«x2<< • • • <<x, and so to the contradiction 7r,=7ro, while,
similarly, the assumption x o>>x 1 leads to the contradiction Tr y = 7r1 .
This proves the lemma .
PROOF OF THEOREM 37, (i) . Let a =hL ; b =8 1 , and let F be the set

of all mappings X- ->h(X) of [0, wl] into [0, corn] . We order F by putting,
for ho, h1 EF, ho«h1 if, and only if, there is No <w1 such that

ho(X) = h1(X) for A < Xo ;

	

ho(Xo) < hl(Xo) .

Then I FI =a6 , and we have, by 9 Lemma 2 of [6], if a=elm ; b =N1,

(68)

	

Wm+1, W1+1 F<< = F, say .

We can choose a set XE [F]", . Let x--4f(x) be a one-one mapping of
X on [0, Wk], and S= { (x, v) : x EX ; v <Wf(z) } . We order S alphabeti-
cally, by means of a relation u<v, and put S< =3=0. Then

I S I = E [x C X ]Nf(x) __< E [X < Wk]Nwk = 11ak .

On the other hand, if d <!\q, k , then d <N,, for some M <Wk, and there
is xo EX such that f (x o ) > n . Then I SI > 11f (yo) > d . Hence

(69)

	

I-0 I= I S I = KWk .

1 . Let S1 CS, and suppose that S l is an ordinal . Put X1= E[v < Wk ]
X : (x, v l ESA . Then Xl is an ordinal, and X, S F . Hence, by (68),

X <Wm+1; IX! : "m = a<flk •

~[x E X1] If(x) I < 11k ;

	

v1 = ~[x E X1]f(x) < Wk ;

S1 I =

	

[x E X1 ] I { v : (x, v) C S1 } I

	

[x C- X1 ]1`t/(x)

< llr l I X1I C l1"11. < 1L ;

(70)

	

W.k $ !b .

2. Let S2 CS, and suppose that (S2) * is an ordinal . Put
X2= E [v <W,] { x : (x, v) ES2 } . Then (X2 ) * is an ordinal, and (X 2 )
<_ F. Hence, by (68), (X2) * < wi+l ; I X2 1 1::M. Put, for x EX2i N(x)

_ { v : (x, v) E S21 . Then N(x) is an ordinal . On the other hand,
s The authors are indebted to G . Kurepa for pointing out that the result of this

lemma had already been obtained by F . Hausdorff, [9, Satz 14] .
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(N(x)) * is an ordinal, since (N(x)) * <_ (32) * . Hence N(x) <wo ;

I S2I = E [x C X211 N(x) 15 No I X21 5 RI ;

	

(32) * < wi+1 ;

(71)

	

wt+1

	

q.

3 . We now apply Lemma 4 to the case

s=2 ;

	

ao=0 ;

	

al =w„ k ;

	

go =WW k ;

	

W1+1-

Its hypotheses are satisfied, by (70), (71), (69) . We obtain cw, k
_(CO." wi+1 ) 2 . This implies (65), by Theorem 14, and completes the
proof of Theorem 37 .
REMARK . If a>_No and hk=a+, then (i) of Theorem 37 yields a

stronger result then (ii) of Theorem 36 . For, first of all, we note that
the hypothesis of (i) of Theorem 37 holds, since a<a+=a+'=ilk
=Nk < al . Hence the latter theorem gives

(72 )

	

Nwk -F' (b+, R.,;) 2 .

On the other hand, (ii) of Theorem 36 gives

( 73 )

	

llmk

	

+
k' N.')

2

It is known that, for any m,

(74)

Hence N
'
k >Wk =11k =a+'=a+zb+, and (72) is stronger than (73) .

Since we were not able to find a reference for (74) we give, for the
sake of completeness, a proof now .

Case 1 . Let N4,m=N„<K ;,, . Then N.m =

	

[v<w„]K,,Y, for some
nv<Wm • Put A= E[v<co„]x . Then, since Iw,I <N'M ; IwI <1lm we
conclude that

IX~1 I = Y- [Y < '0-1 1 XY I < Mm ;

	

lln < 11m llm G flmm ;

N.. < E [v < ..IN, = R'N. < \lm„y

which is the desired contradiction .
Case 2 . Let N'm > Kn =K;~, . Then m > 0, and Hm = [v < w, IN),, for

some X ,<m. Then

	

for some l<Wm,Y

	

~,

Nm'= E[v<w„]N" :5 Illnn ; m<n ; llu',n -E1'U<wmINµ
;wmI <K„ which, again, is a contradiction . This proves (74) .

THEOREM 38 . If s,mi~(I o I , 10,1, . . • ) r, then

Q

	

Q

	

r+1

(75)

	

(NO + 1, N1 + 1, . . ) k .
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We give some applications of this theorem .
(i) If 10 I= I y I =Km+1, then

(76)

	

wm+2 - ~4 (0 -}- 1, y -I- 1)'.

For, let a =N ., and let b be minimal such that al >a. Then, by
Theorem 7, a'-+-(a+, b+)' and therefore l y l) 2 . Now (76)
follows from Theorem 38 .

(ii) If Nn =Nm ; Iaf =him+1 ; IyI =K,, then

(77)

	

w~ „+1 +a (0 + 1, y + 1) $.

In order to prove (77), we apply Theorem 36 (ii) to a=N, We note
that, by (74), a'=hi„ =N,,, ; a'+= llm+1 . Hence, by Theorem 36,

wR -* (1 0 , I yI ) 2, and (77) follows from Theorem 38 .
(iii) If 101 =Ilk+1 ; IyI =himk+l, then

(78)

	

wwk+1+1 -+3 (i3 + 1, y + 1) 3 .

This follows immediately from Theorem 37 (ii) and an application of
Theorem 38 .

We note that on putting n = k + 1 in (ii) above one obtains a result
which is weaker than (78) . For, (ii) becomes : if 1\k+1 =Nm; I/ I 4(+2 ;
IyI =N.,k+1, then (78) holds .
The proof of Theorem 38 depends on a lemma .
LEMMA 5 . Let a be an ordinal . Suppose that 0, (v <k) and r are such

that, whenever 0 <a, then 0 +x(3 0 , (31,

	

}r. Then

(79) a - (/3o+ 1, 01+ 1 , . . . )k+1

PROOF . Let S=a ; xES . Then L(x) <a, and hence, by hypothesis,
there is a partition [L(x)]r=E[v<k]K,(x) such that, whenever
XCL(x) ; [X]rCK,(x), then X<13, . Put K,= {A+{x} :xES;
AEK,(x) } (v<k) . Then [S]r+ 1 = E[v<k]K,. If we now assume that

(80)

	

S' C S ;

	

[S']r+1CK, ;

	

S' =0, + 1,

then S'=S"+{x'} ; S"CL(x') ; S"=,3, ; [S"]rCK,(x') which con-
tradicts the definition of K,(x') . Hence (80) is impossible, and (79)
follows .
PROOF OF THEOREM 38 . If (3 <cvm+l, then I a I m, I a I -(I ao I ,

10,1, • • • )x . By Theorem 13, this implies )z . Now
(75) follows from Lemma 5 .
THEOREM 39 . (i) If

r
(81)

	

1 -s (ao, al, . . . )x,
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(82)

	

I m > E [X < l] I k 11 11 1 ',
then

(83)

	

m--> (ao + 1, a1 + 1, . . ) k+ 1

(ii) If r > 0 ; w„-+(ao, a,, • • • )t, and

(84)

	

2N , S Nn

	

for v < n,

then
n+I --3 (ao + 1, al + 1, . . . )k1(,).+I

	

.

(iii) If I k I <Nm ; r>=0, and if 2xv<=K„ for m5n<m+r ; v<n, then
r+1(85)

	

wm+r -> ((pm + r)k

(86)

	

wm+r 3 (wm + r)k .

Deduction of (ii) from (i) . Let the hypothesis of (ii) hold . If Ia,I <r
for some v<k, then the assertion is trivial, by Theorem 22 . Hence
we may assume that I a,I >_r (v<k) . Next, suppose that I a,I =r for
some v < k . Then, by Theorem 17, we may apply a suitable permuta-
tion to the system ao, a,, so that for the new system, again de-
noted by ao, a,, • • , a r , • • (v < k), we have

a, = r (v < ko) ;

	

I a, j > r

	

(ko < v < k) .

Here ko is some ordinal, 0 < ko =< k, and we can write k = ko+k1 . Then,
by Theorem 20, (ii), the hypothesis implies w„-(aka , ak,+1,
and the assertion is implied by

r+1
wn+1 --> ( ak o + 1, ako+1 + 1, . . . )k1 ,

This shows that we may assume, without loss of generality, that
I a, I > r for v < k . Let us, now, suppose that I k I >_R.. Then, if
A = [0, w„ ], we can write [A ]r = E [v < k ]K„ where I K, 151 for
v < k . Since A-*(ao, • • • )r, there are X CA, v < k such that X =a,;
[X]rcK, . Then I XI = I a,I >r ; 1 < I [XIII <= I K,I which is a contra-
diction . This proves that I kI <K,, .

Put

E [X < w„] I k II X I r = a.

It suffices to show that I w„+1 I >a.
If n =0, then a <No . If n >0, then

a < E[x<w„]2'k'j"'<_ E[x<w„]V'",

for some v" <n . Hence, by (84), a :5. E [A <wn ]N» =N,, .
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Deduction of (iii) from (ii) . By definition of Nm, w,,,- (wm)k. Hence,
by r applications of (ii), (85) follows. Now (86) follows from Theorem
15 .
PROOF OF (i) . Let S=m; [S]r+ 1= ~' [v<k]K, . We choose n such

that I n I > I m I . Throughout this proof the letters K, X, P, o denote
ordinals less than n, and x, y and z elements of S . The relation

{ xo,

	

xr }

	

{ yo, . . . yr }

expresses, by definition, the fact that, for some v <k,

{x0 . . . , x r } , { yo, . . . yr } E K,.

We define f, (x) ES as follows. Let x be fixed, and suppose that, for
some fixed X, the elements f,=f,(x) have already been defined for all
K <X. Then we put f,\ (x) =x, if f, =x for some K <X. If, on the other
hand, f,-7~x for K<X, then we define,fx to be the first element y of
S- if. : K <X } such that

(87) t f, . . . , f.,, y } =

	

x } for Ko <

	

< K,._1 <X.

This defines f, for all K . We now prove that

(88)

	

A < f,,

if

(89)

	

X < u ;

	

fx P6 X .

First of all, (87) holds for y =x . Hence, by (89) and the definition of
fx, we have fx<x. This proves (88) in the case when f, =x. Now sup-
pose that f„ x . Then (87) holds for y=f, and, again, (88) follows .
By (88) and I nI > I m I, there is p(x) such that

f.(X) < fx(x) = x,

	

if K < P(x) 5 A .

Let, for Ko < .

	

< Kr_1 <p(x),

{ fK . (x) , . . . f.,(x), x} E

	

K'(Ko, . . . x) .

We now show that if x and z are such that

(90)

	

P(x) = P(z),
(91) K'(Kop , Kr-jr X)

K'(Ko, . . . , Kr_i, Z) for Ko < .

	

<Kr-1 < P(x),

then x=z. Let X p(x), and suppose that

(92)

	

f,(x);= fK(z)

	

for K < X .
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Then fx(x) is the first element y of S- If, (x) : K <X } such that (87)

holds, i .e .
{f-a(x), . . . , ff r _1(x), y} CK' ( KO, , Kr-,, X) for Ko< . . . <Kr-,<~1 .

Now, fx(z) is defined by the same property, with z in place of x, and
(90) and (91) show that fx(x) =fx(z) . We have thus proved, by induc-
tion, that fx(x) =f,(z) for all K_<_ p(x) . In particular, by (90),

x = fP(=)(x) = f,( .)(Z) _. Z .

We next prove that p(xo) >=l for at least one xo . Let us suppose, on
the contrary, that p(x) <1 for all x . Let v<1. Then the cardinal a (a)
of the set {x :p(x) =o } is at most equal to the cardinal of the set of
all functions h(KO,

	

, Kr-,) <k, defined for Ko < . . . <Kr_j < v. Hence
a(r)< I kII a i r ;

	

ImI= ISI= I E['T<1]{x :p(x)_?}I
5E[a<I]Iklll r

which contradicts (82) . This proves that p(xo) _>_ l for some suitable x o .
Put S0={ff(xo) :K<l} . Then So=l ; [S0]r=F,[v<k]K,', where
K"={A :AE[So]r ; A+{x 0 }EK,} (v<k) . By (81), there are
S,CSo ; v<k such that S,=a, ; [S1 ]rCK" . Then the set S2=S1+{xo }
satisfies S2 =a,+1 ; [S2]r+'CK„ and (83) follows. This completes
the proof of Theorem 39.

COROLLARY OF THEOREM 39 . Given any r and any ordinals k, 3 r ,

there always exists an ordinal a such that
r

a-+ (,80, 01, . . . )k.

For, if r < 1, then any a can be taken such that I a I > E [v <k] I (3,J,
and the result for r = 2, 3, • • • is obtained by applications of Theorem
39 . The relation (5) shows that the last proposition becomes false if
a and 0„ instead of being ordinals, are allowed to be any order types .
Later on (Theorem 45) the corollary will be extended, for r=1, to
the case of arbitrary types fl . .

We mention, without proof, the following further applications of
Theorem 39 (i) .

(a) (2d)+- (a)' if I kI <a' .

(b) a+--s(a)x ; W„+'-(Wn+1)k,
if a=IA. ; I kI <a', and 2b_<_a for all b<a.

(c) (k~o+ . . .+a1 1-2k+'+k-2)(k-1)-~-~(a0i . . .

	

ak-1)2, if 2<__k,
a0, . . . , ak_,<W0 .

If in Theorem 39 we take as k, 1, a, finite numbers we obtain a
result which implies Theorem 1 of [5 ] . Denote, in this special case, by
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Pk(r ; ao, al, . . . , ak_1)

the least number n such that

n

	

(ao, . . . ak_1 ) k .

Without loss of generality, we restrict ourselves to the case k _>- 2 ;
0 <r <a,. In [5, Theorem I], an explicit upper estimate was given
for the number pk (r ; a, a, , a), which, in that paper, was denoted
by R(k, r, a) .

Clearly, Pk(l ; ao,

	

, ak_1)=1+ao+

	

+ak+1-k . By Theo-
rem 39,

(93)

	

Pk(r + 1 ; a u + 1, al + 1, . . . ak_1 + 1)
[A

	

. . ,

	

]k'' .< 1 +

	

< Pk(r ; ao, .ak-)

It is easily proved that, for l <wo,

(94)

	

1 + E [x < l ]k" S k l` .

For, (94) holds for l = 0, and if 0 < m <wo , and (94) holds for l = m -1,
then

1 + E[x < m]kX' S k(m-u' + k(m-1)' S k1+(m-1)'< k,n'

so that (94) holds for I= m. We have thus proved the following recur-
rence relation .

THEOREM 40 . If 2 5 k <wo ; 0 <r=<a, <wo (v < k), and if Pk is defined
as above, then

Pk(r + 1 ;

	

ao + 1 , . . . , ak-1

In particular, we have, using the notation of [5 ],

R(k, r + 1, a + 1) 5_ kx ( k •' •° (k >= 2 ; 0 < r S a) .

This is precisely the recurrence relation established in [5 ], from which
the explicit estimate is deduced at once . This is no coincidence, as
the method of proof of the present Theorem 39 is related to that used
for proving Theorem 1 of [5 ] .
Theorem 39 implies Theorem 4 (i), i .e .

(95) (2 ~)+-' (11n+1)~

For, clearly, ',n+l-~( n+l)~~, and therefore w„+1-~(wn+l)w, . Also,

tai

	

~1''n~
11,

	

Hn

	

~,
[x < Wn-Fl] I wn I

	

S !ln

	

n+1 = 2

	

= !\ ma,

say. Hence, by Theorem 39 (i), w,,0+l->(wn+l-} 1)~ ,, and (95) follows .
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THEOREM 41 . If r >_ 3, then, for all n,
r

(96)

	

coe+1 -+3 (w, + 2, wo + 1, r + 1, r + 1, . . . , r + 1)(r-1)! .

As an application, consider the case r = 3 ; n =0

(97)

	

wi -+a (coo -!- 2, wo + 1)a

This should be compared with :

W, --> (wo + 1)k

	

(k < co o ; r > 0)

which follows from Theorem 39 (ii) and Theorem 1 .
PROOF OF THEOREM 41 . Let w _<- Q <wtt+, . We apply Lemma 4 to

s = r - 1 ;

	

ao = wn ;

	

ai = $ ;

	

13o = wn + 1 ;

	

(31 = coo

and obtain
r-1

-F-) (co n + 1, wo, r, . .

	

, r) (r-l)! .

This holds, a fortiori, if ,Q <w.. Now Lemma 5 proves (96) .
A type (3 is called indecomposable if the equation 0=,y+8 implies

that either y >_l3 or It is known 10 that the indecomposable
ordinals are those of the form wo . The types n and A are indecomposa-
ble. The next theorem asserts that in Lemma 4 the s!-2 classes cor-
responding to the entries s+1 in the partition relation may be sup-
pressed in the special case when both f3 o and 01 are indecomposable,
at the cost, however, of raising the remaining entries slightly .

THEOREM 42 . Let s >_ 3 ; j a o _ a1( ; /30,

	

ao, and suppose that
go and 01 are indecomposable . Then

(98)

	

(s - 3) + a1 ++ ((s - 3) + 13o, (s - 3) + /3i) 8 .

PROOF . Case 1 . s=3 . Consider a set S with two orders such that
S< = a1 ; S<< =ao . Then [S]3=Ko+'K1, where Ko is the set of all sets
{ xo, x1, xQ )< = f YO, y1, y2 } << CS for which xx-oy x is an even permuta-
tion of [0, 3], i .e. one of the permutations 012, 120, 201 . Now let us
assume that

(99)

	

«i -3 (/3o, f1) 3 .

It suffices to deduce a contradiction in each of the two cases that
follow .

Case 1 .1 . There is ACS such that ;T< 0, ; [A ]3CKo. Let x, y, z

denote elements of A . Then { x, y, z } < = { x 1 , y1, zi } << implies that
xi, yi, z1 is a cyclic permutation of x, y, z . Put B = { x : y<<x, whenever

1o [13, §§75-78] .
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y < x } ; C = A -B . We shall prove three propositions about the two
orders of A showing their effects on the partition A = B + C.

1. Let x < y EB ; x E C. Then there is z such that z < x<<z ; { z, x, y } <
_ { x, y, z } << ; z < y<<z ; y E C which is false . Hence x < y EB implies
xEB, as well as x<<y . Therefore x > y E C implies xE C.

2. Let xEB ; yEC; x<<y. Then x<y. There is z such that z<y<<z .
Then {x, y, z } << = { z, x, y } < ; z < x<<z ; x C C which is false. Hence
xCB ; yEC implies y<<x .

3 . Let x, y C C ; x < y<<x . Then there is z such that z <x<<z ;
{ z, x, y } < = { y, x, z } << which contradicts the definition of Ko . Hence
x, y E C ; x < y implies x<<y .
The results of 1, 2 and 3 show that, if we put B< = yo ; Z7 < =7i, then

0o=A<=yo+y1 ; A<<=y1+yo . Since 0 0 is indecomposable, it follows
that y, >>=0 () for some p < 2 . Then

(100) /o -w ~5 A«<s<<=ao
which is a contradiction .

Case 1 .2 . There is ACS such that A<=& [A ]3 CK1. Then
{ x, y, z } < = { x1, yi, z1 } << CA implies that x1, y1, z1 is an odd permuta-
tion of x, y, z . This is equivalent to saying that { x, y, z } < = { x2, Y2,
z2 } >>CA implies that x2, y2, z 2 is an even permutation of x, y, z .
Hence the result of Case 1 .1 holds if /3o is replaced by ,Q1, and "<<" by
">>". We note that ~ ; is indecomposable . Hence, in place of (100) we
have

~1<A»<S»=ao

which is a contradiction . This shows that the assumption (99) was
false, i.e. that (98) holds .

Case 2 . s>3. Then, by the result of Case 1, we have a 1-+s(0 0 , f31) 3 .
By Theorem 15, this implies (98) . This completes the proof of Theo-
rem 42 .
REMARK. If, in particular, Oo and 0 1 are ordinals, not zero, then

(s-3)+/3,= ,0„ so that (98) can be replaced by

(s - 3) + a1 -" (fro, 01) - .

We may also mention here the following corollary of two of our
lemmas, in which X is the type of the continuum .

(101)

	

If 2W = f\,,,

	

then w„+1 -" (w 1 + 1, w1 + 1) 3 .

PROOF . Let w„ <ca1 <w,+ 1 . Then, by Lemma 4, with ao =X, we have
a1 -+- *(w1, w1) 2 . By Lemma 5 this leads to (101) .
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THEOREM 43 . If r <s 50o ; a-+->((3o)k ; i3 -*(s)k, then

a - (go, $i)*.

This proposition remains valid if the types a, (30, 0, are replaced by
cardinals .

PROOF . Let r <s _<,30 ; a---> (0o, fl) 8 ; 01->(s)' . We have to deduce that
(102)

	

a -* (Bo)x .

Let S=a ;

	

[v <k ]K, . Then [S]e=Ko +'K1 , where

Ko = E[v < k]{A :A E [S]8 ;

	

[A]' C K,} .

Then there are BCS ; A<2 such that [B ]BCKX' ; B=fl . If A=1, then
B->(s)k', and therefore there are AC [B]8 ; v<k such that [A]rCK,,.
Then A(EKo ; AEEK1 , which is false. Hence A=0 . Let {X, Y},
C[B]1. Then we can write X = { xo, . , x,-,) ; Y = { xm , •

xm+r_, } , where 1=< m 5 r ; { xo, • • • , Xm+r-1

	

Put
X„ = { x,,, . . . , x,.+r-, }

	

(J•~

	

M) •

Now let ,u < m . Then, since I B I = I fo I >_ s> r, there is Y„E [B ]8 such
that X„+X,,+,C Y,,, . But Y,,EKO , so that X,,, X„+,E [Yµ]rCK,,,,
for some v,<k. Then v o =v,= • • • = vm_, ; X=Xo EK,o ; Y=Xm
EK„f8 _ 1 =K,8 . Since X and Y are arbitrary, it follows that vo is inde-
pendent of X and Y, and that [B]rCK,,. This proves (102) . The
analogous theorem, with cardinals in place of types, is proved by
means of the obvious modifications of the above argument .

Applications of Theorem 43 . (a) Let A be the type of the continuum
and I A I =RR . Then, by Theorem 30, ,)2 . Also, as is easily
verified,

(103)

	

6--+ (3)z .

Hence, by Theorem 43, K„-+->(bt,, 6) 3 , and therefore 6) 1 .
Now, by Theorem r+3)r (r>3) follows and therefore,
finally,

(104)

	

2Ko -+-> (Ki, r + 3)r

	

(r ~; 3) .

(b) By (97),
(105)

	

w, +> (co o + 2)2 .
By (103) and Theorem 39, we have

(106)

	

m --> (4)z,

where m=1+~[1-~<6]2µ= <2 26 . It now follows from (105) and (106),
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by Theorem 43, that wl+a(wo +2, 228) 4 and therefore, by Theorem 15,
that
(107)

	

wi -+-> (coo-{- 2, 2 28 -{- r - 4)'

	

(r >= 4) .

We now give a new proof of the theorem of Dushnik and Miller
[2] . 11 Our proof bears some resemblance to the original proof but
can, we think, be followed more easily .

THEOREM 44 . If a >_& then a---), (No , a) 2 .

PROOF. We use induction with respect to a . By Theorem 1, the
assertion is true for a =No . We assume that n > 0 and that the asser-
tion is true for a <N., and we let

ISI=b=Nn>No ; [S]2=Ko+K1.

We suppose that
if X E [S]Ho, then [X]2 d Ko ,

and we want to find YE [S]0 such that [Y] 2CK1 .
There is a maximal set A = {xy :v<l} CS such that l<wo, 12

(108)

	

X, E Uo(xo, . . . ,x, Y-1),
Uo(xo, • • , x,.) I = b

	

(v < l) .

For, the relations (108) imply that [A ] 2 CKo . Put B = Uo(A) . Then

(109)

	

I BU,(x) I < I BI = b

	

(x E B) .

Case 1 . b' =b . Then we define x, (v<w„) as follows. Let v<w., and
suppose that x„EB (µ <v). Then, by (109),

I E [A < PI({x„} + BUo(x,,)) I < I B I,

and therefore there is x, E B - E [µ < v ] ({ x„ } -f- Uo (x,)) . We may put
Y= IXY :v<w„} .

Case 2 . b'=t'L<b . Then b= F,[µ<wm]b,,, where b, <b . Let xEB.
Then there is a first ordinal p(x) <w. such that I B Uo(x) <b, (x) , since
otherwise we would obtain the contradiction b = E [j <wm ]b„
= I B Uo(x) I "m <b. Now put

B(r) = { x : x E B ; p(x) = r }

	

(r < Wm) .

We define, by induction, T,,, X, (,u <w .) as follows. Let, for some
V <wm,

11 Theorem 3, (i) .
12 The symbol Uo was defined in §2 .
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T,, < Wm ;

	

X, E [B(T,,) ]b"

	

(µ < v) .

Then, by definition of m,

I~[µ<v;xEX„]({x}+BUo(x))I<

	

[µ<v;xEX,,](I+bTA)

=E[p<v](1+b,,,)b„<b .

Hence IDI =b, where D=B-E[,u<v ; xEX„]({x} +Uo(x)) . There
is a first ordinal T, <Wm such that I DB(T,) I <b„ since otherwise we
would have the contradiction

b= I D I = E [µ < Wm] I DB(µ) I S b,Nm < b .

Now we can choose X, (E [DB(r,) ] b, . Then X,C U,(X„) (t <v <Wm) .
By the induction hypothesis there is Y,,E [X,1 such that [ Y,] 2 CK1
(A <wm) . Then we may put Y= E, [p <W.] Y,, . This proves Theorem
44 .

Our next theorem may be considered as providing, in the case
r =1, an extension of the Corollary of Theorem 39 to the case of
arbitrary types /3„ not necessarily ordinals . In view of (5), the exten-
sion to values r >= 2 is false .

Let k >0, and consider any types 0, (v <k) . Let and denote
by P the cartesian product of the sets B„ i.e. the set of all mappings
v- >X,EB, defined for v<k. We order P alphabetically and call the
order type 7r of P the alphabetical product of the types 0, and write

7r = ll X [v < k]0, .

This multiplication has been considered by Hausdorff [10] .

THEOREM 45. If k > 0, then llX [v < k ]0,,-(0 o , #1 , • . . )';-

PROOF . In spite of its somewhat complicated appearance the proof
is, in fact, very simple, as can be seen by following it in the case
k=2 or k=3. Let P=E[v<k]K, . We want to find XCP and
vo<k such that X=i3, a ; XCK,o . We use the notation (zo , z1, , , • , z„)
for the system of all z, such that v <n, ordered according to increas-
ing v. Thus

P= {{xo,x1 1 . . . P zk} :x,EEB,forv<k} .

Case 1 . There is v < k such that the following condition is satisfied .
There is a system of elements x,(=- B, (,u<v) such that, given any
x,EB,, there is some system z(x,) = (xo, xl , . . . , xk) which belongs
to K, . Then we may put X = { z(x) : x E B, } .

Case 2 . There is no v such that the condition of Case 1 holds .
Then, given any v<k and any elements x,,EB,, (µ<v), there is a
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function f,(xo, xl ,

	

, e,)EB, such that, for any choice of xxEBx
(v<X<k),

(xo, xlr

	

, ~rr f,(x0,

	

r fir), xr+l,

	

ilk) (E
K, .

In particular, the function fo(x o ) is constant. Then we define, induc-
tively, elements y,(v < k) as follows . We put, for v < k, y,
=f,(yo, 9,) . Then y,EB„(A<k), and hence there is v<k such
that (yo,

	

, 9k)EK, . But then
(yo, yl, . . . , 9„ f,(yo, . . . , 9 , ), yp+l, . . . , 9k) E K,

which contradicts the definition of f, . The theorem is proved .

8. Canonical partition relations. Let S be an ordered set, and con-
sider a partition

(110)

	

[S],

	

[v < k]K, .

To every such disjoint partition there belongs an equivalence relation
A on [S]r defined by the rule that elements X, Y of [S]r are equiva-
lent for 0, in symbols :

X=Y( •0 )

if, and only if, there is v < k such that X, YEK,. This equivalence
relation 0 is unaltered if the classes K, are renumbered in any way .
The partition (110) and the corresponding equivalence relation A
is called canonical 13 if there is a system (ED, El, . . . , e,-l ) of numbers
e,<2 such that, for X = { x,, • • • , X,-l } <C S ; Y= {yo, • . , y,-l } <
CS, we have X==-Y( •A ) if, and only if, x, =y, for every p<r, such
that E, =1 .

The canonical equivalence relation defined by means of the num-
bers E, is denoted by

	

The canonical partition relation

(111)

	

a --+ * (0) ,

has, by definition, the following meaning . Whenever S=a, and (110)
is any disjoint partition, with any arbitrary k, then there is BCS
such that B=#, and such that the equivalence relation A belonging
to (110), if restricted to [B] , , coincides with some canonical equiva-
lence relation ®EO • The main result of [4] is expressible in the
form wo-> * (WO)r

. The problem arises of finding canonical partition
relations between types other than coo . The main difference between
canonical and noncanonical relations derives from the fact that if the

1E [4 ; 5] . The notation used in the present note differs slightly from that used in
the earlier papers .
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canonical relation (111) holds then a certain choice of a subset of S
can be made irrespective of the number I kI of classes of (110) . The
relation wo--+ * (coo) 1 is equivalent to the statement that, if a de-
numerable set S is arbitrarily split into nonoverlapping subsets S,,
then there are either infinitely many nonempty subsets S, or else at least
one of the subsets S, is infinite .

The following theorem establishes a connection between canonical
and noncanonical partition relations .

THEOREM 46 . (i) Let q8 denote the number of distinct equivalence
relations which can be defined on the set [0, s] . Let

zr
(112)

	

s =
2rr\

) ;

	

I ai > 2r ;

	

a-i (6) Q8 .

Then a--* * (0) r . If 181 >4 ; a-+(f3)203, then a-> * (0)z .
(ii) If m, r _O, and 2m•< t4„ for m 5n <m+2r+l ; v<n, then

Wm+2r+1--~* (Wm+2r+1) r+ 1 .

REMARK . The first few values of q8 are :

qo=1 ; q1=1 ; q2=2 ; q3=5 ; q4=15 ; qs=52 ; q6=203 .

A rough estimate for all s is

q, < 2(2) ,

obtained by observing that an equivalence relation is fixed if for
µ <v <s it is decided whether µ==-v orµ ~4 v . It is easy to prove that, for
s>0,

q&-+-1 = ( 0
) q=+\1/qe-1+ . . .+\s qo

and hence q8 <s! .
Deduction of (ii) from (i) . By Theorem 39 (iii), we have

2r+2
W.+2,-+I '- "y (Wm + 2r + 1)k

	

(k < Coo),

and the conclusion follows from Theorem 46 (i) .
PROOF OF (i) . Suppose that (112) holds . Let S=a, and consider

any disjoint partition (110) . Let A be the equivalence relation on
[S]r which belongs to (110) . Our first aim is to define a certain
equivalence relation v* on [S]2 r .

Let [[0, 2r]]r= {Po, P 1i . . . 1P.-11, . Then

= (21 r) .
s

r
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Let X= {xo, • • • , X2,-1}<CS . Define the equivalence relation A(X)
on [0, s] by putting, for ,u <Y < s,

A == Y('A(X))

if, and only if, {xa :XEP„} _-{xa :XEP,}(•A ) Put, for X, YE[S] 2 r,

x = Y( . A- )

if, and only if, A(X) =A(Y) .
Now, by definition of q8 , A* has at most q, nonempty classes . By

(112), there is BCS such that B=/3, and any two elements of [B] 2 r

are equivalent for A*. This means that, in the terminology of [4],
A is invariant in [B ]r (cf. [4, p. 253 ]) . Choose any A CB such that
2r < IA I <No, which is possible since 101 > 2r . Then A is invariant
in [A ]r and hence, by [4, Theorem 2 ], canonical in [A ]r. Thus there
is a canonical equivalence relation A(A) on [B ]r such that A=A(A)
on [A ] r . It only remains to show that A(A) is independent of A.

Let Ao, A,CB ; 2r<IA,1, IAiI <No, and let A=A(Ao)=OEo . . .E,_1
on [Ao]r, A=A(A1)=An0	_1 on [A 1 ]r. Then 2r<lAo+A1l <so,
and hence, for some K,<2, A =A(Ao+A1) =AKo . . .,r_1 on [A o+A 1 ]r .
Let A o = { yo, y1, • • , Y2,-I, • • • } < . Consider the sets

P = { y 2a :X < r} ;

	

Q = {yea+1-Ea : n < r} .

By definition of

	

we have P=-Q( AE o . . . Er 1) . Hence

P =- Q(' A) ;

	

P = Q( Q( Ax 0 . . . Kr_) ;

	

BPS EP (P<r) .

Similarly, by considering the sets P and Q'= { y2x+I_,, : X < r } , we
find that P=Q'( •AK0 . . .Kr_1) ; P=Q'('A) ;

P

	

Q ' ( AE0 . .Er-1)

	

EP S K,(P < r) .

Hence ep = KP for all p. For reasons of symmetry, 7)P = Kp , and so,
finally e,=7]P (p <r) . Therefore A(A) is independent of A, which
means that A is canonical in the whole set [B ]r. This proves Theorem
46 .

9. Polarised partition relations . The relation a--+(bo, b1 ) 2 refers to
a partition of the set of all pairs of elements of a set S of cardinal a .
Instead of pairs of elements of one and the same set we shall now con-
sider pairs of elements, one from each of two sets So, S1 . The relation
a-->(bo, b1 ) 2 can be thought of as referring, in the terminology of
combinatorial graph theory (linear combinatorial topology), to
decompositions of the complete graph of cardinal a into two sub-
graphs. The new kind of relation to be defined now refers to decom-
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positions of the "complete" even graph of cardinal-pair ao, a1, i .e .
the graph obtained by joining every "point" of a set of cardinal ao
to every point of a disjoint set of cardinal a 1 .

More generally, we introduce the notation

[s0, •S1, , , . , SE-1 ] ro , rl , . . . . r,_ I

for the cartesian product of the t sets [Sa ) rX, i .e. we put

[So, . . . St_llro, . . .,rl_1
= { (X0, . . . , XI-1) :Xx E [SxJ'a for X < t} .

We shall always have O <t <wo . The introduction of this set leads
naturally to the following definition of a corresponding partition
relation. The relation

boo

	

bol
blo

	

bn

bt_l,o

	

bt_1,1 • • • k

ro,r1, . . . 'r,_1

has, by definition, the following meaning . Whenever I Sx I =a1, for
A < t, and

[So, . . . , S,_1] ro	rt-1 = E [v < k] K„

then there are sets B,,ESx and an ordinal v<k such that (BxJ =b a,
for A<t, and [Bo, • • • , BI_1 ]r0 . . .rd -1EK,. There is a similar kind
of relation involving order types which will, however, not be con-
sidered here . If the number of classes is finite we write in the rows
on the right hand side of (113) a last element . The negation of (113)
is obtained by replacing -> by +9 . If, for A < t, bxo =bat we use
the obvious abbreviation for (113) . Cf. Theorem 49 .

The passage from our former type of partition relation i .e. the case
t =1, to the more general kind (113) bears a certain resemblance to
the process of polarisation used in the theory of algebraic forms,
which accounts for the name polarised partition relation suggested
for relations of the form (113) .

We shall deduce some results for polarised relations but will not
develop the theory to the same extent as was done in the case of the
nonpolarised relation .

In [11 ] one of us has considered polarised canonical parition rela-
tions between finite numbers, and also involving wo .

THEOREM 47 . If a'=b', then
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(114) (b)_,\l b\

1,1

In particular, (114) holds if 1 <a, b <No .

THEOREM 48 . The relation

Ho

	

No No 1,1
(115)

	

b)- (No b

holds if, and only if, either b = 0 or b'> No . In particular,

(116)

	

(°\
N

l

	

' 0 No )111 .

2Ho

	

0 2Ho

PROOF OF THEOREM 47 . If 1<a<Ko, then b'=a'=2 ; 1<b<K o .
Let, in this case, A = [0, a ] ; B = [0, b ] . Then [A, B ] 1 ' 1 =Ko+'K1,
where

Ko= {(K,X) :K<a ;X<b ;K+xeven } .

Then, for any K <a, the pairs (x, 0) and (K, 1) lie in different classes
K, and the same holds for (0, X) and (1, X) . This proves (114) . Now
let a ==> No . Then a'=b'=Nn , say, and we can write

Let X E [A ]Q ; yo EB. Then yo GB, for some v <wn. We have I A„X I

<_ I A,,I <a and hence, by definition of n, E[µ<__v]I A,,XI <a=IXI .
Therefore we can choose xo EX -E [tl S v ]A,, . Then (xo, yo) EEKo, and
and hence [X, { yo } ] 1 ' 1 (T ;Ko. By symmetry, it follows that, if YE [B ] b ;

XI GA, then [ { x1 } , Y] 1,1 d K1 . This proves (114) and completes the
proof of Theorem 47 .
PROOF OF THEOREM 48 . If b=0, then (115) obviously holds . If

0 < b <No, then (115) is false, as is seen by considering the partition
of the set in question in which K1 =0. Next, if b' =No, then, by
Theorem 47,

` b o
J
~' No

b)

1 1

a = E [v < wn]a, ;

	

b = E [v < w„}6,

where a,<a ; b,<b . Let A=E' [v<wn]A„ B=E' [v<wn ]B„
I A,I =a, ; I B,I =b, . Then [A, B]1-'=Ko+K,, where

Ko= {(x,y) :xEA,, ; yEB, ; A< v<w n },
K1 = {(x,y) :xEA, ; yEB, ; v<_A<wn} .
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Hence, a fortiori, (115) is false . It remains to prove (115) under the
assumption b'>Ro .

Let I A I =No ; I BI =b ; [A, B] 1 1 =Ko+Kj . We may suppose that

(117) (X, Y) C [A, B]"--6 implies [X, Y] 1,1dK1 .

Let (X, Y) E [A, B ]HO- 1
1 . Put Yo= L, [xEX] {y : (x, y) EK o } . Then [X, Y= Yo ]"CK 1 ,

and hence, by (117), I Y- YOI <b,

E [x C X ] I { y : y E Y; (x, y) E Ko

	

YYo = b .

Since b'>No= I XI , this implies the existence of x oEX such that

{ y : y C Y; (xo, y) E K, j I = b .
Put

0(X, Y) = xo ;

	

11(X, Y) _ {y :y E Y; (xo, y) C Ko} .
Then

O(X, Y) C X ;

	

11(X, Y) E [Y] a ,
[ { O(X, Y) } , k(x, Y) ] 1 .1 C Ko .

2. Put f(y)= {x :xEX ; (x, y)CKo } (y E Y) . If

(118)

	

Y E Y implies I f(y) I< No,

then b=I YI =E[PCX ; IPI <No] I {y :yEY;f(y)=P} I . But, since
there are only No distinct sets P, and b'>Ro, there is P1CX such that
IP1 I <No ; I Y,I =b, where Y1={y :yEY;f(y)=P,} . Then [X-P1 ,
Y1] 1 . 1 CK,, which contradicts (117) . Therefore (118) is false, and
there is y1EY such that If(y')I =No. Put 0 1 (X, Y)=y1 ; 111 (X, Y)
=f(yl) . Then qS1(X, Y) C Y; ''1(X, Y) E [X ]No ;

[111(X, Y), 10,(X, Y) } ]1 .1 C Ko .

3 . We define sequences x,, y,, X, YY (v <wo) as follows .

xo=0(A, B) ; Yo =# (A, B) ; yo=0,(A - { xo }, Yo) ; Xo=1/,1(A- {xo}, Y o ) .

For 0 <v <w o , we put

x, = q (X,-1, Y,-1 - {y'-11); Y, = #(X,-1, Y,-1 - { y'-11) ;

y, _ q5i(X,_1 - { x, } , Y') ;

	

X, _ ,11(X,_1 - { x, } , Y') .

Then

xY C X,-1 C XY-2 - { x,-1 } C XY_3 - { XP-2, xY-1 } C . . .

C Xo - { xi, -

	

x1-1 } C A

	

11
Xo

. . . , xr-1 } ;
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Y, E Y, C Y,-1 - { Y,-1 } C . . . C Yo - { yo . . . , yp-1 }

CB- { y	yY_1 } ;

[{x,}, Y, ]1,1 C Ko ; [ x,}, ~y,, y,--1,

	

]1 .1 C Ko ;
[X,, {yv} ]1

.1 C K0 ; [{x,+1, x,+2,

	

}, {yY} ] 1,1 C K0 ;

(x,,, yw) E Ko (j, v < we) .

This proves (115) . Finally, as is well known [13, p. 135], (2 11o)'> N o ,
so that (116) is a special case of (115) . This proves Theorem 48 .

We introduce the notation

~bi = I
[A] b l,

where A is a set such that JAI =a . If a, b <so, then

and the lemma follows .

i ;P
is the ordinary binomial coefficient

(a)
The following lemma is probably well known .

LEMMA 6 . If a >== N o , then

j a ~ =abforb<a and
{b}

=0forb>a.

PROOF .

l

The result is obvious for b=0 and for b>a. Now let
0<b<a. Choose n such that I nI =b, and A„ A such that I A,I =a
for v < n, and A = E' [v < n ]A, . Then JAI =ab =a . If XE [A ]b, then
X = { x, : v < n } . Every x, has a possible values. Hence

{~} <_ ab .

On the other hand, if y,EA, for v<n, then Y={y, :v<n}E[A]b,
and the set of all such Y has a cardinal ab . Hence
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THEOREM 49 . Suppose that 0<s<t<No ; k>0 ;

Ill = I k I ~Qa'
laif

. .
. {a,'_1},

(119)

(120)

Then

(121)

ao

a,-,,

a.

at-,

ao

at-,

bo

b.-,

b,

be-1 k

~ r0 .

	

.Trl

k

ra, . . .,r1_3

I

bo I rl-1

PROOF . We use the notation of the partition calculus explained
in the proof of Theorem 25 . In addition, if A is a partition of M, and
M'CM, then the relation

I A I <_ a in M'

expresses the fact that the number of classes of A containing at least
one element of M' is at most a. (119) and (120) imply that bx Sa„
for A<t. If bx<ra for some A<t, then (121) holds trivially. Hence we
may assume that

(122)

	

ra <_ ba 5 a,,

	

for A < t.

Let I Ax! =a,, for A <t, and consider any equivalence relation A on
[A o,

	

A,-, ]ro, • - - r=- 3 such that I A I _5 I k I . Our aim is to find
BxE[A),]'),(A<t) such that

(123)

	

JAI <_ 1 in [B,,.. .,B,-,]

Put, for XxE [A,,]rx (s_< A<t),

A,(X„ . . . , Xt-1) = 11 p(Xo, . . . , X,-,),

where the last product is extended over all systems (Xo, X,_,)
E [A o, ' • • , A .-1 ]rr.-' . By (122), this product has at least one
factor. It follows that IA,I <_ I11 . Hence, by (120), there is Bx E [A„]~
(s <A <t) such that

I A, 1 S 1 in [B	 B~_1]r	r~l



1956]

	

A PARTITION CALCULUS IN SET THEORY

	

485

By (122), we can choose

Put, for Xx E [Aa]'~ (A <s),

ba(Xo . . . , X,-1) = d(X0, . . . , Xe-1, Ys, . . . , Yt-1) •

Then I A2I 5 I kI , and therefore, by (119), there is BxE [Ax]"x (X <s)
such that I A21 51 in [Bo, B8_i ]ra . .. r°-I . By (122), we can
choose Yx E [B x ]'A (A < s) . Then, for any XxE [Bx ] 'A (X < t),

(X0i . . , Xt_1) = (X0,

	

, XI-1, Ya,

	

, YI-1)

_- (Yo, . . . , Y8-1, Ye , . . . , ye-1)('0) .

This proves (123) and so establishes Theorem 49 .
We note the following special case of Theorem 49 .

COROLLARY . If

then
ao --f (bo)x ;

	

ai -* (b1))kl ao
a1)

	

\ b1Jk'1

We give some applications of this last result .
(a) If 0<d<No-<a1, then

/2d

a1 1\ -a ~ a)2 ' •

This is best possible in the sense that, if 2d-1 is replaced by 2d-2,
the last relation becomes false . We even have, as is easily seen,

f2d-2 ) . (

	

)
1,1

	

(0<d<Hos
l\ a1

	

1 2

(b) I f ao > IkI >0 ; al' > IkI a ., then

a)ai/k 1
In particular, if we assume that 2 140 = "1, then

b`2/ S 1M

N 0 -

Yx E [Bx]'a

	

(s 5 a < t) .
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More generally, if 2bn=H n+ ,, then
(,

	

1 .,

`
Nn) (Nn~

\

	

~
n+2

	

t n+2 2

This is best possible in the following strong sense .
(c) If a'=< I kI ; b>0, then

\bJ~\1,Ik ,
To prove (c), choose n < k such that I n I =a'. Then a = [v <n ]a,,
where a, < a . Choose sets A A, B such that I A, I = a, (v <n) ;
A = E' [v<n]A, ; I B I =b, and put [A, B] 1,1 = E,' [v<k]K„ where
K,= [A,, B] 1 .1

(P <n) . If, now, 05ZXCA ; yEB ; [X, {y} ]1 , 1CK, for
some v <k, then v <n ; X CA, ; I X 1 <a . This proves (c) .

The following theorem is a corollary of a result due to Sierpinski .
THEOREM 50 . If 2K0 =S't,, then

0

	

No
\ i

F)
(R)2 1

PROOF. Let A = [0, wo ] ; B = [0, w, ] . According to Sierpinski 14 the
assumption 2K0 = N, implies, and is, in fact, equivalent to, the existence
of a sequence of functions fx (y)CB (AEA), defined for yCB, such
that, given any YC [B ] 81 , there is A o EA such that {fa (y) : y C Y} = B
(Ao<A<wo) . Then [A, B]','=Ko+'K,, where Ko ={(A, y) :ACA ;
y GB ; f,,(y) =0 } . If, now, (X, Y) E [A, B ]t o ,t 1, then, by the property
of the functions fx, there is AEX ; yo, y, E Y such that f,,(y,) =v (v < 2) .
Then (X, y,) C= [X, Y] 1,1K, (v<2) . This proves the assertion .
THEOREM 51 . If a, b>1 ;

(b)_(b)k'.

Then
\b'/_(b)k1

PROOF . Let I and m be such that I li =a' ; I mI =b' . Then
a= E[A<I]ax ; b= E[,u<m]b,,, where ax<a ; b„<b . Put A'= [0, 1] ;
B'= [0, m ], and suppose that [A', B'] 1-1 = > [ v < k ]K,' . Then we
choose sets A,,, A, B, B such that I A,,I =ax (A<l) ; I B„I =b, (ti <m) ;

14 [14], French translation in [16] . See also [1] .



1956]

	

A PARTITION CALCULUS IN SET THEORY

	

487

A=>' [A<l]A,, ; B=E' [,u<m]B,, . Then IAI = a ; IBI =b ;
[A, B]1.1=E[v<k]K,p, where K,={(x, y) :xEA,, ; yCB,, ; (X, µ)
EK' } (v<k) . By hypothesis, there is (X, Y)C [A, B]a , b and v<k
such that [X, Y] 1,1CKn. Put

A" = {X :A < 1 ; A,X F1- O} ;

	

B" = {µ :µ < m ; B,,Y /- O} .

Then a = i X I = E [ACA" ] I A,,X I ; I AxX I <_ I A, j <a. Hence, by
definition of a', A"I >a' . But, IA"I S Ill =a'. Hence IA"I =a'and,
by symmetry, IB"I=b'.

Let ACA" ; µCB" . Then we can choose xEA„X; yEB,Y, and we
then have (x, y)E[X, Y] 1,1CK v ; (X, u)EK, . Hence [A", B" ] 1 .1

CKY ; (A", B") C [A', B']a' .b', and Theorem 51 follows .

COROLLARY . If a>1, then

\l/~ \/a

	

a
2

. ) _ ( af) 1,1 .

For, if

then, by Theorem 51 and the known equation a"=a', we conclude
that

\a'/_
(

a
a ,) ,

,l

which contradicts Theorem 47 .
We may mention that there is an obvious extension of Theorem 51

to relations
¢o

	

ao

ah1

	

¢E-1

C ¢/

_"

\1 a! 11 ' \ b/
to

\1 b)

\d/

'

\l dJll

\b
)__,(a

bC d, \ad)l,l

for any 1.

In conclusion, we collect some polarised partition relations involv-
ing the first three infinite cardinals. They follow from Theorems
47-50 . We put Ro=a ; kl=b ; Ka=d.

(Theorem 47) ;

(Theorem 48) .
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If 2a=b, then

/ a\

	

/a a 1,1

(

	

) -~ (

	

(Theorem 49)
\d/ \d d

and

(a) _+., (a

()

	

(Theorem 50) .
b

	

b b

It seems curious that the continuum hypothesis should enable us
both to strengthen
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