ON THE NUMBER OF ZEROS OF SUCCESSIVE DERIVATIVES OF ANALYTIC FUNCTIONS

By
P. ERDÖS (Budapest), corresponding member of the Academy, and
A. RÉNYI (Budapest), member of the Academy

Introduction

Let $f(z)$ be regular in the circle $|z|<R$. Let us denote by $N_{k}(f(z), r)$ the number of zeros of the k-th derivative $f^{(k)}(z)$ of $f(z)$ in the closed circle $|z| \leqq r<R$. In the present paper we shall investigate the asymptotic properties of the sequence $N_{k}(f(z), r) \quad(k=1,2, \ldots)$.

In this direction several results have been obtained by G. Pólya (see [1]). One of the results of Polya is the following: If $f(z)$ is an entire function of finite order $\lambda \geqq 1$, then for any $r>0$ we have

$$
\begin{equation*}
\liminf _{k \rightarrow \infty} \frac{\log N_{k}(f(z), r)}{\log k} \leqq \frac{\lambda-1}{\lambda} \tag{1}
\end{equation*}
$$

Let us denote by $\mathscr{\mathcal { C } _ { k }}(f(z), I)$ the number of zeros of $f^{(k)}(z)$ in the real closed interval I. Further results of Pólya are as follows: If $f(z)$ is real on the real axis, and it is analytic in the closed interval I, we have

$$
\begin{equation*}
\liminf _{k \rightarrow \infty} \frac{\mathfrak{\Lambda}_{k}(f(z), I)}{k}<+\infty \tag{2}
\end{equation*}
$$

if $f(z)$ is an entire function, we have

$$
\begin{equation*}
\liminf _{k \rightarrow \infty} \frac{\mathscr{O}_{k}(f(z), I)}{k}=0 \tag{3}
\end{equation*}
$$

finally, that if $f(z)$ is an entire function of exponential type, we have

$$
\begin{equation*}
\liminf _{k \rightarrow \infty} \mathfrak{A l}_{k}(f(z), I)<+\infty \tag{4}
\end{equation*}
$$

Recently, M. A. Yevgrafov [2] proved the following general result: ${ }^{1}$ Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ be an entire function, the coefficients of which satisfy the inequality

$$
\left|a_{n}\right| \leqq \frac{M A^{n}}{q(1) q(2) \ldots q(n)} \quad(n=1,2, \ldots)
$$

[^0]where $q(x)$ is positive and increasing for $x \geqq 1$, further $q^{\prime}(x)$ exists and $\lim _{x \rightarrow \infty} x \frac{q^{\prime}(x)}{q(x)}=\rho$ where $0 \leqq \rho \leqq 1$. Then we have
\[

$$
\begin{equation*}
\liminf _{k \rightarrow \infty} \frac{N_{k}(f(z), r) q(k)}{k}<+\infty . \tag{5}
\end{equation*}
$$

\]

In § 2 of the present paper we shall prove that the theorem of YevGRAFOV is a consequence of the following simpler and more general theorem:

If $\operatorname{Max}_{|z|=r}|f(z)|=M(r)=e^{G(r)}$, further if $x=H(y)$ denotes the inverse function of $y=G(x)$, we have

$$
\begin{equation*}
\liminf _{k \rightarrow \infty} \frac{N_{k}(f(z), r) H(k)}{k}<+\infty . \tag{6}
\end{equation*}
$$

We shall show also that (6) can be replaced by

$$
\begin{equation*}
\liminf _{k \rightarrow \infty} \frac{N_{k}(f(z), 1) H(k)}{k} \leqq e^{2} \tag{7}
\end{equation*}
$$

(Theorem 2'). As a matter of fact, we shall prove more, namely we obtain a theorem (Theorem 2) which is much stronger than Yevgrafov's theorem. Our theorem states that if $f(z)$ is an entire function, $M(r)=\underset{|z|=r}{\operatorname{Max}}|f(z)|$ and if we suppose only

$$
\begin{equation*}
\liminf _{r \rightarrow \infty} \frac{\log M(r)}{g(r)}<1 \tag{8}
\end{equation*}
$$

where $g(r)$ is an arbitrary continuous and monotonically increasing function for which $\lim _{r \rightarrow \infty} g(r)=+\infty$, then we have

$$
\begin{equation*}
\liminf _{k \rightarrow \infty} \frac{N_{k}(f(z), 1) h(k)}{k} \leqq e^{2} \tag{9}
\end{equation*}
$$

where $x=h(y)$ denotes the inverse function of $y=g(x)$.
The results (1), (3) and (4) are included in Yevgrafov's theorem and in our Theorem 2, respectively. In § 1 we prove a theorem on functions analytic in a circle. In § 3 we prove some results on the sequence $r_{k}=$ $=\left|z_{k}\right|(k=1,2, \ldots)$ where z_{k} denotes that root of $f^{(k)}(z)$ which is nearest to the origin; we generalize thereby some previous results, e. g. theorems of Ålander [3] and Erwe [8].

§ 1. Functions regular in a circle

We begin by proving
Theorem 1. If $f(z)$ is regular in the circle $|z|<1$ and $0<r<1$, we have

$$
\begin{equation*}
\liminf _{k \rightarrow \infty} \frac{N_{k}(f(z), r)}{k} \leqq K(r) \tag{10}
\end{equation*}
$$

where $K=K(r)$ is the only positive root of the transcendental equation

$$
\begin{equation*}
r=\frac{K}{(1+K)^{1+\frac{1}{k}}} . \tag{11}
\end{equation*}
$$

Theorem 1 can also be written in the following equivalent form:
Theorem 1'. If $f(z)$ is regular in the circle $|z|<\frac{(1+K)^{1+\frac{1}{K}}}{K} \quad(K>0)$, we have

$$
\begin{equation*}
\liminf _{k \rightarrow \infty} \frac{N_{k}(f(z), 1)}{k} \leqq K . \tag{12}
\end{equation*}
$$

Let us mention the following special case of Theorem 1^{\prime} : (12) is valid with $K=1$ if $f(z)$ is regular in the circle $|z|<4$.

Theorem 1^{\prime} implies that if $f(z)$ is an entire function, we have

$$
\liminf _{k \rightarrow \infty} \frac{N_{k}(f(z), r)}{k}=0
$$

for any $r>0$.
The proofs of the above theorems are based on the well-known theorem of Jensen (see e.g. [4]): If $g(z)$ is regular in a circle $|z|<R, g(0) \neq 0$ and $z_{1}, z_{2}, \ldots, z_{n}$ are the zeros of $g(z)$ in the circle $|z| \leqq \rho<R$, then we have

$$
\log \frac{\varrho^{n}}{\left|z_{1}\right| \cdot\left|z_{2}\right| \cdots\left|z_{n}\right|}=\frac{1}{2 \cdot \tau} \int_{0}^{2 \pi} \log \left|\frac{g\left(\rho e^{i \varphi}\right)}{g(0)}\right| d \varphi .
$$

If $N_{0}(g(z), r)$ denotes the number of zeros of $g(z)$ in the circle $|z| \leqq r<\rho$, it follows from (12) that

$$
\begin{equation*}
N_{0}(g(z), r) \log \frac{\rho}{r} \leqq \operatorname{Max}_{|=|=\Omega} \log \left|\frac{g(z)}{g(0)}\right| \tag{13}
\end{equation*}
$$

We shall always use Jensen's theorem in the form (13).
Some simple inequalities, which will be frequently used in this paper, are collected in the following

Lemma. If $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ is regular in $|z|<R$ and for some value of $A \geqq 1$ and $B>0$ we have

$$
\begin{equation*}
\left|a_{k+j}\right|<\frac{A\left|a_{k}\right|}{B^{j}} \quad(j=1,2, \ldots), \tag{1.4}
\end{equation*}
$$

then for $|z|=0<R$

$$
\begin{equation*}
\left|\frac{f^{(k)}(z)}{f^{(k)}(0)}-1\right| \leqq A\left(\frac{1}{\left(1-\frac{\varrho}{B}\right)^{k+1}}-1\right) \tag{15}
\end{equation*}
$$

and thus

$$
\begin{equation*}
\left|\frac{f^{(k)}(z)}{f^{(k)}(0)}\right| \leqq \frac{A}{\left(1-\frac{\rho}{B}\right)^{k+1}} . \tag{16}
\end{equation*}
$$

Proof. (14) implies $\left|a_{k}\right|>0$ and

$$
\begin{equation*}
\frac{f^{(k)}(z)}{f^{(k)}(0)}=1+\sum_{j=1}^{\infty} \frac{a_{k+j}}{a_{k}} \cdot \frac{(k+1)(k+2) \cdots(k+j)}{j!} z^{i} . \tag{17}
\end{equation*}
$$

Taking into account that

$$
\frac{1}{(1-x)^{k+1}}=1+\sum_{j=1}^{\infty} \frac{(k+1)(k+2) \cdots(k+j)}{j!} x^{j}
$$

for $|x|<1$, (15) and from this (16) follows.
Proof of Theorem 1'. Let us suppose that the radius of convergence of the power series $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ is finite and equal to $R>1$. In this case we have $\varlimsup_{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\frac{1}{R}$. Thus if $1<B<R<C$, we can find an infinity of values of k for which $\sqrt[k]{\left|a_{k}\right|}>\frac{1}{C}$ and $\sqrt[k+j]{\left|a_{k+j}\right|} \leqq \frac{1}{B}(j=1,2, \ldots)$ and thus

$$
\begin{equation*}
\left|a_{k+j}\right| \leqq \frac{\left(\frac{C}{B}\right)^{k}\left|a_{k}\right|}{B^{j}} \quad(j=1,2, \ldots) \tag{18}
\end{equation*}
$$

On the other hand, if $R=\infty$, then $\sqrt[n]{\left|a_{n}\right|} \rightarrow 0$ and thus we can find for any $B>0$ an infinity of values of k for which

$$
\begin{equation*}
\left|a_{k+j}\right| \leqq \frac{\left|a_{k}\right|}{B^{j}} \quad(j=1,2, \ldots) . \tag{19}
\end{equation*}
$$

As a matter of fact, if $\max _{n \geqq N} \sqrt[n]{\left|a_{n}\right|}=\sqrt[k_{N}]{\left|a_{k_{N}}\right|}<\frac{1}{B}$ (which will be true for all sufficiently large values of N), then $k=k_{N}$ satisfies (19).

The inequalities (18) and (19) can be combined, and it follows that if $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ is regular in the circle $|z|<R(R>1)$ (but may be regular also in a larger circle or in the whole plane), then for any $q>1$ and $B<R$ we can find an infinity of values of k such that

$$
\begin{equation*}
\left|a_{k+j}\right| \leqq \frac{q^{k}\left|a_{k}\right|}{B^{j}} \quad(j=1,2, \ldots) \tag{20}
\end{equation*}
$$

It follows from our Lemma that for $|z|=o(1<\varrho<R)$

$$
\begin{equation*}
\left|\frac{f^{(k)}(z)}{f^{(k)}(0)}\right| \leqq \frac{q^{k}}{\left(1-\frac{\varrho}{B}\right)^{k+1}} \tag{21}
\end{equation*}
$$

and thus, applying (13) with $r=1$ and $g(z)=f^{(k)}(z)$, we obtain

$$
\begin{equation*}
N_{k}(f(z), 1) \leqq \frac{k \log q+(k+1) \log \left(1-\frac{\varrho}{B}\right)^{-1}}{\log \varrho} \tag{22}
\end{equation*}
$$

which implies, as q may be chosen arbitrarily near to 1 and B to R, that

$$
\begin{equation*}
\liminf _{k \rightarrow \infty} \frac{N_{k}(f(z), 1)}{k} \leqq \frac{\log \left(1-\frac{\varrho}{R}\right)^{-1}}{\log \varrho} \quad \text { for } \quad 1<\varrho<R . \tag{23}
\end{equation*}
$$

Now let us choose the value of ρ so as to minimize the right hand side of (23), that is, let ρ be equal to $(1+K)^{\frac{1}{K}}$ where K is the positive root of the equation $R=\frac{(1+K)^{1+\frac{1}{K}}}{K}$ which has a unique solution for any $R>1$. Thus we have proved Theorem 1^{\prime}, and therefore Theorem 1 , too.

We do not know whether the bound in (10) is best possible or not. The estimation (10) is, however, best possible in the following sense : it is clear from the proof of Theorem 1^{\prime} that we considered only such values of k for which $f^{(k)}(0) \neq 0$; thus we have obtained slightly more than is expressed by (10), namely we proved

$$
\liminf _{\substack{k \rightarrow \infty \\ f^{(k)}(0) \neq 0}} \frac{N_{k}(f(z), r)}{k} \leqq K(r) .
$$

Now (10') is a best possible estimation; this can be shown by considering the function

$$
\begin{equation*}
g(z, K)=\sum_{n=0}^{\infty} z^{\left[(1+K)^{n}\right]} \tag{24}
\end{equation*}
$$

where K is the only positive root of the equation (10) and $[x]$ denotes the integer part of x. Let us put $k_{n}=\left[(1+K)^{n}\right]$ and consider $g^{\left(k_{n}\right)}(z, K)$. We have clearly

$$
\frac{g^{\left(k_{n}\right)}(z, K)}{g^{\left(k_{n}\right)}(0, K)}=P_{n}(z)+Q_{n}(z)
$$

where

$$
P_{n}(z)=1+\frac{\left(k_{n}+1\right) \cdots k_{n+1}}{\left(k_{n+1}-k_{n}\right)!} z^{k_{n+1}-k_{n}}
$$

and

$$
Q_{n}(z)=\sum_{j=2}^{\infty} \frac{\left(k_{n}+1\right) \cdots k_{n+j}}{\left(k_{n+j}-k_{n}\right)!} z^{k_{n+j}-k_{n}}
$$

The roots of the equation $P_{n}(z)=0$ are all lying on the circle

$$
|z|=\varrho_{n}=\left(\frac{\left(k_{n+1}-k_{n}\right)!}{\left(k_{n}+1\right) \cdots k_{n+1}}\right)^{\frac{1}{k_{n+1}-k_{n}}}
$$

and by Stirling's formula we obtain

$$
\lim _{n \rightarrow \infty} \varrho_{n}=r=\frac{K}{(1+K)^{1+\frac{1}{K}}}
$$

If $\varepsilon>0$, we have on the circle $|z|=r(1+\varepsilon)$

$$
\left|P_{n}(z)\right| \geqq\left(1+\frac{\varepsilon}{2}\right)^{k_{n+1}-k_{n}}
$$

for $n \geqq n_{0}(\varepsilon)$. On the same circle we have

$$
\left|\frac{\left(k_{n}+1\right) \cdots\left(k_{n+j}\right)}{\left(k_{n+j}-k_{n}\right)!} z^{k_{n+j}^{-k_{n}}}\right| \leqq\left[\frac{(1+K)^{\frac{j}{(1+K)^{j}-1}}}{1-\frac{1}{(1+K)^{j}}} \cdot \frac{K(1+2 \varepsilon)}{(1+K)^{1+\frac{1}{K}}}\right]^{k_{n+j^{-k_{n}}}}(j=2,3, \ldots)
$$

As $\frac{j}{(1+K)^{j}-1} \leqq \frac{1}{K}$, we have

$$
\left|Q_{n}(z)\right| \leqq 4+2 K \text { for }|z|=r(1+\varepsilon)
$$

if $0<\varepsilon<\frac{1}{4(K+1)}$. It follows by Rouché's theorem, that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{N_{(1+k)^{n}}(g(z, k), r(1+\varepsilon))}{\left[(1+K)^{n}\right]}=K \tag{25}
\end{equation*}
$$

if $0<\varepsilon<\frac{1}{4(K+1)}$.
Let us mention that $g^{(n)}(z, K)$ has more than $c n$ zeros $(c>0)$ in $|z|<r_{0}$ for some $r_{0}>r$ and every $n=1,2, \ldots$.

§ 2. Entire functions

As it has been mentioned in $\S 1$, it follows from Theorem 1 that if $f(z)$ is an entire function, we have

$$
\begin{equation*}
\liminf _{k \rightarrow \infty} \frac{N_{k}(f(z), 1)}{k}=0 . \tag{26}
\end{equation*}
$$

(26) can not be improved, i. e. no relation of the form

$$
\liminf _{k \rightarrow \infty} \frac{N_{k}(f(z), 1)}{k \varepsilon(k)}=0
$$

holds with $\lim _{k \rightarrow \infty} \varepsilon(k)=0(\varepsilon(k)>0)$ for all entire functions. (26) can, however, be strengthened if we put some restriction on the rate of growth of $f(z)$. This is expressed by the following

ThEOREM 2. Let $g(r)$ denote an arbitrary function, monotonically increasing in $0<r<+\infty$, for which $\lim _{r \rightarrow+\infty} g(r)=+\infty$. Let $x=h(y)$ denote the inverse function of $y=g(x)$. Let us suppose that $f(z)$ is an entire function for which, putting $M(r)=\underset{|z|=r}{\operatorname{Max}}|f(z)|$, we have

$$
\liminf _{r \rightarrow+\infty} \frac{\log M(r)}{g(r)}<1
$$

Then we have

$$
\begin{equation*}
\liminf _{k \rightarrow \infty} \frac{N_{k}(f(z), 1) h(k)}{k} \leqq e^{2} \tag{27}
\end{equation*}
$$

Proof of Theorem 2. Let $\varepsilon>0$ denote an arbitrary small positive number. Let us denote by $v(r)(0<r<+\infty)$ the central index of the series

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}
$$

for $|z|=r$, i. e. suppose

$$
\left|a_{n}\right| r_{-}^{n} \leqq\left|a_{\nu(r)}\right| r^{\nu(r)} \quad(n=0,1,2, \ldots)
$$

and thus

$$
\begin{equation*}
\left|a_{\nu^{(r)+j}}\right| \leqq \frac{\left|a_{\nu(r)}\right|}{r^{j}} \tag{28}
\end{equation*}
$$

$$
(j=1,2, \ldots)
$$

Let us consider such a value $r>0$ for which

$$
\begin{equation*}
\log M(r e) \leqq g(r e) \tag{29}
\end{equation*}
$$

By our supposition we can find arbitrarily large values of r satisfying (29).

Applying our Lemma with $A=1, B=r, k=v(r), R>r, \varrho=e$, we obtain

$$
\left|\frac{f^{\nu(r)}(z)}{f^{\nu(r)}(0)}\right| \leqq \frac{1}{\left(1-\frac{e}{r}\right)^{\nu(r)+1}} \quad \text { for } \quad|z|=e
$$

and thus by JENSEN's theorem

$$
\begin{equation*}
N_{\nu(r)}(f(z), 1) \leqq(\nu(r)+1) \log \frac{1}{1-\frac{e}{r}} \leqq \frac{v(r) e(1+\varepsilon)}{r} \tag{30}
\end{equation*}
$$

if $r \geqq r_{0}(\varepsilon)$
Now, taking into account that for every $n=1,2, \ldots$ and every $R>0$ we have $\left|a_{N}\right| R^{N} \leqq M(R)$, and using (29), we have

$$
\left|a_{n}\right|(r e)^{n} \leqq M(r e)<e^{g(r e)}
$$

and thus

$$
\left|a_{n}\right| r^{n} \leqq e^{g(r e)-n} \quad(n=1,2, \ldots)
$$

Therefore

$$
\left|a_{n}\right| r^{n} \leqq 1 \quad \text { if } \quad n \geqq g(r e)
$$

But it is known, ${ }^{2}$ that the absolute value of the maximal term on $|z|=r$ of the power series of an entire function is tending to $+\infty$ for $r \rightarrow \infty$; thus it follows that if r is a sufficiently large value, satisfying (29), we have $v(r) \leqq g(r e)$, and thus $h(\nu(r)) \leqq r e$. It follows from (30) that

$$
\begin{equation*}
N_{\nu(r)}(f(z), 1) \leqq \frac{v(r) e^{2}(1+\varepsilon)}{h(v(r))} \tag{31}
\end{equation*}
$$

Thus, taking into account that $\nu(r) \rightarrow \infty$ for $r \rightarrow \infty$ and that $\varepsilon>0$ is arbitrary, (27) follows.

We can prove quite similarly also the following
${ }^{2}$ See e. g. [7], p. 2, Problem No. 9.

Theorem 2^{\prime}. If $f(z)$ is an arbitrary entire function, $M(r)=\operatorname{Max}_{|z|=r}|f(z)|$, and $x=H(y)$ denotes the inverse function of $y=\log M(r)$, then we have

$$
\liminf _{k \rightarrow \infty} \frac{N_{k}(f(z), 1) H(k)}{k} \leqq e^{2} .
$$

Proof. Clearly, the condition $\liminf _{n \rightarrow \infty} \frac{\log M(r)}{G(r)}<1$ is needed in the proof of Theorem 2 only to ensure the existence of arbitrary large values of r for which (29) is valid. Now for $g(r)=G(r)(29)$ is valid for all values of r, thus Theorem 2^{\prime} follows.

Theorem 2 is best possible in the following case: if $g(r)$ is a monotonically increasing and convex function for which $g(0)=0, g^{\prime}(0)=0, g(1)=1$ and $\lim _{r \rightarrow \infty} \frac{g(r)}{r}=+\infty$, then there can be found an entire function $f(z)$ such that putting $M(r)=\operatorname{Max}_{|z|-r}|f(z)|$ we have $\lim _{r \rightarrow \infty} \inf \frac{\log M(r)}{g(r)}<+\infty$ and nevertheless

$$
\liminf _{k \rightarrow \infty} \frac{N_{k}(f(z), 2) h(k)}{k}>0
$$

where $x=h(y)$ is the inverse of $y=g(x)$. As a matter of fact, if the sequence n_{k} is defined by $n_{0}=0, n_{1}=1$ and by the recursion formula $n_{k+1}=\left[n_{k}\left(1+\frac{e}{h\left(n_{k}\right)}\right)\right]$, the function

$$
f(z)=\sum_{k=1}^{\infty} \frac{z^{n_{k}}}{\prod_{j=1}^{l_{i}}\left[h\left(n_{j}\right)\right]^{n_{j}-n_{j-1}}}
$$

has all the properties required. This can be shown again by using Rouche's theorem as follows:

Let us consider first $f^{\left(n_{k}\right)}(z)$. We have clearly

$$
\frac{f^{\left(m_{k}\right)}(z)}{f^{\left(k_{k}\right)}(0)}=P_{k}(z)+Q_{k}(z)
$$

where

$$
P_{k}(z)=1+\frac{\left(n_{k}+1\right) \ldots n_{k+1}}{\left(n_{k+1}-n_{k}\right)!}\left(\frac{z}{h\left(n_{k+1}\right)}\right)^{n_{k+1} n^{-n_{k}}}
$$

and

$$
Q_{k}(z)=\sum_{j=2}^{\infty} \frac{\left(n_{k}+1\right) \ldots n_{k+j}}{\left(n_{k+j}-n_{k}\right)!} \frac{z^{n_{k+j}-k_{k}}}{\prod_{s=k+1}^{k+j} h\left(n_{s}\right)^{n_{s}-n_{s-1}}} .
$$

Clearly, all roots of $P_{k}(z)=0$ are lying on the circle

$$
|z|=\boldsymbol{o}_{k}=h\left(n_{k+1}\right)\left[\frac{\left(n_{k+1}-n_{k}\right)!}{\left(n_{k}+1\right) \ldots n_{k+1}}\right]^{\frac{1}{n_{k+1}-n_{k}}}
$$

and we have for $k \rightarrow \infty \varrho_{k} \sim \frac{h\left(n_{k+1}\right)}{h\left(n_{k}\right)}$. But as $h^{\prime}(y)=\frac{1}{g^{\prime}(x)}$ is decreasing, we have

$$
1 \leqq \frac{h\left(n_{k+1}\right)}{h\left(n_{k}\right)} \leqq 1+\frac{n_{k} h^{\prime}\left(n_{k}\right) e}{h^{2}\left(n_{k}\right)} .
$$

But

$$
\frac{y h^{\prime}(y)}{h(y)}=\frac{g(x)}{x g^{\prime}(x)}
$$

and as $g^{\prime \prime}(x) \geqq 0$ we have

$$
\frac{g(x)}{x g^{\prime}(x)}=\frac{\int_{0}^{r} g^{\prime \prime}(t)(x-t) d t}{\int_{0}^{x} g^{\prime \prime}(t) x d t}-\leqq 1
$$

Thus it follows $\lim _{k \rightarrow \infty} o_{k}=1$.
Clearly, on the circle $|z|=1+\varepsilon$ we have

$$
\left|P_{k}(z)\right| \geqq\left(1+\frac{\varepsilon}{2}\right)^{n_{k+1}-\eta_{k}} \quad \text { for } \quad k \geqq k_{0}(\varepsilon) \text {. }
$$

On the other hand, on the same circle we have

$$
\left|\frac{\left(n_{k}+1\right) \ldots n_{k+j}}{\left(n_{k+j}-n_{k}\right)!} \cdot \frac{z^{n_{k+j}-n_{k}}}{\prod_{s=k+1}^{k+j} h\left(n_{s}\right)^{n_{s}-n_{s-1}}}\right| \leqq\left[\frac{\left(1+\frac{n_{k+j}-n_{k}}{n_{k}}\right)^{\frac{n_{k}}{n_{k+j}-n_{k}}}\left(1+\frac{3 \varepsilon}{2}\right)}{\left(1-\frac{n_{k}}{n_{k+2}}\right) h\left(n_{k+1}\right)}\right]^{n_{k+j} j^{-n_{k}}}
$$

for sufficiently large values of k. As $(1+x)^{\frac{1}{x}} \leqq e$ and $\left(1-\frac{n_{k}}{n_{k+2}}\right) h\left(n_{k+1}\right) \rightarrow 2 e$ for $k \rightarrow \infty$, it follows that for $|z|=1+\varepsilon \quad\left(0<\varepsilon<\frac{1}{2}\right)$

$$
\left|Q_{i}(z)\right| \leqq \frac{2}{1-2 \varepsilon} \quad \text { for } \quad k \geqq k_{1}(\varepsilon) .
$$

Thus $f^{\left(n_{k}\right)}(z)$ has $n_{k+1}-n_{k}$ roots in the circle $|z|=1+\varepsilon$ for $0<\varepsilon<1 / 2$ and $k \geqq k_{1}(\varepsilon)$.

Let us consider now a number $N, n_{k-1}<N<n_{k}$. If $N \leqq \frac{n_{k}}{1+\frac{e}{4} \frac{e}{h\left(n_{k}\right)}}$, then $f^{(N)}(z)$ has more than $\frac{N}{2 h(N)}$ roots in the point $z=0$. On the other hand, if $N>\frac{n_{k}}{1+\frac{e}{4 h\left(n_{k}\right)}}$, let us have $N \sim \frac{n_{k}}{1+\frac{\lambda e}{h\left(n_{k}\right)}}\left(0<\lambda<\frac{1}{4}\right)$.

We have clearly

$$
\frac{f^{(N)}(z)}{z^{n_{k}-N} n_{k}\left(n_{k}-1\right) \ldots\left(n_{k}-N+1\right)}=p_{N}(z)+q_{N}(z)
$$

where

$$
q_{N}(z)=\sum_{j=2}^{\infty} \frac{n_{k+j}\left(n_{k+j}-1\right) \cdots\left(n_{k+j}-N+1\right)}{n_{k}\left(n_{k}-1\right) \cdots\left(n_{k}-N+1\right)} \cdot \frac{z^{n_{k+j}-n_{k}}}{\prod_{s=k+1}^{k+j} h\left(n_{s}\right)^{n_{s}-n_{s-1}}}
$$

and

$$
p_{N}(z)=1+\frac{n_{k+1}\left(n_{k+1}-1\right) \cdots\left(n_{k+1}-N+1\right)}{n_{k}\left(n_{k}-1\right) \cdots\left(n_{k}-N+1\right)}\left(\frac{z}{h\left(n_{k+1}\right)}\right)^{n_{k+1}-n_{k}}
$$

The roots of $p_{N}(z)=0$ are all lying in the circle $|z|=R_{N}$ where $R_{N} \sim$ $\sim(1+\lambda)\left(1+\frac{1}{\lambda}\right)^{\lambda} \leqq \frac{5}{4} \sqrt[4]{5}$ as $0<\lambda<\frac{1}{4}$. But on the circle $|z|=\left(1+\frac{\delta}{2}\right) \frac{5}{4} \sqrt[4]{5}$ we have for any $\delta>0$, if K is sufficiently large,

$$
\begin{aligned}
& \left|\frac{n_{k+j}\left(n_{k+j}-1\right) \cdots\left(n_{k+j}-N+1\right)}{n_{k}\left(n_{k}-1\right) \cdots\left(n_{k}-N+1\right)} \cdot \frac{z^{n_{k+j} j^{-n_{k}}}}{\prod_{s=k+1}^{k+j} h\left(n_{s}\right)^{n_{s}-n_{s-1}}}\right| \leqq \\
& \vdots\left(\frac{(1+2 \delta) \frac{5}{4} \sqrt{5}}{2}\right)^{n_{k+j} n_{k}}=\beta^{n_{k+j}^{-n_{k}}} \quad(j=2,3, \ldots)
\end{aligned}
$$

where $\beta<1$ if $0<\delta<\frac{1}{2}\left(\frac{8}{5 \sqrt[4]{5}}-1\right)$.
Thus it follows by Rouché's theorem that $f^{(N)}(z)$ has $n_{k+1}-n_{k}$ roots in the circle $|z|=\left(1+\frac{\delta}{2}\right) \frac{5}{4} \sqrt[4]{5}$. As $n_{k+1}-n_{k} \geqq \frac{N}{2 h(N)}$, combining the cases $n_{k-1}<N \leqq \frac{n_{k}}{1+\frac{e}{4 h\left(n_{k}\right)}}$ and $n_{k} \geqq N>\frac{n_{k}}{1+\frac{e}{4 h\left(n_{k}\right)}}$, it follows that $f^{(N)}(z)$ has
$\geqq \frac{N}{2 h(N)}$ roots in the circle $|z|<2$. Thus we have

$$
\liminf _{k \rightarrow \infty} \frac{N_{k}(f(z), 2) h(k)}{k} \geqq \frac{1}{2},
$$

what was to be proved.
It remains to show that $\liminf _{r \rightarrow \infty} \frac{\log M(r)}{g(r)}<+\infty$. This can be done as follows: let us put $r_{k i}=h\left(n_{k}\right)$ and

$$
\mu\left(r_{k}\right)=\frac{r_{k}^{n_{k}}}{\prod_{j=1}^{k} h\left(n_{j}\right)^{n_{j} n_{j-1}}} .
$$

First we show that

$$
\limsup _{k \rightarrow \infty} \frac{\log \mu\left(r_{k}\right)}{n_{k}}<+\infty
$$

This can be proved by starting from the evident formula

$$
\frac{\log \mu\left(r_{k}\right)}{n_{k}}=\frac{1}{n_{k}} \sum_{j=1}^{k}\left(n_{j}-n_{j-1}\right) \log \frac{h\left(n_{k}\right)}{h\left(n_{j}\right)}
$$

Let us denote by $S_{r}(r=0,1, \ldots)$ the set of those values of j for which

$$
\frac{h\left(n_{k}\right)}{2^{r+1}} \leqq h\left(n_{j}\right)<\frac{h\left(n_{k}\right)}{2^{r}}
$$

Let I_{r} denote the greatest element of the set S_{r}. Then we have clearly

$$
\frac{\log \mu\left(r_{k}\right)}{n_{k}} \leqq \frac{1}{n_{k}} \sum_{r=0}^{\infty}(r+1) n_{I_{r}} .
$$

Now. $n_{r_{r}} \leqq g\left(\frac{h\left(n_{k}\right)}{2^{r}}\right)$ and $g(x)$ is convex, therefore

$$
n_{I_{r}} \leqq \frac{g\left(h\left(n_{k}\right)\right)}{2^{r}}=\frac{n_{k}}{2^{r}}
$$

and thus

$$
\frac{\log \mu\left(r_{k}\right)}{n_{k}} \leqq \sum_{r=0}^{\infty} \frac{r+1}{2^{r}}=4
$$

Now $\mu\left(r_{k}\right)$ is the maximal term of the series

$$
M\left(r_{k}\right)=\sum_{S=1}^{\infty} \frac{r_{k}^{n_{S} S}}{\prod_{j=1}^{S} h\left(n_{j}\right)^{n_{j}-n_{j-1}}}
$$

and it is easy to show that

$$
\lim _{k \rightarrow \infty} \frac{\log M\left(r_{k}\right)}{\log \mu\left(r_{k}\right)}=1
$$

Taking into account that $n_{k}=g\left(r_{k}\right)$, we obtain

$$
\liminf _{r \rightarrow \infty} \frac{\log M(r)}{g(r)} \leqq 4
$$

By the same method it can be shown that $\liminf _{r \rightarrow \infty} \frac{\log M(r)}{g(r)} \leqq 1$, but for our purpose this is not necessary.

The theorem of Yevgrafov can be deduced from Theorem 2 as follows: Let us suppose that $f(z)=\sum_{n=1}^{\infty} a_{n} z^{n}$ is an entire function and

$$
\left|a_{n}\right| \leqq \frac{M A^{n}}{q(1) q(2) \cdots q(n)} \quad(n=1,2, \ldots)
$$

where $q(x)$ is positive and monotonically increasing for $x \geqq 1, \lim _{x \rightarrow \infty} q(x)=+\infty$ and $\lim _{x \rightarrow+\infty} \frac{x q^{\prime}(x)}{q(x)}=\varrho$ where $0 \leqq \varrho \leqq 1$; clearly it can be supposed that $q(1)>1$; let us denote by $x=\gamma(y)$ the inverse of $y=q(x)$, and let us for a given $r>0$ determine the integer N by

Then

$$
N=[\gamma(2 A r)], \quad \text { i. e. } \quad N \leqq \gamma(2 A r)<N+1 .
$$

$$
\begin{equation*}
q(N) \leqq 2 A r \leqq q(N+1) \tag{32}
\end{equation*}
$$

It follows that for $|z|=r$

$$
|f(z)| \leqq M \frac{(A r)^{v}}{q(1) q(2) \cdots q(N)}\left(S_{1}+S_{2}\right),
$$

where

$$
S_{1}=\frac{q(N)}{A r}+\frac{q(N) q(N-1)}{(A r)^{2}}+\cdots+\frac{q(N) q(N-1) \cdots q(2)}{(A r)^{N-1}}
$$

and

$$
S_{2}=1+\frac{A r}{q(N+1)}+\frac{(A r)^{2}}{q(N+1) q(N+2)}+\cdots
$$

Clearly we have

$$
\left|S_{1}\right| \leqq 2+2^{2}+\cdots+2^{N-1} \leqq 2^{N} \quad \text { and } \quad\left|S_{2}\right| \leqq 1+\frac{1}{2}+\frac{1}{4}+\cdots=2 .
$$

Thus it follows that

$$
\begin{equation*}
M(r) \leqq 2 M \exp \left[N \log 2 A r-\sum_{k=1}^{N} \log q(k)\right] \tag{33}
\end{equation*}
$$

As $\log q(k)$ is positive and increasing,

$$
\sum_{k=1}^{N} \log q(k) \geqq \int_{i}^{N} \log q(x) d x
$$

and therefore, by (32),

$$
\log M(r) \leqq \log 2 M+N \log \dot{q}(N+1)-\int_{i}^{N} \log q(x) d x
$$

According to our supposition $\log q(x)$ is of the form

$$
\log q(x)=\rho \log x+\int_{i}^{x} \frac{\varepsilon(t)}{t} d t
$$

where $\lim _{t \rightarrow \infty} \varepsilon(t)=0$; it follows that if $\varrho>0, \log M(r) \leqq \varrho N+o(N)$, i. e. for an arbitrary $\varepsilon>0$ we have

$$
\begin{equation*}
\log M(r) \leqq \varrho \gamma(2 A r)(1+\varepsilon) \tag{34}
\end{equation*}
$$

if r is sufficiently large, and thus if $g(r)=2 \varrho \cdot \gamma(2 A r)$ and $x=h(y)$ is the inverse of $y=g(x)$, we obtain by Theorem 2

$$
\liminf _{k \rightarrow \infty} \frac{N_{k}(f(z), 1) h(k)}{k} \leqq e^{2}
$$

As

$$
h(k)=\frac{1}{2 A} q\left(\frac{k}{2 \varrho}\right)
$$

and

$$
\lim _{k \rightarrow \infty} \frac{q\left(\frac{k}{2 \varrho}\right)}{q(k)}=\left(\frac{1}{2 \varphi}\right)^{\varrho}
$$

it follows that

$$
\begin{equation*}
\liminf _{k \rightarrow \infty} \frac{N_{k}(f(2), 1) q(k)}{k} \leqq 2 A e^{2}\left(\frac{1}{2 \varrho}\right)^{?} \tag{35}
\end{equation*}
$$

Thus we have proved Yevgrafov's theorem for $\varrho>0$.
If $\varrho=0$, we have $\log M(r)=o(\gamma(2 A r))$ and thus it follows in this case also that

$$
\begin{equation*}
\liminf _{k \rightarrow \infty} \frac{N_{k}(f(2), 1) q(k)}{k}<+\infty \tag{36}
\end{equation*}
$$

Now we shall suppose that $f(z)$ is an entire function of order $\geqq 1$ for which, putting $M(r)=\underset{|z|=r}{\operatorname{Max}}|f(z)|$, further $\log M(r)=G(r)$, the limit

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{d \log G(r)}{d \log r}=u \geqq 1 \tag{37}
\end{equation*}
$$

exists; we shall show that in this case, denoting by $x=H(y)$ the inverse function of $y=G(x)$, we have

$$
\begin{equation*}
\lim \inf \frac{N_{k}(f(z), 1) H(k)}{k}<+\infty, \tag{38}
\end{equation*}
$$

and thus for entire functions of order $\geqq 1$ and satisfying the condition (37) the assertion of Theorem 2^{\prime} follows ${ }^{3}$ from Yevgrafov's theorem. Substituting $r=H(n)$ in the inequality $\left|a_{n}\right| \leqq \frac{e^{\sigma_{(i n}}}{r^{n}}(n=1,2, \ldots)$, we obtain

$$
\begin{equation*}
\left|a_{n}\right| \leqq \frac{e^{n}}{(H(n))^{n}} \tag{39}
\end{equation*}
$$

and thus

$$
\begin{equation*}
\left|a_{n}\right| \leqq \frac{e^{n}}{H(1) H(2) \cdots H(n)} . \tag{40}
\end{equation*}
$$

Now let us suppose that $f(z)$ is such an entire function for which the finite or infinite limit (37) exists. As

$$
\frac{y H^{\prime}(y)}{H(y)}=\frac{1}{\left(\frac{d \log G(x)}{d \log x}\right)}
$$

it follows from the existence of $\lim _{x \rightarrow \infty} \frac{d \log G(x)}{d \log x}=\boldsymbol{c}$ that $\lim _{y \rightarrow \infty} \frac{y H^{\prime}(y)}{H(y)}=\rho=\frac{1}{a}$ exists. As we have supposed that $G(r)$ is of order $\geqq 1$, it follows that $0 \leqq \varrho \leqq 1$.

Thus we have shown that Yevgrafov's theorem is equivalent to the special case of Theorem 2' for entire functions satisfying (37). Thus Theorem 2^{\prime} is slightly stronger but, of course, Theorem 2 is essentially stronger than Yevgrafov's theorem.

§ 3. Remarks on the zero z_{k} of $f^{(k)}(z)$ which is nearest to the origin

 It follows from our Theorem 2 that especially if$$
\liminf _{r \rightarrow \infty} \frac{\log M(r)}{r}<A,
$$

[^1]we obtain ${ }^{4}$
$$
\liminf _{k \rightarrow \infty} N_{k}(f(z), 1)<e^{2} A .
$$

This can be formulated as follows: If r_{k} denotes the absolute value of the zero z_{k} of $f^{(k)}(z)$ which is nearest to the origin, we have for an entire function for which $\lim _{r \rightarrow \infty} \inf \frac{\log M(r)}{r}<A$,

$$
\limsup _{k \rightarrow \infty} r_{k} \geqq \frac{1}{A e^{2}} .
$$

For entire functions of finite order $\lambda \geqq 1$, the behaviour of r_{k} has been investigated by Ålander [3] who proved that

$$
\liminf _{k \rightarrow \infty} \frac{\log \frac{1}{r_{k}}}{\log k} \leqq \frac{\lambda-1}{\lambda}
$$

Now we shall prove a general theorem which includes this result of \AA LANDER as a special case.

THEOREM 3. If $f(z)$ is an entire function, $M(r)=\underset{|z|=r}{\operatorname{Max}}|f(z)|$ and r_{k} denotes the absolute value of the zero z_{k} of $f^{(k)}(z)$ which is nearest to the origin $(k=1,2, \ldots)$, then denoting by $x=H(y)$ the inverse function of $y=\log M(x)$ we have

$$
\begin{equation*}
\liminf _{k \rightarrow \infty} \frac{H(k)}{k r_{k}} \leqq \frac{e}{\log 2} \tag{41}
\end{equation*}
$$

Proof. Let us start from the inequality (38). This implies that for any $\varepsilon>0$

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\frac{H(n)}{e^{1+\varepsilon}}\right)^{n}\left|a_{n}\right|=0 \tag{42}
\end{equation*}
$$

Thus we can find arbitrary large values of k for which

$$
\begin{equation*}
\left|a_{k+j}\right| \leqq\left(\frac{e^{1+\varepsilon}}{H(k)}\right)^{j}\left|a_{k}\right| \quad(j=1,2, \ldots) \tag{43}
\end{equation*}
$$

${ }^{4}$ This implies that for $A<\frac{1}{e^{2}}$

$$
\lim _{k \rightarrow \infty} \inf N_{k}(f(z), 1)<1
$$

i. e. an infinity of derivatives of $f(z)$ have no zeros in the unit circle. It is known that if
$f(z)$ is of exponential type and $\lim _{r \rightarrow \infty} \sup \frac{\log M(r)}{r}<A$, the same assertion holds for $A \leqq 0,7199$. (See [5])

It follows from inequality (15) that for such values of k for which (43) holds and for $|z| \leqq \varrho$ we have

$$
\begin{equation*}
\left|\frac{f^{(k)}(z)}{f^{(k)}(0)}-1\right| \leqq \frac{1}{\left(1-\frac{\rho e^{1+e}}{H(k)}\right)^{k+1}}-1 \tag{44}
\end{equation*}
$$

and thus $f^{(n)}(z) \neq 0$ for $|z| \leqq \varrho$ if

$$
\left(1-\frac{\varrho e^{1+\varepsilon}}{H(k)}\right)^{k+1}>\frac{1}{2},
$$

i. e. for a sufficiently large k if

$$
\begin{equation*}
\varrho<\frac{H(k) \log 2}{k e^{1+2 e}} . \tag{45}
\end{equation*}
$$

But (45) implies that

$$
\begin{equation*}
\liminf _{k \rightarrow \infty} \frac{H(k)}{k r_{i}} \leqq \frac{e^{1+2 e}}{\log 2} . \tag{46}
\end{equation*}
$$

As $\varepsilon>0$ is arbitrary, Theorem 3 is proved.
Clearly, (41) implies

$$
\begin{equation*}
\limsup _{k \rightarrow \infty} k r_{k}=+\infty \tag{47}
\end{equation*}
$$

for every entire function.
For functions, which are regular in a circle $|z|<R$, instead of (47) we can prove only

Theorem 4. If $f(z)$ is regular in the circle $|z|<R$ and is not a polynomial, further z_{k} is the root of $f^{(k)}(z)$ which is nearest to the origin, then putting $r_{k}=\left|z_{k}\right|$ we have

$$
\begin{equation*}
\limsup _{k \rightarrow \infty} k r_{k} \geqq R \log 2 . \tag{48}
\end{equation*}
$$

Proof. The proof is very similar to that of Theorem 3. If $f(z)=$ $=\sum_{n=0}^{\infty} a_{n} z^{n}$, we have $\limsup _{n \rightarrow \infty} \sqrt[n]{ } \sqrt{\left|a_{n}\right|} \leqq \frac{1}{R}$ and thus $\frac{R^{n}\left|a_{n}\right|}{(1+\varepsilon)^{n}} \rightarrow 0$ for any $\varepsilon>0$. This implies that putting $\max _{n \geqq N} \frac{R^{n}\left|a_{n}\right|}{(1+\varepsilon)^{n}}=\frac{R^{k_{N}}\left|a_{k_{N}}\right|}{(1+\varepsilon)^{k_{N}}}$ we have for $k=k_{N}$ ($N=1,2, \ldots$)

$$
\begin{equation*}
\left|a_{k+j}\right| \leqq \frac{\left|a_{k}\right|}{\left(\frac{R}{1+\varepsilon}\right)^{j}} \quad(j=1,2, \ldots) . \tag{49}
\end{equation*}
$$

Thus by inequality (15) we have for $|z| \leqq \rho$ and the mentioned values of k

$$
\begin{equation*}
\left|\frac{f^{(k)}(z)}{f^{(k)}(0)}-1\right| \leqq \frac{1}{\left(1-\frac{o(1+\varepsilon)}{R}\right)^{k+1}}-1, \tag{50}
\end{equation*}
$$

therefore $f^{(k)}(z) \neq 0$ for $|z| \leqq \varrho$ if

$$
\left(1-\frac{\varrho(1+\varepsilon)}{R}\right)^{k+1}>\frac{1}{2}
$$

and thus if

$$
\begin{equation*}
\varrho \leqq \frac{R \log 2}{(k+1)(1+2 \varepsilon)} \tag{51}
\end{equation*}
$$

for sufficiently large k.
The assertion of Theorem 4 follows immediately.
It should be mentioned that there exist functions $f(z)$ regular in the unit circle for which $\limsup _{k \rightarrow \infty} k r_{k}<+\infty$, for example if $f(z)=\frac{1}{1-z^{2}}$, we have $\underset{k \rightarrow \infty}{\limsup } k r_{k}=\frac{\pi}{4}$. This example is due to ErWe [8].

It would be interesting to determine the greatest constant by which $\log 2$ can be replaced in (48).

The question may be raised: what can be said about the series

$$
\begin{equation*}
\sum_{k=1}^{\infty} r_{k} . \tag{52}
\end{equation*}
$$

It can be shown that the series (52) is divergent not only for every entire function but also for every function which is regular in some circle $|z|<R$ (except for polynomials) with $R>0$. As a matter of fact, this follows easily from the results of W. Gontcharoff ([6], p. 34).

The following conjecture ${ }^{5}$ of ERWE is a simple consequence of this remark: If $f(z)$ is regular in $|z|<R,\left|z_{1}\right|<R,\left|z_{n+1}\right| \leqq \frac{1}{2}\left|z_{n}\right|$ and $f^{(n)}\left(z_{n}\right)=0$ $(n=1,2, \ldots)$, then $f(z)$ is a polynomial. As a matter of fact, we have $r_{n} \leqq\left|z_{n}\right|$ and thus our suppositions imply $\sum_{n=1}^{\infty} r_{n}<+\infty$. More can be said about the sequence r_{k} if the power series of $f(z)$ has Hadamard gaps. If $f(z)=\sum_{k=0}^{\infty} a_{n} z^{n_{k}}$ where $\frac{n_{k+1}}{n_{k}} \geqq q>1$ and $f(z)$ is an entire function, then

[^2]$\lim \sup r_{k}=+\infty$; if it is supposed only that $f(z)$ is regular in the circle $|z|<R$ and $f(z)=\sum_{k=0}^{\infty} a_{n} z^{n_{k}}$ with $\frac{n_{k+1}}{n_{k}} \geqq q>1$, then $\limsup _{k \rightarrow \infty} r_{k} \geqq \frac{R\left(1-\frac{1}{q}\right)}{2 e}$.

It seems that the following conjecture is true: If $f(z)$ is an entire function, we have

$$
\limsup _{k \rightarrow \infty} \frac{r_{1}+r_{2}+\cdots+r_{k}}{\log k}=+\infty .
$$

(Received 30 May 1956)

References

[1] G. Polya, On the zeros of the derivatives of a function and its analytic character, Bull. Amier. Math. Soc., 49 (1943), pp. 178-191.
[2] М. А. Евграфов, Интерполяционная задача Абеля-Гончарова (Москва, 1954), pp. 1-126.
[3] M. Ålander, Sur le déplacement des zéros des fonctions entières par leur dérivation, Diss. (Uppsala, 1914).
[4] E. C. Titchmarsh, The theory of functions, 2nd ed. (Oxford, 1939), p. 125.
[5] S. S. Macintyre, On the bound for the Whittaker constant, Journ. London Math. Soc., 22 (1947), pp. 305-311.
6]. W. Gontcharoff, Détermination des fonctions entières par interpolation, Act. Sci. et Ind., 46 (1937).
[7] G. Pólya und G. Szeqő, Aufgaben und Lehrsätze aus der Analysis, Bd. 2 (Berlin, 1925). [8] F. Erwe, Eine Interpolationsaufgabe, Archiv der Math., 7 (1956), pp. 55-57.

О ЧИСЛЕ КОРНЕЙ ПОСЛЕДОВАТЕЛЬНЫХ ПРОИЗВОДНЫХ АНАЛИТИЧЕСКИХ ФУНКцИЙ

> П. Э рд ёш и А. Реньи (Будапешт)
(Резюме)

Пусть $f(z)$ регулярна в некоторой области плоскости комплексной переменной, содержащей внутри себя круг $|z| \leqq r(r>0)$, и пусть $N_{k}(f(z), r)$ означает число корней $f^{(k)}(z)$ в круге $|z| \leqq r(k=1,2, \ldots)$. Обозначим через z_{k} наиболее близкий к точке $z=0$ корень от $f^{(k)}(z)$ и пусть $r_{k}=\left|z_{k}\right|$.

Работа изучает асимптотические свойства последовательностей $N_{k}(f(z), r)$ и $r_{k}(k=1,2, \ldots)$. В частности, в работе доказываются следующие теоремы:

Теорема 1. Пусть $f(z)$ регулярна в единичном круге и пусть $0<r<1$. Тогда

$$
\liminf _{k \rightarrow \infty} \frac{N_{k}(f(z), r)}{k} \leqq K(r)
$$

где $K=K(r)$ есть единственный положительный корень трансцендентного уравнения

$$
r=\frac{K}{(1+K)^{1+\frac{1}{K}}}
$$

Теорема 2. Пусть $g(r)$ есть любая непрерывная и монотонно возрастающая в интервале $(0<r<\infty)$ функция и пусть $\lim g(r)=+\infty$. Обозначим через $x=h(y)$ функцию, обратную функции $y=f(x)$. Пусть $f(z)$ есть целая функция, $M(r)=\underset{|z|=r}{\operatorname{Max}}|f(z)|$ и предположим, что

$$
\liminf _{r \rightarrow \infty} \frac{\log M(r)}{g(r)}<1
$$

Тогда

$$
\liminf _{k \rightarrow \infty} \frac{N_{k}(f(z), 1) h(k)}{k} \leqq e^{2} .
$$

Т ео рема 3. Пусть $f(z)$ есть целая функция, $M(r)=\underset{|z|=r}{\operatorname{Max}}|f(z)|, x=H(y)$ обозначает функцию, обратную функции $y=\log M(x)$. Тогда

$$
\liminf _{k \rightarrow \infty} \frac{H(k)}{k r_{k}} \leqq \frac{e}{\log 2}
$$

Теорема 4. Если $f(z)$ регулярна в единичном круге и не многочлен, то $\limsup _{k \rightarrow \infty} k r_{l} \geqq \log 2$.
Перечисленнье теоремы являются обобщениями результатов Пой а [1], Евграфова [2] и Аландера [3]. Работа содержит также доказательство одной гипотезы Э р ве [8].

[^0]: ${ }_{1}$ The authors are indebted to R. P. Boas, Jr. who kindly called their attention to this result.

[^1]: ${ }^{3}$ Except the numerical estimation of the left hand side of (38).

[^2]: ${ }^{5}$ Erwe proved that if $f(z)$ is regular in a circle around $z=0$ containing the points z_{n} for which $\left|z_{n+1}\right| \leqq \frac{1}{2}\left|z_{n}\right|^{2}$, further $f^{(n)}\left(z_{n}\right)=0(n=1,2, \ldots)$, then $f(z)$ is a polynomial.

