
Problems and results in additive number theory

par M. P . ERDÖS (Haifa)

In this lecture I will discuss several problems in additive
number theory. They will not have much in common, except
that the , are all combinatorial in nature and that probability
theory can be applied with advantage to most of them .

1 . Let a, <a,< . . . be an infinite sequence of integers,
denote by f (n) the. number of solutions of n= a ; -- a ; where
ai, ± a ; counts twice if i 7 j and once if i.= j . Turán and I (')
proved that f (n) can not he constant from a certain point on .
Our proof though short and simple used lots of function
theory (Fahry's gap theorem) . Rut G . Dirae ( z ) observed
that the theorem is trivial, since if n =2 a,, f (n) is odd (be-
cause of n=a,1 I a,;), but if a is not of this form then f( n)
is even . Dirac ( 2 ) observed that the definition of f(n) can be
modified in two ways . Define P (n .) as The number of solu-
tions of n - a, -L a ; where all solulions count once and in
f" (n) only the solulions with i 7~j are permitted . He and
Newman (`) both proved that f(n) can not be constant from
a certain point on, for if f'(1 } 1)- f'(l 2) we would
evidenly have

[(zk)2 +~,
. Z2.,]

_;5-
n -=0

(,n) zn

r+~
=P,(z)+a	

1-z [f (l 1 ) = a]

where P,(z) is a polynomial of degree `G 1 . If z-* 1 on
the real axis, the right side remains bounded, but the left side
approaches infinity, since both terms on the left side are
positive and the second lends to infinity . Thus (1) can not
hold, which proves the theorem .

(') Journal London Wash . Soc ., 16 (1941), 212-215 .
( 2 ) Ibid . . 26 (1951), 312-313 .

(1)
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Dirac ( 2 ) also conjectured that f" (n) can not be constant
from a certain point on . This and considerably more was
proved by Fuchs and myself ( 3 ) . Turin and I (') conjectured
that if f(n)>0 for all sufficiently large n then lim sup f (n)
_ This conjecture has not yet been proved and seems
very difficult . A still stronger conjecture would be that if
a, < ck 2 for all k, then lim sup f (n)=c,,,_ . The best result we
can prove (') is that in this case lim sup f (n.) > 2 . Turin and
I (') further conjectured that

n

Y f (k)=cn±o(1)
k=1

is impossible . Fuchs and I (') proved this conjecture . In
fact we showed that for c > 0

n

Y f(k)=en+o(
k=1

is impossible . The same holds for
R

	

n

Y~ f(k) and
k=1

i
114

1 )log n ) 2

Y,
f"(k)

.k=1

(2)

If a,; = k2 one comes to the problem of lattice points in
the circle of radius n,k . Here Hardy and Landau ( 5 ) proved
that

n

Y, f (k) _ - (n) + o [ ( n-log n) 4 ]

	

(3)
k=1

does not hold . (3) is stronger than (2) by a factor (logn)-,
but we proved out. theorem for general sequences and not
only for squares . Further our proof is very much simpler
than that of Hardy and Landau, in fact we only use the Par-
seval equality .

One could have tried to prove the conjecture : a k < c • k'
for all kk implies lim sup f (n)=x by proving that if for all k,
a, < ck2 then

n

lim sup1Y f (k) 2 = oo

	

(4)n
k=1

( 3 ) Our paper will appear in the Journal of the London Math. Soc .
(') Ibid . ( 1 ) . The details of the proof are given by A . STÖHR, Jour-

nal reine and angew . Math ., 194 (1955), 132-133 .
(5 ) LANDAU, Zahlentheorie, Vol . 2, 233-239 .
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Unfortunately (4) is false . In fact in a certain sense it is
false for almost all sequences . Consider the space of all
sequences of integers . We introduce a measure into this
space as follows : Consider an infinite number of copies of the
points 0 and 1 . In the n-th copy 1, the measure of I is an-1
and of 0 is 1-an-= . This defines in a well-known and obvious

way a measure in the product space II In (if for all ii the
n = 1

measure of both 0 and 1 is -, we obtain the Lebesgue measure

on the interval (0, 1)) . Thus we defined a measure in the
space of sequences of 0-s and 1-s . Now we map a sequence of
0-s and 1-s into a sequence of integers by putting n into our
sequence if and only if the sequence of 0-s and 1-s cointains 1
at the n-th place . Thus we introduced a measure in the space
of all sequences of integers . Speaking slightly imprecisely we
can say that the probability of n occurring in our sequence
equals an -1 , or more precisely : The measure of the set of
sequences where n occurs equals ant. It is quite easy to
show that for almost all sequences a, < a,< . . . (i .e . except
for a set of sequences of measure 0)

2

a,,=x1+0(1)]4xz .

With somewhat more trouble I can prove that with prob-
ability 1 for every r

rx
J f(«?Jr0(X),

Thus (4) is false for almost all sequences . Similarly it can
be shown that the density d i =d,(a) of integers with f'(n)=l

(or f(n)=21) exists and

	

d, (a)-* 1 as -*

	

(for
1>1 0

every la ) .

2. More than 20 rears ago Sidon asked the question if
there exists a sequence al < a., < . . . of integers for which

f(n)>0 for all sufficiently large n., but lim fne) = 0 for all
s>0. Using combinatorial and probabilistic arguments I (°)
proved the existence of such a sequence, in fact I proved that
there exists a sequence satisfying for n > n,,

O< f(n)<clog n .

	

(5)
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I did not succeed in constructing such a sequence but. proved
that in a certain sense almost all sequences satisfy (5 . ,A few
clays ago i noticed that this fact can be made more precise
and that my original proof can be simplified and made more
intuitive . Consider the space of all sequences of integers
where the probability of n occurring in our sequence equals

tog n . a
e 1	 where c,

	

It is easy to see that for almost

all sequences

a,

	

[1-I70(1 1)] 4,-2 logh .
Now we prove that for almost all sequences f( 1w1=0 holds
only for a finite number of n-s (i .e . for almost all sequences
f(,,)>0 for n > no ) . Denote by E„ the event that f(n)=O and
by P (E,,) we denote its probability . E„"' denotes the event that
k and n-k do not both occur in our sequence . Clearly E,,

can occur only if all the E, r`° occur 1 `G k < . The events

E„' h', 1= k < - ~- are clearly independent . Thus

P (Err)

	

P (E,

	

"2[logk .log(n-k)]i
1~~,) = II

	

1

	

-

	

1
[ (n - k) .2

1s_k< rt

= exp I-
I<k<_ a

[1+ o(1)]C1 2 logn V	1	~]
u [k (n- k) ]2

1<k<

r

	

ti)

	

1
= exp \- [1 + o (1) j c, 2 log n 9

or P (E n) < cc . Thus by the Borel-Cantelli lemma the-

probability that /(n)=0 holds infinitely often is 0, which
proves our assertion . It can be proved though with some-

what more trouble that if c,<	 )` . then for almost all

sequences f (n-)=0 holds infinilely often . By somewhat longer
2 1

computation we can prove that if c r

	

y~2 then there exists -

a c2 = c2 (c) > 0 so that for almost all sequences f (n) > c 2 Iog n
holds for all but finitely many n .

(s) Acta Sci . Math. Szeged, 15 (1954), 255-259 .
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Next. we outline the proof that for every c, > 0 there exists
u c 3=c3 (c,) so that with probability 1 for all but finitely
many n we have f (n.) < c3 log n . To show this denote by
E the event that f (n.)> c 3 log n, and as before is the
event that both k and n-k do not simultaneously occur in
our sequence . Clearly F,, holds only if E„' x' fails to hold

for at least i3 log n values of k . Now by standard but some-

what lengthy arguments of probability, theory it follows that
for sufficiently large c3 = c3 (c,)

P (E.,) < 7zl

Thus by the Borel-Ganlelli lemma it. follows that with prob-
ability 1 f (n)> c3 log n holds only for finitely many n . This
completes the proof of (15) . In fact we proved that a somewhat
stronger result, namely that for almost all sequences and
sufficiently large nn

c,logn<f(n)<c3logn .

	

(6)

Using standard methods of probability theory it is not
difficult to prove that for almost . all sequences

f(n)=[I+0(1)]N logn

	

(7)

holds for all n, neglecting a sequence of n-s having density 0 .
On the other hand the probability that (7) holds for all but
a finite number of nn is 0 . In fact. I do not know whether
there exists a sequence satisfying (7) for all n, i .e. if there

exists a sequence with	
(11)

tending to a limit F-4 0 .
logn

Let on the other hand g (k) be an increasing function

satisfying	g (1
;-)

-->- 1 as k->- cc . Consider the space of all
9 (h)

sequences where the probability of n occurring in our se-

quence equals	g(n)
(lo .- n) l

	

1Then for almost all sequences
n=

f(n)=(1-j-o(1)]	g(n)`.logn .,

holds for all but finitely many n . The proof follows by stan-
dard arguments of probability theory and will be omitted .

Consider again the space of all sequences of integers .
Assume that the probability of n occurring in our sequence
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equals c

	

k where c is a sufficiently large constant .
n

	

l

Denote by f,, (n the number of solutions of

11	 (!,	 (1

Then for almost all sequences

clogs<f„c_nJ<c,log n, c,-c,(c), c,-c_,(c)

	

(8)
holds for all but finilely many n . The proof of (8) is similar
but more complicated than that of (6) and will be omitted .

At present I can not, decide the question whether a se-
quence (f,<(1,_< . . . exists with f,,(n)> 0 for all n > n, and
f, (1) ''log 1r ; 0 as o 1 . In fact I can decide this for no
k > 2 .

3 . Sidon called a sequence a, < a,, < . . . a B,, sequence
if the. stuns a,

	

(r, are all different . Turin and I ( 4 ) proved that
ak

for ever, B, sequence lira sup -k.; _cc, but that there exists

ClkB, sequences with lim inf	 <c' . It is not difficult to

construct a B, sequence for which a,< ck 3 holds for all k, and
it seems likely that for every F there exists a B, sequence for
which a,, < ck° holds for every I ; . Unfortunately probability
theory does not seem to help with this problem . The best
result I can obtain is that there exists a sequence satisfying
a,< k +° for » hick f (n.) is bounded .

4 . Let a l < a, < . . . he any infinite sequence of integers .
Straus and I conjectured that there always exists a sequence
6,<b,< . . . of density 0, so that every sufficiently large
integer is of the form a, -E- b; . Lorentz (°) proved this con-
jecture . In fact he showed that there exists such a sequence
which satisfies for every x

X

B (x) < c Y
tor;A (k)	(9 )N (k)

k=1

where A(x) and B(.r') denotes the number of a-s, respectively
b-s not exceeding x . Lorentz remarked that if the a-s are the
primes then B(x) can be chosen to be <c(logx)' . He asked
me if this can be improved . I (, 3 ) showed by using com-

(') Proc . Amer. Math. Soc ., 5 (1954) . 838-841 .
($) Ibid ., 5 (1954), 847-853 .
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binatorial and probabilistic arguments that the sequence
b, < b, < . . . can be chosen so [hat B (x) < c (log x) 2 . Without
changing the idea of the original proof we can make the
connections with probability theory clearer. Let c be a suf-
ficiently large constant, and consider the space of all sequences
of integers where the probability of n. occurring in our

sequence equals c lob
n

	

A simple probabilistic argument
12

shows that
B(x)-[1±0J)] 2c, (log x)2

for almost all sequences . Denote by E„ the event that n is
not of the form p+ b . Then it can' be proved by methods
similar to those used in my paper ( 8 ) that

P (E,,) ~

	

1 --

	

; 711)
Thus from (10) and the Borel-Cantelli lemma it follows that
for almost all sequences every sufficiently large integer is of
the form p-y-b. which completes the proof of our assertion .

At present I can not decide if there exists a sequence
b, < b2 < . . . satisfying B (r) ;'' (log .r -->_ 0 and such that every
sufficiently large integer is of the form P -b . It is of course
obvious from the prime number theorem that such c, sequence
must satisfy

log
lim inf B (x;i log z > 1 .

X

But perhaps even the proof of

lim sup 13 (x)

is not entirely trivial, at. least I have not been able to prove it .
Several analogou -s problems can be stated . - I only want

to mention two of them . Let b, < b, < . . . be an infinite
sequence of integers, so that every integer is of the form
b+/,:' . Denote by B (x) the number b-s not exceeding x . It
is easy to see that .

B (x)
lim sup	I

> 1
X2

B (x)
A simple example shows that lim sup	 can be finite . To

x
see this consider the integers

2- <b<2''+4,2'`, 1,=1, 2, . . . .
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It is easy to see that in this case every integer is of the form

b + k 3 and that lim sup B(X
I

) is finite . I can not determine
xtF

the smallest possible value of lim sup
B (x)

	

Clearly
xa

P) (x) > x' holds, but I can not prove that lira inf B (x ) > 1 .
X2

Another question would be to estimate the smallest possible
value of t for which there exists a sequence

< b,''< . . .<b t «'
so that every integer n

	

x is of the form b, ( ''' -F k 2 . Clearly
t > xY .

Let b, < b ., < . . . be an infinite sequence of integers with
the property that every integer is of the form 2 -*-', b . Clearly

x log 2
B(x) > lo

	

but here I can not even prove that there exists
g r•

a sequence with

lim inf B (x) -
log x

	

CO
X

5. Let a, < a., < . . . be any sequence of integers . We
define the asymptotic density d ° of the sequence as lim inf
A (x)

, and its Schnirelmann density d, as the greatest lower

bound of	(X) . Thus the asymptotic density of the integers
x

a

> 2 is 1 and its Schnirelmann density is 0 . The sum A ; B
of the two sequences a, < a, < . . . and b, < b, < . . . is defined
s the sequence consisting of the integers fa i l, {b;}, f a,+ b1 } .
The well-known a+G theorem of Mann ( s ) states that if A
and B have Schnirelmann densities a respectively ~, then

d,(A+B)>min(1, a+3) .

	

(11)

-1 sequence A is called by Khinlehin an essential com-
ponent if for every sequence B with (1,A>0, d, (A + B)

d, (B) . By (11) every sequence of positive density is an
essential component . (This can of course be proved without
using (11) .) Khintehin ('°) proved that the squares are an
essential component, thus giving an example of a sequence of
density, 0 which is an essential component . . The sequence B

Annals of Math . . . 43 (1942) . x`23-527 .
( °) Math. Sbornik, 40 (1933) .
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is called a basis of order k, if every integer is the sum of k or
fewer b-s . Let d3 (A)=x then I ( 17 ) proved that

a
d 3 (A+B)+ a	(l - x)2k 	(12)

Thus every base is an essential component . Several authors
improved (12) in various watts ( 12 ) . I conjectured that

allx)
d s(A+B)+ a+- (13)k

The proof of (12) is based on the following lemma : If A is a
sequence of density a, then for every n there exists an integer
k„ so that the number of distinct integers N„ (A, A±k„) not
exceeding n of the sequences k, A+k„ satisfies

all-x)1\'v(-A,, A+k.n ) + a+

	

n . l14)2
(13) would follow if instead of (14) one could prove

N n(A, A+kn)>[a+a(1-a)]n .

	

(15)

It is not difficult to show that (15) if true is certainly best
possible i .e . N„(A, A+k„)>[a.+x(1-a)±1]n is false for
all a and n > a 0 (x, s) . In fact it follows by a simple prob-
ability argument. that (15) is best possible for almost all
sequences of density x .

A somewhat similar question is the following one : Let
a, , a ;,, , . . ., a_„ be 2 n integers in the. interval (1, 4 n) and let
b, , b ., , . . . ; b O „ be the other 2 n integers of the same interval .
Does there exist, an integer x so that . the number of solutions
of a, +x- b; is at least n P If the a-s are the integers
n+1. n+2, . . . . 3n we see immediately that. the value n, if
true is certainly best possible . It is quite easy to see that there
exists an x so that the number of solutions of a,-[-x 	b, is at
least

	

. To see this we observe that the number of solutions
of a, a ,y=b; is 4n 2 and that there are 8n possible choices
of y (i .e . -4n `G y `G 4 n, y z O) . Thus for some y a there

n
are at. least 9 b-s in a, +yo , as stated . Scherk improved

it
to n (2-i.2)

	

but up to now the conjecture on n is

neither proved nor disproved ( 13 )

(11) Acta arithm ., 1 (1936), 197-200 .
(12) For the litterature see the paper of STÖHR, ibid . (4 ), further a

recent paper by KASCH . Math. Zeitschrift, 62 (1955), 368-387 .
( 73 ) This question is stated by P . hangs, Riveon Lematematika, 9

(1955), 48 .
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Linnik ('") was the first to give an example of an essential
component which is not a basis ; Linnik's proof ot this fact
eras rather complicated . Recently Stöhr and Wirzing (15 )
gave a very simple proof of this result, in fact their sequence
B has the property that. i t is not a basis but that if d, (A) > 0
then d, ( (A -+- B)=1. Linnik's example has the property that
N„ (B) < ne for every s > 0 of n > no (z) . This led me to the
following conjecture : Let n, < n z < . . . be an infinite sequence

of integers satisfying '~ -- >e>11 then our sequence can

not be an essential component . I was so far unable to prove
this conjecture . Denote by p(k) the smallest value of r
for which k = a;,n ;,	 I n,,'

	

. . . j- n;,. . It seems likely that to
every a, s and x>x0 (x, s) there exists an r=r(a. . F, x) so that
the set of integers k < x for which p (k) G̀ r have Schnirel-
mann density between u.-F, and x, and the Schnirelmann
density of the integers k `G x for which p (k) `G r!7 1 is be-
tween u and a e . This if true would prove our conjecture .
(The Schnirelmann density of a finite sequence a ; < a, < . . .
< a,, < .r is defined as

min -
1<k<x

	

k
It, would also be of interest to decide whether there exists

a sequence b, < b 2 < . . . which is not a basis and which has
the following property : If a,< a,< . . . is a sequence of density
a., then to every n there exists a b; = b, (n ;) so that

N„ (A, ,-k+b;)>n[a I- f(a)]

where f (a) > 0 for 0 < a < 1 .

6 . Some time ago Moser and I raised the following prob-
lem : What is the maximum number of integers a,< a, < . .
<a,,<_ x so that all the 2'-1 sums
a;,+a;,H- . . .+a; ,

	

1 <r <k, the a-s all distinct,

	

(16)

are all different . In particular is it possible to give k+2
such a-s not exceeding 2h . (1, 2, . . ., 2' shows that it is possible
to give k+1 such integers .) Denote by g (x) the maximum
value of k, thus g (2x) > k+ 1 . All the sums (16) are less
than kx . Thus

2°«l `G x - g (x)
or

g(x)<
logx

+[1+0(1)~
log log x	17 )log 2

	

log 2
(' Mat . Sbornik, N . S . 10 (1942), 67-68 .
(15 ) Will appear in the Journal reine and angew. Math .
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Denote by s o . s, , .- s >_, all the sums (16) (s o is the

empty sum and is U) . Moser and I observed that by putting
g (x)

a,= A, w e obtain
i=1

29 ' '-1 /

	

g(x)

I s,

	

a, < 2g'r' -2 x g (x )
111

	

;

Thus the number of i-s for which

is greater than 2' `
ferent we have

or

is true or not .

xg (x) z

Thus since all the sums (16) are dif-

21 °~" < `'~xg(x)` ,

to- x

	

to° lo- x	 zrlg (x) < -lo, 2	 + [1 = o (1) ,'	
2log'-) (l8)

which improves i"' .17) . At present 1,-c can not decide whether

lo- x
g(x)

	

to,,	 +0(l,)
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