Partitions into primes.

Dedicated to the memory of Tibor Szele.

By P. T. BATEMAN in Urbana, Illinois and P. ERDÖS in Notre Dame, Indiana.

1. Introduction. Let P(n) denote the number of partitions of the integer *n* into primes (1 is not counted as prime), repetitions being allowed. That is, P(n) is the number of ways *n* can be expressed in the form $n_1p_1+n_2p_2+\ldots$, where p_j denotes the *j*th prime number and n_1, n_2, \ldots are arbitrary non-negative integers. The purpose of this note is to prove that

(1)
$$P(n+1) \ge P(n)$$
 $(n=1,2,3,...).$

In another paper¹) we have proved that, if A is any non-empty set of positive integers and $F_A(n)$ denotes the number of partitions of the integer n into parts taken from the set A, repetitions being allowed, then $F_A(n)$ is a non-decreasing function of n for large²) positive n if and only if either (I) A contains the element 1 or (II) A contains more than one element and, if we remove any single element from A, the remaining elements have greatest common divisor 1. This result shows that (1) is true if n is sufficiently large, and other results in the same paper show that in fact $\lim_{n \to \infty} \{P(n+1) - P(n)\} =$

 $= +\infty$. However, the methods employed there do not provide a good estimate of the point at which the monotonicity of P(n) begins. In the present paper we prove (1) by using an argument particularly adapted to the case where A is the set of prime numbers.

Let $P_k(n)$ denote the number of partitions of the integer *n* into parts taken from the first *k* primes, repetitions being allowed. Thus we have the formal power-series relation

(2)
$$\sum_{n=0}^{\infty} P_k(n) X^n = \prod_{j=1}^k (1 - X^{p_j})^{-1}.$$

Since $P(n) = P_k(n)$ for $n < p_{k+1}$, the assertion (1) will be proved if we can establish the following by induction on k.

¹⁾ Monotonicity of partition functions, to be published in Mathematika.

²) In case (1) obviously $F_A(n+1) \ge F_A(n)$ for all n.

P. T. Bateman and P. Erdős: Partitions into primes.

If k is a positive integer greater than 2, then

(A_k) $P_k(n+1) \ge P_k(n)$ for any positive integer n, and

(B_k) $P_k(p+1) > P_k(p)$ for any prime number k greater than p_k .

2. The case k=3. In view of (2) we have the formal power-series relation

$$1 + \sum_{n=0}^{\infty} \{P_3(n+1) - P_3(n)\} X^{n+1} = \frac{1 - X}{(1 - X^2)(1 - X^3)(1 - X^5)} = \frac{1}{30(1 - X)^2} + \frac{a}{1 - X} + \sum_{\mu=1}^{2} \frac{b_{\mu}}{1 - e^{2\pi i \mu/3} X} + \sum_{\nu=1}^{4} \frac{c_{\nu}}{1 - e^{2\pi i \nu/5} X},$$

where $a, b_1, b_2, c_1, c_2, c_3, c_4$ are certain complex numbers which could be calculated but whose values we shall not require. Hence if n is a positive integer

$$P_{3}(n+1)-P_{3}(n)=\frac{n+2}{30}+a+\sum_{\mu=1}^{2}b_{\mu}e^{2\pi i\mu(n+1)/3}+\sum_{\nu=1}^{4}c_{\nu}e^{2\pi i\nu(n+1)/5},$$

and so

(3)
$$P_{s}(n+1)-P_{s}(n) = \left[\frac{n-1}{30}\right] + \psi(n),$$

where [x] denotes the greatest integer not exceeding the real number x and ψ is a function on the positive integers which has period 30. The values of $\psi(n)$ can be most easily found by taking n = 1, 2, ..., 30 in (3). We find that

$$\psi(n) = \begin{cases} 0 & \text{if } n \equiv 0, 2, 3, 5, 6, 8, 10, 12, 15, 18, 20 \pmod{30}, \\ 2 & \text{if } n \equiv 19, 29 \pmod{30}, \\ 1 & \text{otherwise.} \end{cases}$$

Thus $\psi(n) \ge 0$ for all *n* and $\psi(n) \ge 1$ if (n, 30) = 1. Hence assertions (A₃) and (B₃) are valid.

3. Inductive step. Suppose k is a positive integer greater than 3 and assume that assertions (A_{k-1}) and (B_{k-1}) are valid. Then we shall show that (A_k) and (B_k) are valid.

We begin by remarking that if n is any integer

(4)
$$P_{k}(n) = P_{k-1}(n) + P_{k}(n-p_{k}) =$$
$$= P_{k-1}(n) + \begin{cases} 0 & \text{if } n < p_{k} \text{ or } n = p_{k} + 1, \\ 1 & \text{if } n = p_{k}, \\ P_{k}(n-p_{k}) & \text{if } n \ge p_{k} + 2. \end{cases}$$

This is equivalent to the formal power-series identity

$$(1-X^{p_k})\sum_{n=0}^{\infty}P_k(n)X^n = \sum_{n=0}^{\infty}P_{k-1}(n)X^n,$$

which is an immediate consequence of (2). Alternatively (4) can be established by noticing that the first term on the right is equal to the number of partitions of *n* into parts taken from the first *k* primes in which p_k does not actually occur as a part, while the second term is equal to the number of partitions of *n* into parts taken from the first *k* primes in which p_k does actually occur as a part.

Now if $1 \le n < p_k$, then $P_k(n+1) \ge P_{k-1}(n+1) \ge P_{k-1}(n) = P_k(n)$ by (A_{k-1}) and (4). If $n = p_k$, then $P_k(n+1) = P_k(p_k+1) = P_{k-1}(p_k+1) \ge$ $\ge P_{k-1}(p_k) + 1 = P_k(p_k) = P_k(n)$ by (B_{k-1}) and (4). If $n > p_k$ and if we have proved that $P_k(m+1) \ge P_k(m)$ for m = 1, 2, ..., n-1, then

$$P_k(n+1) = P_{k-1}(n+1) + P_k(n+1-p_k) \ge P_{k-1}(n) + P_k(n-p_k) = P_k(n)$$

by (A_{k-1}) and (4). Hence $P_k(n+1) \ge P_k(n)$ for all positive integers n and so assertion (A_k) is proved.

Now suppose p is a prime number greater than p_k . Then

 $P_{k-1}(p+1) > P_{k-1}(p)$ by (B_{k-1}) and $P_k(p+1-p_k) \ge P_k(p-p_k)$ by (A_k) . Hence by (4)

 $P_k(p+1) = P_{k-1}(p+1) + P_k(p+1-p_k) > P_{k-1}(p) + P_k(p-p_k) = P_k(p).$ Thus (B_k) is established and our proof is complete.

(Received September 5, 1955.)