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Let

	

a,; be an infinite series . Put a ;; - - 2 ,, +1 ''

	

al' . If ,~

converges, it is defined as the Euler sum of

	

a,,. . It is easy to see that if
1.

	

0
co

	

cc

L, a, ; converges, so does

	

a;,, i. e . Euler summability is regular . Euler summa-
Jr- U

	

k -0

bility was first investigated systematically by KNOPP.1 MEYER-KÖNIG 2 proved
the following high-indices theorem for Euler summability : Assume that a,, -= 0
except if

(1)

	

k--n; where n+I

	

c > 1 .n ;

Then it ; a,; is Euler summable, it is convergent . MEYER-KÖNIG further con-

jectured that the theorem remains true if (1) is replaced by the much weaker
condition ni-,- n3 > cn' - where c > 0 is any constant . It is not hard to see
that MEYER-KÖNIG'S conjecture if true is certainly best possible .

I succeeded in proving the following somewhat weaker theorem

	

Let
tat, be Euler summable, further a,,==0 except if k=-n; where n.;+,- n; > Cn ; -

0'
where C is a sufficiently large constant . Then 2 a,, is convergent .

77-1 ~

The main point in these theorems is that no restriction is placed on
the speed with which a,; tends to infinity. As far as I know no analogous

I K. KNOPP, Über das Eulersche Summierungsverfahren . 1, Math . Zeitschr., 15 (1922),
pp. 226-253 ; 11, 18 (1923), pp. 125-156.

-' W. MEYER-KÖNIG, Die Umkehrung des Euler-Knoppschen and des Borelschen
Limitierungsverfahrens auf Grund einer Luckenbedingung, Math. Zeitschr ., 49 (1943-44),
pp. 151-160 .

3 P. ERDÖS, Acad. Serbe Sci. Publ. Inst. Math ., 4 (1952), pp . 51-56. Recently MEYER-
KÖNIG proved his conjecture : W. MEYER-KÖNIG, Bemerkung zu einem Lückenumkehrsatz
von H. R . Pitt, Math. Zeitschr., 57 (1952-53), pp . 351-352 .

I Acta Mathematica V11 3-4



266

theorem is known for Borel summability. High-indices theorems have, in
fact, been proved for Borel summability, e . g. Theorem of PITT' which will
be used later in this paper, but as far as I know the growth of the a-s was
always restricted .

The series N' a,; is said to be Borel summable to the sum s if

~, x'
11111 E

	

S,.

	

s,
t

	

kl

	

n

In this paper I prove the following

THEOREM . Let

k = n1 Inhere
12(2)

	

n;~, -n, ; > c, n,i
(c, > 0 is any constant) . Further let be

(3)

	

1
/ I n1-.1-11 . i

Then

	

a,, is convergent .

Throughout this paper c„ c	will denote positive absolute constants_
The proof of our Theorem will be fairly complicated . It could be

somewhat simplified if we would replace (2) by the following condition
tr i+1 -11i > Cn, ; - where C is a sufficiently large constant. The somewhat
large extra trouble in proving our Theorem might be justified by the possi-
bility that our Theorem is best possible in the following sense : Let
n,, n	he a sequence of integers which does not satisfy both (2) and

x
(3) . Then there exists a divergent series

	

a,;=0 except if k- n, ;, and

~, a,. is Borel summable .

If n, < n,, . . . does not satisfy (2), it is easy to construct such a series .
Thus only the necessity of (3) is in doubt . In fact, it is quite possible that
analogously to the MEYER-KÖNIG conjecture condition (3) is entirely super-
fluous. At present I am unable to decide these questions .

11 . ERDÖS

~' a,, be Borel summable . Assume that a,; -- 0 except if
1-0

4 H. R. PITT, General Tauberian theorems, Proc. London Math. Soc ., Ser . 11, 44 (1938),
pp. 243-288, Theorem 17.



ON A HIGH-INDICES THEOREM IN BOREL SUMMABILITY

	

267

One final remark : We might modify the definition of Bore] summability
M

as follows : 'l a,; is summable B' if
,,

M

	

t1,

lim e-1 "'s,,--
-

	

iCD

	

,, 1)

exists as t runs through the integers . It is not hard to show that if n, < n, . . .
M

is any sequence of integers, there exists a divergent series ~1~a,, which is
,r- l I

summable B' despite the fact that a,,-0 except if k-= n,; . Thus no high-
indices theorem holds for B' summability unless we restrict the speed with

which s,;

	

(over and beyond the trivial restriction s, ; k, . -0 for every t) .

LEMMA 1 . Let
1 " -- 0(1)

	

(n -• «),
m

further a,; - 0 for k n,; (j=- 1, 2, . . . ), n;-1-iii > c, n, ; . Then if a,; is

Borel summable, then it is also convergent .

This is a result of PITT.'
For the rest of this paper we can assume that for infinitely many n

the inequality
s„ > K"

holds, where K is an arbitrary constant ; henceforth we shall assume that for
infinitely many n

(4)

	

s„ ~ > 100" .

Let us denote by f(x) the index of the maximal term of the series
'

e-s,,
t

	

if there are several such terms, f(x) has the smallest possible value .
~, k l

LEMMA 2 . f(x) is a non-decreasing function of x .

This obviously follows from the following statement
Assume that

(5)

then

(6)

1*

Let y > x, k-,

X"2

	

x''

k ! > k,!'
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This is an immediate consequence of the identities

yI
',

	

tr.,

	

d.,

	

r.,

k,!

	

k,! (

	

k,,

	

k,! Lx . )

and of k, - k, .
Let

be an infinite sequence of positive integers which satisfy (4) and for which

(7)

	

js,, ;

	

for

	

in ; n ;, .

Then we have

LEMMA 3 .
An;,)

= n,' .

Lemma 3 follows from (7) .

LEMMA 4 . We have for n ;, x - n ;,

F(x) > 30

where F(x) denotes the maximal term o f the series

PROOF . We obtain from (4) by application of Stirling's formula

F(x) = e

	

e-- °''
1
l '

	

100 ,"n ;, !

	

n;, l

e '' _ 100",

	

( 100 I"'+

	

1

	

30",

q. e. d .
We are going to prove that

e <' S,,-
x

(8)

	

lim

	

max <,
S,,

- X1
--, k !

a
Clearly, (8) implies that N a,, cannot be Borel summable . Thus .(8) implies

1,

	

11

our Theorem . Thus it will be sufficient to prove (8) .
Before proving (8) we simplify our notation .
Denote in, -_-n ;,, m, `m2	 < m, the n;-s in the interval (n ;,, 2n ;)

(i . e . the m-s are the n;-s in (n,, 2n;) for which a,, does not have to be 0) .



7'-=y =,

(11)

We have

Hence

r

1v)
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It follows from the Lemmas 2 and 3 that for x > tit, f(x) - tit, . Now we
distinguish two cases . In the first case for arbitrarily large K there exist
infinitely many j-s for which either

(9)

	

f(x) - - [x]

	

(m ` y

	

x

	

y - I- Ky' ' . m, ;+,)
or

(10)

	

f(x) N

	

(tit ;
- y < x -`= y +- Ky' = to;_,) ;

it is easy to see that either N- tit, or N--- in;,-1 . N ini,1-1 holds for
N y, N=- m; for N - y }- Ky'' 2 . We may assume that y is an integer . The
second case holds when for every number of the interval (nt,, 2nt)neither (9)
nor (10) holds . We make use of (3) only in the second case .

Let us treat the first case . First we assume that (9) holds . We put
K '

	

L

	

K ' and show that2 v

	

1-+- [ y 'l

s '-
T .

k!

M

	

,, ;-t

	

,, ;_ I -1

	

X
S/.

	

r

k!

	

-u

	

,

We estimate

	

> from below. We have from s,,, .

	

s,,, . .,

	

s,,, j _ 1 - I

T'J -
, ' T':

r.

	

k .

T"
5,,, ; V .

K y' ,
2

	

I
- s,,,

;

We have by Stirling's formula

- -(1 -1-0(1)) I--2 -

further

for ill, -•

1

	

,

	

h"
I ±o(1))e2 ,, , a

K

	

h s
5,,, . --	 - (1 H 2 12

	

o(1)) e

	

`
:r
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Since by (9)

we have

thus again, by

( 19)

	

f(x)

P . ERDÖS

1 . e .
K2

(13)

	

_ -

	

,

	

r

	

.S,,,

	

C

Next we estimate

	

and '',; from above.

s,

	

S,. r,, ( T I .
T

	

h, 1 1 ,

si:
k - Y

~`'

	

s'"% yi (y) (1 {
T

	 1.,

	

. . .~-

T

	

T

	

y'

	

T

YI (,Y

	

y, ! (_ y . ) T-y

applying Stirling's formula,

	

0(
jI- -) --(1 =o(1))e 2i

T < 4 y' - ( this is
T-y K

r
.-(14)

	

4
s,,,

,

	

% - - s

and by the same method we obtain

'- -Z :: 4 .

	

T-

( 1 5)

	

:,i = K Is ,, , 'e

a consequence of T- y !-
K , 2
2Y

From (13), (14) and (15) we obtain for sufficiently large but fixed K

(16)

	

e .,.

	

T,,

	

1
k~

	

2er'

thus because of Lemma 4 our Theorem is proved if (9) holds .
Next assume that (10) holds . Then either

(17)

	

N- m;-1

or

(18)

	

N

where N is the number defined in (10) ; i . e . either N- m; or N- m; .,-1 .
First we assume that (17) holds, i . e. we have

III ;-,-1

	

(m; °- y -- x -- y--Ky' 2 - in ;_,)

and
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where i + 1 < j. We put again T - y + K
K Y

(11) . We have
t

	

,-t

	

00
St T1; - ~, -!- N' +N, - 1% t --

I
F ..

	

, a .
n k!

	

-+

	

,;-i; j

First we estimate ",_ from below. We have

we have

(20)

iili-t-C,M i . I
(m ; ,-1) .

	

T

Since (by m ;,-,

	

m; < T)

m I

T
, m ; .-I I

	

< ( 1- 11C ` i

further for K---,4c,

(m ; ,-1)!

` -

-t`
S'
k!

T'

S/i1 ;_ t -1

	

(nt,,,-1)(nt,-,-2)
(m .:-1-1)!

	

(

	

T

	

T'

nt; _, -1-c, m ; _,
T

111 ;-t-C1 -CI/71i--l T
tT

	

T-

	

.,
in,-t ~c, m,1 -1

T

	

I

	

T
T- Mil + c, m'-,

	

2 T-111 ; ; I '

C.' (m ;•.I-1)! T T-171;_1 '
T

where c., is a constant depending only on c, defined in (2) .
We now estimate

1\1

further

~' S1, T''
-~, k!

t 7 .,;

k!

	

(rn, ,-1

Now since f(y)

	

m ; .,-l,

T` 1 -1 -1

and

	

We have by (7)

I

	

S

	

I

	

,, .,-1 T 1.
,:

	

,;~, k i T -}

	

s,++,

	

k l

T ~;
k

	

t

we

Ta' ' - I -[ T

It

T

	

- m,Tt- 1)! T-m,_1

T
k! '
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, L ---y+[Kyt z] and show

have (for formal reasons we will replace
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S", ; by 5 ;

c (m ;_,-1)! y

Hence

(24)

5 1 ,1,-1-t -

	

_(m,-t-1) .

P . ERDÖS

	 y
"'r ; t t I( 1

y .

( y !

	

- (m;-~,-1)!

	

( T )

S

s'i T T	 t

	

T
m,!

	

T-m, (m;,t-1)!

	

, t (

	

I

	

T-m, .,
, 1 y

	

T

	

T

	

f
m;-,- 1)! T

,r t

i I T_)

	

T-m t T -; I T)

	

T-m,-, 1

or

,V

	

t

(m;_,-1)!

	

T-m; r ,

	

,(22)

	

T

	

.2

We show that the factor `, (-T I

	

is arbitrarily small if K of (10) is

sufficiently large . We have

T

~_,

	

, -(TI,,, ,

	

`t( T)

since in, and m, lie in the interval (rn,, 2m) and by (2) 177,-l - 111,

	

c, /III

we obtain
c,

m;-m,_t - (i-(l=, 1)) 2

Hence

(

	

t

	

y

	

`,T)

	

r/

	

2T~

	

"

	

1-e' a
Further we have

K

	

K j

( 1

	

2Y
,

	

2 ( 1 --{

	

y,

which is arbitrarily small if K is large enough . Hence

(23)

	

~t (
T

	

s

if K is sufficiently large . We obtain from (20), (22) and (23)

I N , i

	

I

	

~Vi

10
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for sufficiently large K. Next we estimate "'j from above .

m

	

m

	

~"I 1-1 T L
:

~'

	

sr T r;
k1

	

=

	

,

	

k1

-V

	

T
S. . . I

	

'

	

1

	

~ s,,,
k

	

k 1

	

k l

k .

We have as in the estimation of

T •• • , ,-1 1 + mr+I- 1

	

(,n1,1-1)(111/'1	2)

	

. . .
(m, . ,-1)!

	

T

	

T'

	

=

	TT

	

IS

	

1 L .,

	

T

	

T
-,-, mr4,-1)!

	

T-1121-,

	

L

	

T-m1_I

(m;,1- l)!

	

T-m;+ 1 r -" 1 . - L )

	

T-mr
1

'

i . e .

1-~	
T

25

	

--
)

	

(m ;_1 - 1)!

	

T-1n; r „

	

1 L

It is easy to see that

(26)
1 - - -, T-m r+I

if K is sufficiently large. Hence for sufficiently large K

(27)

	

~

We have

.,

	

.i

We have
-1

	

S

S

	

~,
T - ~-

-~

	

-- k!

	

, 1n,!

T •• . ,

	

S r

m,

	

m, !

T' , T
(m;-1 - 1)!

	

`,,I L)

is . -,-tl

	

T. . ; , ,

	

T

	

`. T

	

'-1(1n,--1)(T-in ;-,)
(m ; ,-1)!

	

T-In i . I , -r ( L I

	

T(nt,+ 1-T)

273

T
"' '

(

1

	

T-

	

I
1n r --1

L • ..,
T
L

mr
m,

m, 1-T

+ l
1-T
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It is again easy to see that for sufficiently large K

(28) ,L

	

T(m, { 1-T)
and hence

(29)

(32)

It remains to estimate `,' and -,,', . We have
7

	

,

5,,,

	

k
T _- j s-, ~ T T

	

T-1+ . . _~
!

	

T'

	

T

5,,, l,-t

	

L,>> ; t-i

	

(T-117.;) ==
(m ;+,- 1)!

	

(L . )
s,,, ,+, -t i T ,, ;

	

T_

	

(T-m;Y,) (T-m)
(171,,1-1)

	

-!

	

T-nr ;-,, L I

	

T

Since for sufficiently large K

L

	

T

we have for sufficiently large K

(30)

	

I N -- 10
and similarly

(31)
1 ,~',

_ ., = 10

It follows from (20), (24), (27), (29), (30) and (31)
°

	

s,

	

~ S,,, .,

	

, 1

	

"1

	

,

	

T
kl

	

-1)!

	

T---(171i- 1

	

-I

Hence, by Lemma 4, (11) follows . If, instead of (17), (18) holds, (11)
can be proved similarly and we omit the details . Thus our Theorem is proved
in the first case .

Let us now treat the second case . First it is obvious that the number
of the ms-s in (m,, 2m) is o(m ; -) . This is an immediate consequence of (3).
Hence it follows that the sum of the length of the intervals (n;;, m ; .,) in
(m„ 2m) with m,;-,-in. ; < Kin - is 0( 111' ) .

We now split the numbers x in (III,, 2m) into three classes. In the first
class are the numbers x with f(x) -- jx], in the second the x with f (x) < x,
in the third the x with f(x) > x .
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A similar lemma is used in a paper by MACINTYRE

Proc ., Ser . 2, 10 (1954) .

275

First we show that the sum of the length of the intervals of the first
class is o(m). It clearly suffices to consider the intervals (m, ;, m;l , ) satisfying
m;-1 -m ; > Km ; Now we observe that the numbers x (m ; x = m ; .~ 1 ) for
which f(x) - -[x] form a single interval ; (this is clear since f(x) is monotonic
and if f (x) -~ [x] then either f(x) - an ; or f (x) - m1., -1) . Now since the
number of In, ;-s in (in, 2m,) is o(m ') and we are in the second case, the
result follows . Observing that by (7) f(m) m„ we see by similar arguments
that the sum of the intervals of the second class is also o(m) . Thus it
follows that the sum of the length of the intervals in the third class is greater
than

if f(x) > [x], we have f(x) _ n; (> m,) for some j. Let us denote by
(cc ;, ;) the interval for which f(x)	n; (r.; ::~-: x

	

N1 ) . We have (as the length
of the intervals in the third class is greater than (l-F)m,)

(33)

	

(r];-(=;) (1-~)m,

(

	

0 but arbitrarily small) . As (10) does not hold, we have

(34)

	

~,

	

(,';-". ;) --= o(m,),

hence

(35) O,-a.)1-0-0111'.

We may assume without loss of generality that between k' and (k+1Y
there lies at least one n.; ; we can assure this by introducing besides the
old n,;-s new ones. The enlarged sequence obviously satisfies (2) and (3) .

Next we prove

LEMMA 5.' Denote by (( ..;, r')) the interval for which

f(x)

	

n. ; ( (e. ;

	

x

	

111) (n; > 4m) .

Let K be an arbitrarily large constant . Then for sufficiently large m1 there
exist a j for which

~' >1-~-max
«;

	

1 - (~

	

~ iii, - n. ;

Clearly, Lemma 5 got considerably strengthened by the
between k" and (k± 1) there lies at least one a1 .

assumption that

and myself, Edinburgh Math .
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It follows from ai < 2m, that

(36)

PROOF . Assume Lemma 5 is false . Then we have for every j

t'' 9
< Ka,i max

1

	

i,

~ ; (:;-u) < 2Km,

	

max
, i 4m

we have by the inequality of the arithmetic and harmonic
positive integer t

t'

	

I

	

t

	

1'-~_ I

	

1
'; ,t ,~

It1; , - n,;n ; r-n,i

	

t 1 2 i,j-1

(n1,+t - n,,)

and for every negative integer t similarly

It I

	

1

	

t,

	

1
n-n,r ,,

	

t 3 '

	

n, .
r

	

~~- .i+t 111rFt- ~

t; denotes the integer for which

max
1--ii ; iii -t-/Ii

I

n ;

n.i+t-n,

ni t,i -n,i

means for every

Then we have for t ; - -M (where M is an arbitrarily large but fixed integer)

t'

	

t ; - I

	

2

	

t

	

1

11

where n ;_ denotes the smallest n ; with n ; - 41n, and

	 't'~-	< 2 ~, t
4 ,, :nit.,-n,;,

	

t 1r

	

i-t f;-t-n ;

11

Therefore by (3) and (36)

1~i - (e,i) < 2KFm,

for an arbitrarily small ~ > 0 if m, is sufficiently large . But this contradicts

(35) if < 4K . Thus our Lemma 5 is proved .

Let j be a number satisfying Lemma 5. Put

S I + K max- t'
-I nft -n,i



Then there exist three numbers y„ T, y., with

Sy,--=T,

	

ST- Y,

for which

f(Y) =f( 7 ) f(Y) n ; .

We prove (11) in this case, too . We put again

k,T

	

F
; . I

First we estimate

(37)

from

We now estimate ~,
CO

'

	

sl; T,;
-

	

ki

since n, ; 4m„ T 2m, .
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below . Clearly
`,

	

T" .'
a1 !

and

	

from above . We

(39)

	

2- S .' '

We have for sufficiently large m,

T I"r

	

(

	

K(1-j)' ~ I -
1 T ---

Y

	

n1-11i
Hence by (2)

have

s

	

I
~'I ~~' Tall+n	 7 '

1
. .

x s
~-

	

T" -nr -- 2
n,!

	

n,-T

	

;_ 1

N'I IT -„

	

2 ., e h p-„ , .

Y_

	

,
which is arbitrarily small if K is sufficiently large . Hence from

This can be proved as follows : We have for n > 2ho.' ( I

	

n-(

	

e , (namely,

n log (1-- n) > X-- 9
X2

11
x-log- 2). Now we have by (2) and (3) 1-j - o(n,-n 1) . Putting

x-K(l-j) 1

	

n --n,-n i , the result follows .

< 2 e h (,

277

(39) we

Further, by the definition of n ;,

s -,

	

--
' "I I Y T I s , . I Y- (

	

-
n,!

Hence from (38)

n,!

	

y_, n;!

	

Y.2
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have for sufficiently large K

(40)

	

1

	

--:, -- 4 -

Finally, we estimate

	

, . Let us define the number
/1 ;, C T ` n7 .+I

s-,+1 1

	

T,,, 1 1 1+ n,-,- 1
-~

	

`1 (i1 1 -l)!

S" 1

	

T
(n , --1)!

	

T- n' +1 -f-1

Now we have as before
T",+1 1

	

I s,, .

	

T"J
(n, t -1)!

	

n ;!

	

T

T

hence by (41)

(42)

i . e .

(43)

hence by (42)

`~- S

	

;7 „ ; T

	

y ,~ l
T

"1-ra

We have for sufficiently large m, as in the estimation of ''

(

	

K(j-1-1 )1

_ I

	

"i t < 2e

	

11'-1 r-

		

,-----
n,;-nI ,,

I +Kmax- n' t l	
+1- n.i

i. by

( 1 ~K(J-l-1)
-

	

1-1i

	

`2e-K(.i 1-1i ~ = 2e
n;-nr . t

Since between V and (k+1) there is at least one
13j-i. > nt5 -n;. and since n_-',=,,i7;.---2m,, we have

(J- ti) t 2 > ((4m)1 :1-(21n)' 3) 1 _
-
2 1 (2 12 1)12 mb " = c,mi

4 s "

	

m e

	

e-

-~ •

ii,, we have



or since

and in, e

	

is arbitrarily small if m, is sufficiently large, we have

(45)

(46)
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_e =

	

e
1 I

	

I -= I

(44)

	

1

	

_- I ` 12

The estimation of , can be done similarly and
large K

12 _, .

Finally, we estimate

	

from above . We have

-0(1)

" -1

	

I~,

	

S'' =

	

`'

	

IS,T I~'

	

- T" I
('i - :

nl .

N'	s" , - T ,,, - n, ,-- 1
i.+1 n,!

	

+ 1-T

Further, we obtain as before

(47)

	

n,! T

	

n.I T'' ( TI

	

'

taking into account that by the definition of y, and T

(y')-(1

	

' -,

	

I

-;-max--

I{ ' t
	 )

T

	

1_ro

	

n,;-,- n;,
we have

(48)

	

( T I

	

< (1

	

K2j
-~~) I J

	

<

we have by (46)
1

(49)

	

s , ; I T„i 2

	

e-,;

	

,'	III	 1
_

	

n,; !

	

H-1- T
-I

Consider the sum ~~ e - '

	

+ 1

	

Let 1' denote the greatest number
,-z-1

	

n,+ I- T

T == 3m, . Then writefor which n ;.,-T =~= 3

	

i . e . n ;.,---32

	

_

,.,I I i.?'

27 5)

we obtain for sufficiently



z80

First we have

e

	

' .i '

	

n'

	

1

	

< 3171

	

N' e - _ { i .i i. 1 s-(^' -' ' 1 ,

hence because of n i > 4m,, li, .,

	

3m, and because of the fact that between
V and (k-}- 1)" there lies at least one n, we have as before

x

(50)

	

e

	

m, e 2

	

e	 O (l)

	

(m,

	

).
I

	

,.-l

Further we have
i - l

	

)

	

i
e - "(. i

	

+ I

	

< 3

i. e. for arbitrarily small ~; > 0

(51)

	

~; e-" . .i-'
/I/-"- I -T <

if K is sufficiently large .
We obtain from (46), (47), (49), (50) and (51) for sufficiently large

(52)

	

'.,,, ;

	

I ',
--'

	

12
hence

1 , s,; T ''
kl

i1r+l-7

P . ERDÖS

~'
e

-'`'
- ; 3 I e ""' (IX -- G

hence, by Lemma 4, (11) follows and the proof of our Theorem is complete .
OD
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I_ (I

K

We can generalize Borel summability as follows : Let f(z)	b,;z'' be

an entire function, b, ; real and f(z)

	

a for z--•

	

along the positive axis .

The series

	

a,; is said to be summable f to s, if
'; -

I

	

OD
lim

	

N s,; b,; z' -s,
~(z)

It seems that the following high-indices theorem holds for this summability
method . There exists an increasing function g(x) depending only on f(z) so

0)
that if ~" a,, is summable f and a,, = 0 except if k -- n ; where n.i rl > g(n, i ),

1. - 41

then

	

a,, converges .

Finally, I would like to thank MR. P. SZÜSZwho simplified and improved
my original proofs in several aspects .
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