Partitions into primes.

Dedicated to the memory of Tibor Szele.
By P. T. Bateman in Urbana, Illinois and P. Erdős in Notre Dame, Indiana.

1. Introduction. Let $P(n)$ denote the number of partitions of the integer n into primes (1 is not counted as prime), repetitions being allowed. That is, $P(n)$ is the number of ways n can be expressed in the form $n_{1} p_{1}+n_{2} p_{2}+\ldots$, where p_{j} denotes the j th prime number and n_{1}, n_{2}, \ldots are arbitrary non-negative integers. The purpose of this note is to prove that

$$
\begin{equation*}
P(n+1) \geqq P(n) \quad(n=1,2,3, \ldots) . \tag{1}
\end{equation*}
$$

In another paper ${ }^{1}$) we have proved that, if A is any non-empty set of positive integers and $F_{A}(n)$ denotes the number of partitions of the integer n into parts taken from the set A, repetitions being allowed, then $F_{A}(n)$ is a non-decreasing function of n for large 2) positive n if and only if either (I) A contains the element 1 or (II) A contains more than one element and, if we remove any single element from A, the remaining elements have greatest common divisor 1 . This result shows that (1) is true if n is sufficiently large, and other results in the same paper show that in fact $\lim _{n \rightarrow \infty}\{P(n+1)-P(n)\}=$ $=+\infty$. However, the methods employed there do not provide a good estimate of the point at which the monotonicity of $P(n)$ begins. In the present paper we prove (1) by using an argument particularly adapted to the case where A is the set of prime numbers.

Let $P_{k}(n)$ denote the number of partitions of the integer n into parts taken from the first k primes, repetitions being allowed. Thus we have the formal power-series relation

$$
\begin{equation*}
\sum_{n=0}^{\infty} P_{k}(n) X^{n}=\prod_{j=1}^{k}\left(1-X^{p_{j}}\right)^{-1} . \tag{2}
\end{equation*}
$$

Since $P(n)=P_{k}(n)$ for $n<p_{k+1}$, the assertion (1) will be proved if we can establish the following by induction on k.

[^0]${ }^{2}$) In case (I) obviously $F_{A}(n+1) \geqq F_{A}(n)$ for all n.

If k is a positive integer greater than 2, then
($\left.\mathrm{A}_{\mathrm{k}}\right) P_{k}(n+1) \geqq P_{k}(n)$ for any positive integer n, and
(B_{k}) $P_{k}(p+1)>P_{k}(p)$ for any prime number k greater than p_{k}.
2. The case $k=3$. In view of (2) we have the formal power-series relation

$$
\begin{aligned}
1 & +\sum_{n=0}^{\infty}\left\{P_{3}(n+1)-P_{3}(n)\right\} X^{n+1}=\frac{1-X}{\left(1-X^{2}\right)\left(1-X^{3}\right)\left(1-X^{5}\right)}= \\
& =\frac{1}{30(1-X)^{2}}+\frac{a}{1-X}+\sum_{\mu=1}^{2} \frac{b_{\mu}}{1-e^{2 \pi i \mu / 8} X}+\sum_{\nu=1}^{4} \frac{c_{v}}{1-e^{2 \pi i v / 5} X},
\end{aligned}
$$

where $a, b_{1}, b_{2}, c_{1}, c_{2}, c_{3}, c_{4}$ are certain complex numbers which could be calculated but whose values we shall not require. Hence if n is a positive integer

$$
P_{3}(n+1)-P_{3}(n)=\frac{n+2}{30}+a+\sum_{\mu=1}^{2} b_{\mu} e^{2 \pi i \mu(n+1) / 3}+\sum_{\nu=1}^{4} c_{\nu} e^{2 \pi i v(n+1) / 5},
$$

and so

$$
\begin{equation*}
P_{3}(n+1)-P_{3}(n)=\left[\frac{n-1}{30}\right]+\psi(n) \tag{3}
\end{equation*}
$$

where $[x]$ denotes the greatest integer not exceeding the real number x and ψ is a function on the positive integers which has period 30 . The values of $\psi(n)$ can be most easily found by taking $n=1,2, \ldots, 30$ in (3). We find that

$$
\psi(n)= \begin{cases}0 & \text { if } n \equiv 0,2,3,5,6,8,10,12,15,18,20(\bmod 30) \\ 2 & \text { if } n \equiv 19,29(\bmod 30) \\ 1 & \text { otherwise }\end{cases}
$$

Thus $\psi(n) \geqq 0$ for all n and $\psi(n) \geqq 1$ if $(n, 30)=1$. Hence assertions $\left(\mathrm{A}_{3}\right)$ and $\left(B_{3}\right)$ are valid.
3. Inductive step. Suppose k is a positive integer greater than 3 and assume that assertions $\left(A_{k-1}\right)$ and (B_{k-1}) are valid. Then we shall show that (A_{k}) and (B_{k}) are valid.

We begin by remarking that if n is any integer

$$
\begin{align*}
& P_{k}(n)=P_{k-1}(n)+P_{k}\left(n-p_{k}\right)= \tag{4}\\
& =P_{k-1}(n)+ \begin{cases}0 & \text { if } n<p_{k} \quad \text { or } n=p_{k}+1, \\
1 & \text { if } n=p_{k}, \\
P_{k}\left(n-p_{k}\right) & \text { if } n \geqq p_{k}+2 .\end{cases}
\end{align*}
$$

This is equivalent to the formal power-series identity

$$
\left(1-X^{p_{k}}\right) \sum_{n=0}^{\infty} P_{k}(n) X^{n}=\sum_{n=0}^{\infty} P_{k-1}(n) X^{n},
$$

which is an immediate consequence of (2). Alternatively (4) can be established by noticing that the first term on the right is equal to the number of parti-
tions of n into parts taken from the first k primes in which p_{k} does not actually occur as a part, while the second term is equal to the number of partitions of n into parts taken from the first k primes in which p_{k} does actually occur as a part.

Now if $1 \leqq n<p_{k}$, then $\quad P_{k}(n+1) \geqq P_{k-1}(n+1) \geqq P_{k-1}(n)=P_{k}(n)$ by $\left(\mathrm{A}_{\mathrm{k}-1}\right)$ and (4). If $n=p_{k}$, then $P_{k}(n+1)=P_{k}\left(p_{k}+1\right)=P_{k-1}\left(p_{k}+1\right) \geqq$ $\geqq P_{k-1}\left(p_{k}\right)+1=P_{k}\left(p_{k}\right)=P_{k}(n)$ by $\left(\mathrm{B}_{\mathrm{k}-1}\right)$ and (4). If $n>p_{k}$ and if we have proved that $P_{k}(m+1) \geqq P_{k}(m)$ for $m=1,2, \ldots, n-1$, then

$$
P_{k}(n+1)=P_{k-1}(n+1)+P_{k}\left(n+1-p_{k}\right) \geqq P_{k-1}(n)+P_{k}\left(n-p_{k}\right)=P_{k}(n)
$$

by $\left(\mathrm{A}_{\mathrm{k}-1}\right)$ and (4). Hence $P_{k}(n+1) \geqq P_{k}(n)$ for all positive integers n and so assertion $\left(A_{k}\right)$ is proved.

Now suppose p is a prime number greater than p_{k}. Then

$$
P_{k-1}(p+1)>P_{k-1}(p) \quad \text { by } \quad\left(\mathrm{B}_{\mathrm{k}-1}\right) \quad \text { and } \quad P_{k}\left(p+1-p_{k}\right) \geqq P_{k}\left(p-p_{k}\right)
$$

by $\left(A_{k}\right)$. Hence by (4)

$$
P_{k}(p+1)=P_{k-1}(p+1)+P_{k}\left(p+1-p_{k}\right)>P_{k-1}(p)+P_{k}\left(p-p_{k}\right)=P_{k}(p) .
$$

Thus $\left(B_{k}\right)$ is established and our proof is complete.

[^0]: ${ }^{1}$) Monotonicity of partition functions, to be published in Mathematika.

