
ON THE NUMBER OF ZEROS OF SUCCESSIVE DERIVATIVE S
OF ANALYTIC FUNCTIONS

By

P . ERDŐS (Budapest), corresponding member of the Academy, an d
A. RÉNYI (Budapest), member of the Academ y

Introduction

Let f(z) be regular in the circle zj < R. Let us denote by Nk (f(z), r)
the number of zeros of the k-th derivative f (k) (z) of f(z) in the closed circl e
1 z(= r< R . In the present paper we shall investigate the asymptotic proper-
ties of the sequence N;(f(z), r) (k = 1, 2, . . .) .

In this direction several results have been obtained by G . PÓLYA (see
tip . One of the results of PÓLYA is the following : If f(z) is an entire function
of finite order 2 1, then for any r

	

0 we have

(l) lim inf
log N

'
(f(4 r) 2 — l

Jk- .co

	

log k

Let us denote by SYCA,(f(z), I) the number of zeros of f(k)(z) in the rea l
closed interval I. Further results of PÓLYA are as follows : If f(z) is real on
the real axis, and it is analytic in the closed interval I, we hav e

(2) hi m inf

	

(f(z) ' 1)=	 -}	 <

	

c ;
h-,00

	

k

if f(z) is an entire function, we have

(3) lim inf	 (f(z) ,tA_ k 1)	 0;

k c

finally, that if f(z) is an entire function of exponential type, we hav e

(4) 1 i m inf ~~Ik(f(z), I) <± ~ .
k-,.

Recently, M . A. YEVGRAFOV [2] proved the following general result :' Let

f(z)

	

a,, z" be an entire function, the coefficients of which satisfy th e
n—o

inequality
1af+

g O1q O

2 A

. •• q (n )

1 The authors are indebted to R . P. BOAS, Jr . who kindly called their attention t o
this result .

Acta Mathematica VII/2

(n — 1, 2, . . )
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where q(x) is positive and increasing for x

	

1, further q'(x) exists an d

1im x q (x) = where O

	

1 . Then we have
r,m q(x)

(5) lim inf	
Nk (f(z), r)q(k)

k–>oo

	

k

	

+

In § 2 of the present paper we shall prove that the theorem of YEV-

GRAFOV is a consequence of the following simpler and more general theore m

If Max f(z) i	 M(r)=e, further if x	 H(y) denotes the inverse

function of y = G(x), we hav e

	

im inf	
f(z), r) H(k)

(6) k

	

+
k~~

We shall show also that (6) can be replaced by

(7) lim inf
Nk(f(z), 1)H(k)

-
e,

	

k–>-co

	

k

(Theorem 2') . As a matter of fact, we shall prove more, namely we obtain a

theorem (Theorem 2) which is much stronger than YEVGRAFOV'S theorem .

Our theorem states that if f(z) is an entire function, M(r) 	 Max f(z) and

if we suppose only

logM(r)
(8) lim inf	 < 1

g(r)

where g(r) is an arbitrary continuous and monotonically increasing functio n
for which lim g(r)	 + oc, then we hav e

lim inf
N,;(f(z), 1)h(k)

	

e,

	

k~m

	

k

where x = h(y) denotes the inverse function of y—g(x) .
The results (1), (3) and (4) are included in YEVGRAFOV 'S theorem and

in our Theorem 2, respectively . In § 1 we prove a theorem on function s
analytic in a circle. In § 3 we prove some results on the sequence r,; =
= I zk (k	 1, 2, . . .) where zk denotes that root of P`! (z) which is nearest t o

the origin ; we generalize thereby some previous results, e . g. theorems of

ÅLANDER [3] and ERWE [8] .

(9)
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§ 1 . Functions regular in a circl e

We begin by provin g

THEOREM 1 . IfAz) is regular in the circle z

	

1 and 0 < r < 1, we have

(10)

	

Hm inf
Nh(to,k, r)

	

K(r)

where K	 K(r) is the only positive root of the transcendental equatio n

K
_ I .

(1 K)

1

Theorem 1 can also be written in the following equivalent form :

(1

	

K)I I,

THEOREM 1 . If f(z) is regular in the circle ' z l <	 K

	

(K-- 0) ,

we have

(12) lim inf N-(fkz)' 1)

	

K

Let us mention the following special case of Theorem 1' : (12) is vali d

with K-- l if f(z) is regular in the circle Izl < 4 .

Theorem 1' implies that if f(z) is an entire function, we hav e

lim inf Nh(kz)'
r)

	

0
>

. for anyr > 0 .
The proofs of the above theorems are based on the well-known theore m

of JENSEN (see e .g. [4]) : If g(z) is regular in a circle z l R, g(0) = 0 and

z,,

	

. . ., z„ are the zeros of g(z) in the circle l,z' =

	

R, then we have

log	 	 =

	

I log	 	 dT .
2 ;r ,

	

g ( 0 )

If N,(g(z), r) denotes the number of zeros of g(z) in the circle z

	

r ` O,

it follows from (12) tha t

(13) N,(g(z), r) logr - Max log g(0
)

We shall always use JENSEN'S theorem in the form (13) .
Some simple inequalities, which will he frequently used in this paper ,

are collected in the followin g

I .
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LEMMA . If f(z) -2; a kz' is regular in z < R and for some value of
/,

	

A I

A 1 and B 0 we have

(14) ak .. < AB,-I

	

(J	 1, 2, . . .) ,

then for z

	

v < R

(15) f~)(z)—1

	

A

	

- 1
f ` ( 0 )

(( I

	

B )

and thus

PROOF . (14) implies

(1
7)

	

f('. ) (z)
f1E) (o)

Taking into account tha t

	 1	 	 +~ (k + 1)(k+2) . . .(k F j) x~
(1—x) k+> ~

	

J l

for %x < 1, (15) and from this (16) follows .

PROOF OF THEOREM 1' . Let us suppose that the radius of convergenc e

of the power series f(z) --

	

a„z" is finite and equal to R >1 . In this case

V a„	 	 . Thus if 1 < B < R< C, we can find an infinity ofwe have lim
k+~	 	 1

values of k for which

	

> C and

	

ak+il

	

B (j	 1, 2, . . .) and thus

	 B)	 ak

(18) (J 	 1, 2, . . .) .

On the other hand, if R = °, then hada„ —► 0 and thus we can find for

any B 0 an infinity of values of k for whic h

(19) ~a .

(16)

a, ;!>0 and

ak + ; (k-E-1)(k-{--21- . .(k±J)zi .+
N',

"I.

	

. I

a k.
+. .

	

(J =1, 2, . .) .
B
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As a matter of fact, if max V a„

	

B (which will be true for al l

sufficiently large values of N), then k— k» satisfies (19) .
The inequalities (18) and (19) can be combined, and it follows that i f

f(z)	 N' a,,z' is regular in the circle z < R (R> 1) (but may be regula r

also in a larger circle or in the whole plane), then for any q > l and B < R
we can find an infinity of values of k such tha t

(20

	

q'	
= B ;

	

(J	 1, 2, . . .) .

It follows from our Lemma that for z'I 	 9 (1 < P < R)

(21)

	

fir) ( z )

	

q l:
fi'' (0)

	

y

(1— B

and thus, applying (13) with r =1 and g(z)	 f(k )(z), we obtain
i

klogq-1-(k+1)log(l—I )
(22)

	

NI,,(f( z ), 1)

	

log 9

which implies, as q may be chosen arbitrarily near to l and B to R, that

tog l— o
(23)

	

lim inf	
N, (f(z), 1) -	 R -	 for

	

1 <9<R .
1,4-co

	

k

	

log P

Now let us choose the value of 9 so as to minimize the right han d

side of (23), that is, let

	

be equal to (1 -f- K)h where K is the positive root
I

lim inf
N,(f(z), r) _ K(r) .),,co

	 K )
(+

of the equation R= (1+	 K	 which has a unique solution for any R >1 .

Thus we have proved Theorem 1', and therefore Theorem 1, too .
We do not know whether the bound in (10) is best possible or not .

The estimation (10) is, however, best possible in the following sense : it is clea r
from the proof of Theorem 1' that we considered only such values of k for
which f(')(0) _ ;=0 ; thus we have obtained slightly more than is expressed b y
(10), namely we proved

(10')
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Now (10') is a best possible estimation ; this can be shown by considerin g

the function
co

g (z, K) = 1 210+K )" j

where K is the only positive root of the equation (10) and [x] denotes th e

integer part of x . Let us put k„	 [(1 -I- K)" ] and consider g(k ,,) (z, K) . We

have clearly

)(z, K)	 P
(z)+Q „ (z )g(' )(0, K)

where

P (z)—1+(k„±1) . . .k~ „ +, ;

k,,) !

and

	 )	Q „(z)	 ( k,, +	 1

	

k„+~ z ~„+J -~;,,
.,

	

‚1 „+i— k„ ) t

The roots of the equation P„ (z) =0 are all lying on the circl e

1

z

	

e”

	

((lc, +

	

'\

k,, + 1

and by Stirling's formula we obtai n

lima„—r=

	

K
1 .

,,,co (1 + K
)t;

(24)

If > 0, we have on the circle ( 1 + E)z

Po t (Z )

for n -- n„(E) . On the same circle we hav e

(k„+ 1) . . .(k„+.;) zk

(k,, +± —k„) !

As —

	

-1 , we have
(1 +K)'—1

	

K

Q,, (z) 4+ 2K for

(! = 2, 3, . . .) .F (1 +K)-1 K(1 + 2E)

1 +

1— (1 +K) .. (1 ±K) >>
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if 0 ` E
4(K

+

	 1) . It follows by ROUCHÉ ' s theorem, that

lim N(I+k),,(g(z,k),r(1+ E))	 K
[(I +K)

„ ]

if 0E
4(K { ) '

Let us mention that g( )(z, K) has more than c n zeros (c > 0) in

for some r„ > r and every n	 1, 2, . . . .

§ 2. Entire function s

As it has been mentioned in § 1, it follows from Theorem 1 that i f

f(z) is an entire function, we have

(26)

	

lim inf Nr; (fz), 1)
— 0

k

(26) can not be improved, i . e . no relation of the form

1im inf	 (f(4
1) _

0
r_.,oc‚

	

kE(k )

holds with lim E(k) -= 0 (E(k) > 0) for all entire functions . (26) can, however ,
ti—>co

be strengthened if we put some restriction on the rate of growth of f(z) . This
is expressed by the followin g

THEOREM 2 . Let g(r) denote an arbitrary function, monotonically increas-

ing in 0 r +

	

for which lim g(r) = + c.c . Let x	 h(y) denote th e

inverse function of y	 g(x). Let us suppose that f(z) is an entire functio n

for which, putting M(r)	 Max f(z) , we have

lim inf log	 m(r) K 1 .
,-,+.

	

g(r)

Then we have

(25)

z ro

lim in f
Á,co

Nh (f(z),1)h(k)

k
(27)

PROOF OF THEOREM 2. Let E > 0 denote an arbitrary small positive

number. Let us denote by r(r) (0 C r ` + o) the central index of the serie s

a„z"f (z)
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for Iz — r, i . e. suppose

a,, a o r"('')

	

(n = 0, 1,2, . . . )
and thus

	 al'O . 1l

Ti (J -- 1, 2, . . . ) .(28)

Let us consider such a value r 0 for which

(29) log M(re) g(re) .

By our supposition we can find arbitrarily large values of r satisfyin g

(29) .
Applying our Lemma with A — 1, B — r, k = v(r), R > r, ~~ -	 e, we

obtain

f	 v	 (z)

	

1
for

	

z = e,f„ ',') (0) =

	

e ) V H 1
l l— r

and thus by JENSEN's theore m

(30) N, .(, .)(f(z), 1)

	

(I'(r) + 1) log	 1	
e

	

v ( r ) e( l+ 8)

1
r

if rr0 (E )

Now, taking into account that for every n = 1, 2, . . . and every R > 0

we have ax RN M(R), and using (29), we hav e

a„ (re) 1t M(re) < ex")

and thus
a„ r"

	

e ul`"' "

	

(n ==1 2 ,
Therefore

	

a, r"

	

1 if n

	

g(re) .

But it is known,' that the absolute value of the maximal term on z —r of the

power series of an entire function is tending to ± cc for r o ; thus i t

follows that if r is a sufficiently large value, - satisfying (29), we hav e

v(r)

	

g(re), and thus h(r(r))

	

re . It follows from (30) that
r,(r)e

a	 ( 1+ 0
(31) f(z) ' 1) =	 h(r , (r) )

Thus, taking into account that '(r)

	

for r— cx) and that E > 0 is arbit -

rary, (27) follows .
We can prove quite similarly also the followin g

See e . g . [7], p . 2, Problem No . 9 .
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THEOREM 2' . If f(z) is an arbitrary entire function, M(r) = Max !f(z)
_

x = H(y) denotes the inverse function of y log MO, then we have

lim inf
NI(f(z)kl)H(k)

--
e' .

log M(r)
PROOF . Clearly, the condition lira inf —G(r) ` 1 is needed in the proo f

of Theorem 2 only to ensure the existence of arbitrary large values of r for
which (29) is valid . Now for g(r)	 G(r) (29) is valid for all values of r,
thus Theorem 2' follows .

Theorem 2 is best possible in the following case : if g(r) is a monoto-
nically increasing and convex function for which g(0)	 0, g'(0)=0, g(1) = 1

and hm g-
r) =+ oc, then there can be found an entire function f(z) such tha t

I.
log M(r)

	

and nevertheles sputting M(r) = Max f(z) we have lim inf	 c+ ,

g(r )

lim inf	 (f(z)' 2) h(k) 0
k

where x=h(y) is the inverse of y=g(x). As a matter of fact, if th e
sequence n 1, is defined by no= 0, n,— 1 and by the recursion formul a

n,;+, -- [n1, (1 -}	
e

h

	

) ] '
the functio n

h (n,; )

1%h(n)

, and

f(2)
1;-1 l f íh ( n )r r--

'
- '

- 1

ROUCHÉ'shas all the properties required . This can be shown again by usin g
theorem as follows :

Let us consider first f(:' J(z) . We have clearl y

.f!1 ' (z) =

	

QI, (z)
CO)

where

(nk+1)	 z
(z)	 	

(14+1—10!

	

h (n k l )
and

(n1;±1) . . .nr, + ; 	
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Clearly, all roots of Pr; (z)	 0 are lying on the circl e

z = p,; 	 h (n,;+ ,)
(nti +, —nti)! ],, h+l - "

(n,• { 1) . . . n r:+ I

and we have for

	

h (/t;+~ ) . But as h'(y)	
g (x) is

decreasing ,

we have

	

h(nr +I )

	

n„ h'(n,)e

	

1 — h(nr;)

	

1
+

h(nk)

yh' (y )	 g (x )
h (y)

	

xg'(x)

and as g"(x) 0 we hav e

But

g(x)	

xg'(x)
— 1 .

Thus it follows lim

	

= I .

Clearly, on the circle j z = 1 -{- F we have

P(z)j

	

1 +	 2

	

for k

On the other hand, on the same circle we hav e

(nh. i 1) . . . nr:+.i

	

z„r;-.i-"r;

(n,;+i—ti,) .
Hh(n,.) " .,- -t

f n,;
+,

	

3F )1---	 	 ~

	

1
2

(1—	 	
\	 n	

)h(n,,J+I
)n,•+•z

for sufficiently large values of k. As (1 +x)`
.

	

e and (1—n' h(nr,)—.2e
nr•t2 :

fork

	

it follows that for z j --- 1 --H (0 ` f

	

2
J

2
1— 2

Thus f"'r'(z) has nti,I—n,, roots in the circle z	 1+ F for 0<

	

1 2 and
kk,(F) .

Q,, (z ) for k



ON THE NUMBER OF ZEROS OF SUCCESSIVE DERIVATIVES OF ANALYTIC FUNCTIONS

	

1 35

z"k-' n k (n k — 1) . . .(ni—N+ 1 )
f(N

(z)

	

= p.v(z)+gN(z)

Let us consider now a number N, nk _ 1 < N < nk . If N
nk

1 + 4h(nk)
e

then f(N)(z) has more than
2

NN) roots in the point z = 0 . On the othe r

hand, if N >

	

fib

e	
, let us have N~

	

n'` 1 e

	

(OK).

1+ 4 h (nk )

	

1+ h (nk)
We have clearl y

where

nk+J(n,;+J— 1) . . •(n k± i— N + 1)

	

z"k+J - " k

nk(nk—1) . . .(nk—N+1)

	

Í% /i (n,) °

-

s/:+ 1
and

n,.}1(n,,+l—1) . . .(nk+1—N+ 1)	 z	 ) q,+I - > > k

	

pN(z)

	

{	

nk(n .—l) . . .(nk—N+ 1)

	

(h(n,:+t

)The roots ofpN(z) — 0 are all lying in the circle lz = R- where RN "'

	

(1+ ()(1+	 , 4was 0<7< 4 But on the circle z~—(1-~ 2I5V 5

	

we have for any JÓ > 0, if K is sufficiently large,

	

l

	 nk+J(nr;+J-1) .—N+ 1)

	

z i,;+J °•.

m0 k —1) . . •(n,,—N+.1)

	

' k±;

H h (n s)
t

(1 +2Ó)	
4	

V 5

2

where N<1 if 0<d<	 (	 g-1) .

51'5
Thus it follows by ROUCHÉ's theorem that f(N)(z) has n k+t —n,; roots

in the circle lz = I 1 + 	 2
1 4	 1»5- . As n,;+t 2hN)'

combining the cases

, it follows that f(N )(z) has

qx (z)	
J=2

s-t

(J = 2, 3, . . . )

n k _ 1 <N

	

and n,;N>	 n
e

	

e1 +

	

1
4h(n k )

	

4h(n k )
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lim inf N,(f(z), 2)h(k)

k->co

	

k

	

-- 2 '

N

	

roots in the circle z
— 2h(N)

what was to be proved .

It remains to show that lim inf
log m

(r)<--l- oc . This can be done a s
g(r)

follows : let us put rk = h (n,;) and

/ j h (n i )" ,- ")", -
i- 1

First we show that

lim sup
log p'(rr)

K + oc .
k ->~

	

n k

This can be proved by starting from the evident formul a

log rc(rk )	 1
(n;

	

,) log h (n k)

n,,

	

n k 1

	

h(nj)

Let us denote by S, (r 	 0, I, . . .) the set of those values of j for which

h(n,,)

	

h(n~)

	

h(n,,) .2', 1

	

2

Let /, denote the greatest element of the set S . Then we have clearly

log,u(r1,) ,	 1 (r+ 1)nl

h(nk)
l
	 I and g(x) is convex, therefor e

n`' c
g( h(nk)) and g(x) is convex, therefor e

/I T z	 g (h (n ,,.))

	

nk.
2 , .

	

2 .

and thus

log ,t(rk )

	

r+1

	

4 .2 ,

Now ,u(rk) is the maximal term of the serie s

M(r k)

	

cl,

	

r,,

2 . Thus we have

r;,!'''

Now
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and it is easy to show that

lim
log M(rk) — 1 .

m log «(r, )

Taking into account that n, =g(r,,), we obtain

	

log	 M (r)

	

lim inf —	 4 .
g(r)

By the same method it can be shown that lim inf
log m

(r) - 1

g(r)
purpose this is not necessary .

The theorem of YEVGRAFOV can be deduced from Theorem 2 as follows :

Let us suppose that f(z)

	

a,,z is an entire function and
r- 1

a,,l	 	 MA 	 	 (n=1,2, . . . )
q(1)q(2) . . .q(n)

where q(x) is positive and monotonically increasing for x 1, lim q(x) _ - r
.r—> co

and lim xq (x)	 P where 0

	

1 • clearly it can be supposed that

	

> 1
>+m q ( x)

	

c P c

	

Y

	

q(1 )

let us denote by x=7(y) the inverse of y	 q(x), and let us for a give n
r 0 determine the integer N by

N- [y (2Ar)], i . e . N 7(2A r) K N-á--1 .

but for our

The n

(32)

It follows that for

q(N) _ 2Ar q(N+ 1) .

rz

Az)
I

M	
(A ON

(SI +
q(l)q(2) . . .q(N)

where

s,	 q(N) + q (N) q (N—1 ) . . .

	

q(N)q(N—1) . . .q(2)
Ar

	

(Ar)

	

+

	

(Ar)N- 1

s2="+_ Ar

	

(A r) =

q (N+ 1 ) + q(N + 1)q(N+2) + . . .

Clearly we hav e

S1 = 2 -x-- 2'

	

2N-1 2N and S 1

	

1

	

1

	

1
2 4

and

2 .
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Thus it follows tha t

(33) M(r) 2M exp
[N

log 2Ar—

	

log q(k) .
ti t

As log q(k) is positive and increasing,
N

I log q(k) f log q(x)dx

and therefore, by (32) ,

logM(r)1og2M+Nlogq(N+ 1)—t1 log q(x)dx.

According to our supposition log q(x) is of the form

logq(x)== logx+ í E(t- t)-dt

where lim (t)-- 0 ; it follows that if p > 0, log M(r) =9N+ o(N), 1 . e . for
tam

an arbitrary E >0 we have

(34) log M(r) p ; (2Ar) (1 --F )

if r is sufficiently large, and thus if g(r) =29 . y(2Ar) and x	 h(y) is the
inverse of y	 g(x), we obtain by Theorem 2

fim inf	 (f(z),
1)h(k)

k

h(k)—
2A q( ,2

k

	

q (2o)	 y

	

k-o q(k)
	

i22) '
it follows that

him inf	 `(f(2)k--)q(k)

	

2Ae'~2~)~ .
r-> o

Thus we have proved YEVGRAFOV's theorem for p >O.
If 9=0, we have log M(r)=o(y(2Ar)) and thus it follows in this

case also that

lim inf	
NI(f(2), 1)9(k)

	

_I -
k

As

and

(35)

(36)
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Now we shall suppose that f(z) is an entire function of order > 1 for
which, putting M(r)--Max f(z) , further log M(r) —= G(r), the limi t

d	 logG(r)	
(37) lim –

	

1d log r
	 cc

exists ; we shall show that in this case, denoting by x 	 H(y) the inverse
function of y=- G(x), we have

(38) lim I.nf	
NI (f(z),1)H(k)

and thus for entire functions of order =I and satisfying the condition (37)
the assertion of Theorem 2' follows from YEVGRAFOV ' S theorem. Substituting

r--H(n) in the inequality a„

	

er,~) (a	 1, 2, . . .), we obtai n

e "
A d„ = (H(n) )

e "
and thus

(40)

	

H(1)H(2) . . .H(n)

Now let us suppose that f(z) is such an entire function for which the finit e
or infinite limit (37) exists . As

yH'(y)

	

1	

H (Y)

	

(dlog G(x)
dlogx ,

d a
it follows from the existence of lim

	

log G(x)

	

(c that lim y	
d log x

	

y-.
exists. As we have supposed that G(r) is of order = 1, it follows that
0

Thus we have shown that YEVGRAFOV' s theorem is equivalent to the spe-
cial case of Theorem 2' for entire functions satisfying (37). Thus Theorem 2 '
is slightly stronger but, of course, Theorem 2 is essentially stronger tha n

YEVGRAFOV 's theorem .

§ 3. Remarks on the zero z, of f(h
>(z) which is nearest to the origin

It follows from our Theorem 2 that especially i f

log	 M(r)
hm inf –	 ; A ,

3 Except the numerical estimation of the left hand side of (38) .

(39)
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we obtain'

	

lira inf

	

( f(z), 1)

	

e' A .
r, ,co

This can be formulated as follows : If r,; denotes the absolute value o f
the zero z,; of pi (?) which is nearest to the origin, we have for an entir e

function for which lira inf
log M(r)

A ,
/.

1
lim sup r,; = Aé=

For entire functions of finite order í'. = 1, the behaviour of rk, has been investi-
gated by ÅLANDER [3] who proved that

1

lim inf log h. < i — 1

	

,;-,~

	

log k — i
Now we shall prove a general theorem which includes this result of ÅLANDE R

as a special case .

THEOREM 3 . If f(z) is an entire function, M(r) = Max f(z)1 and rk denote s

the absolute value of the zero z k of f( (z) which is nearest to the origin
(k 1, 2, . . .), then denoting by x = H(y) the inverse function of y = log M(x)
we have

(41)

	

lim inf	 krk )

	

log 2

PROOF . Let us start from the inequality (38) . This implies that for an y

>0

(H(n "
(42) him	 r) a„	 0 .

Thus we can find arbitrary large values of k for which

(43) ar±; 1

	

(H(k))
ak

Í

	

(i - 1, 2,-) .

1
This implies that for A <

e-
lim inf Nk (f (z), 1) < 1 ,

i . e . an infinity of derivatives of f(z) have no zeros in the unit circle . It is known that i f

f(z) is of exponential type and lim sup
log m

(r ) < A, the same assertion holds fo r

	

-.

	

r
A

	

0,7199 . (See [5] )



ON THE NUMBER OF ZEROS OF SUCCESSIVE DERIVATIVES OF ANALYTIC FUNCTIONS

	

1 4 1

It follows from inequality (15) that for such values of k for which (43) hold s

and for 1 zd 9 we have

	

(z)

	

1

	

fV)(0)

	

((

	

Pe 1rL

	

'

l H(k) 1

and thus f' )(z)	 0 for z

	

if

el-41 c+ 1

H(k))

	

2

i . e . for a sufficiently large k i f

(45)

But (45) implies tha t

(46) 	 I±== `lim inf
H kO e

,;-> .

	

kr,; — log 2

As r > 0 is arbitrary, Theorem 3 is proved .

Clearly, (41) implie s

(47)

	

lira sup krk =±

for every entire function .
For functions, which are regular in a circle z

	

R, instead of (47) w e

can prove only

THEOREM 4 . If f(z) is regular in the circle z K R and is not a poly-
nomial, further z,; is the root of fQ'>(z) which is nearest to the origin, then
putting r,; = z,; 1 we have

(48)

	

lim sup kr,,

	

R log 2 .

PROOF . The proof is very similar to that of Theorem 3 . If f(z)
R"

a„z'', we have lim sup Via,

	

R and thus (1	
+0"

--► 0 for any r > O .

	

R" 1a,,

	

R 'X l aka-

This implies that putting max (1 +E)

	

(I +)' • v we have for k--kv

(N

	

1, 2, . . .)

H(k)log 2
key+2 E

2 Acta Mathematica VII 22

(J

	

1, 2, . . .) .(49)
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Thus by inequality (15) we have for z

	

n and the mentioned values of k

.f(k )	 (z)
._I

	

1
(50)

	

f(")(
0)

	

1

	

1

	

9(1+ 	
F) ,r; ; -1 '

R

therefore ft » ' (z) -- 0 fo g l z

	

P if

9(1+o~h 1

	

1
R

	

2

and thus if
Rlog 2

for sufficiently large k.
The assertion of Theorem 4 follows immediately .
It should be mentioned that there exist functions f(z) regular in the

unit circle for which lira sup krk < + 0., for example if f(z)	 1	
z'we

have

lim sup kr,; — 4 . This example is due to ERWE [8] .
k-m

It would be interesting to determine the greatest constant by which
log 2 can be replaced in (48) .

The question may be raised : what can be said about the serie s

(52)

	

.

It can be shown that the series (52) is divergent not only for every entir e
function but also for every function which is regular in some circle Izl < R
(except for polynomials) with R > 0. As a matter of fact, this follows easil y
from the results of W. GONTCHAROFF ([6], p . 34) .

The following conjecture of ERWE is a simple consequence of thi s

remark : If f(z) is regular in zJ < R, z, < R, z„+I

	

2
~z„ I and f( )(z„)	 0

(n= 1, 2, . . .), then f(z) is a polynomial . As a matter of fact, we hav e
w

r,

	

z,, and thus our suppositions imply

	

r,,

	

-1- . More can be said

about the sequence rk if the power series of f(z) has Hadamard gaps. I f

f(z) = 2, a„z"7, where
nr'+ I

	

q > 1 and f(z) is an entire function, the n
A=O

	

nk

ERWE proved that if f(z) is regular in a circle around z

	

0 containing the point s

z,, for which

	

further f(5 ,, (z) -0 (n =- 1, 2, . . .), then f(z) is a polynomial .

(51)

	

(k+l)(1+2a)
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1 411 sup r,, --I- 0,0 ; if it is supposed only that f(z) is regular in the circle

m

	

R (1
	 9	~zl < R and f(z) _ 2, z72 k with	 ''+' q > 1, then urn sup

	

'
.Ic~O

	

n)c

	

k-+ m

	

2 е
It seems that the following conjecture is true : If )'(z) is an entire func-

tion, we have

urn su

11 + г2 +. . . . + гЕ

	

00 .
т --,,т р

	

log k

	

+

(Received 30 May 1956)
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0 ЧИСЛЕ КОРНЕЙ ПОСЛЕДОВАТЕЛЬНЬ lХ ПРОИЗВОДНЫХ АНАЛИТИЧЕСКИХ
ФУНКЦИ Й

П . Э р ц ё ш и А . Р е н ь и (Будапешт)

(Резюме )

Пусть f(z) регулярна и некоторой области плоскостгг компяексногв переменногг
9

содержащей внутри себя круг 1z 1 _ г (r > 0), гг пусть Nc (f (z), r) означает число корней
fгг (z) в круге 1 zI

	

r (k = 1, 2, . . .) . Обозначим через х1. наиболее близкий г точке z=0
хорень ог f г ^> (z) г1 пусть Tk == zk I .

	

.
Работа изучает асимптотические свойства последовательностей N,(j(а), г ) и

(k= 1, 2, . . .) . В частности , в работе доказываются следующие теоремы :

Т е о р е м а I . Пусть f(z) регулярна в единичном круге и пусть 0 r< I . Тогда

1ii 1nf
Nk(f х)' У) = К ( г),

k-~ т

2*
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где К= К(г ) есть единственный положительный корень трансцендентного уравнения
К

	

1

	

1(1

	

К) 1 +к

Т е о р е м а 2 . Пусть g(г ) есть любая непрерывная и монотонно возрастающая
в интервале (О г < х ) функции и пусть lim g(г) _ + с . Обозначим через х=1( у(
функцию , обратную функции у = f (x) . Пусть f(z) есть целая функция , М ( г)— Мах f (z)

и предположим , что
1og М (г)

^In inf	 < 1 .1'-э N

	

g( г)

ТогДа

1ип 1nf
Р4 (3(4,1)й (If) — о

	

/С-, °D

	

k

Т е о р е м а 3 . Пусть f(z) есть целая функция, М (г) = Мах f (z) ~, х = Н (у) обоз-

начает функцию , обратную функции у = 1оу М (х) . Тогда

1im inf
Н (k)

	

е
~~ 1г г ,,

	

log 2

Т е о р е м а 4. Если f(z) регулярна в единичном круге и не многочлен, то
1im sup k гк

	

1оу 2.
k-+ оо

Перечисленные теоремы являются обобщениями результатов п о й а [1], Е в г р а-
ф о в а [2] и А л а н д е р а [3] . Работа содержит такнте доказательство одной гипотезы
Эрве [8] .

ТогДа
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