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Introduction

Let zl , Z2,

	

zn denote unimodular complex numbers

I zjI = 1,

	

j = 1, 2,

	

n.

We put z ; = ezi (0 < (p j < 2r) and

(1)

A PROBABILISTIC APPROACH TO PROBLEMS OF
DIOPHANTINE APPROXIMATION

~n k
Sk = ,L~7= 1 z 7

By a well known theorem of Dirichlet, for any integer co
positive integer k with I <= k <= co' and integers b 1 , b2 , • • • , bn such that

(2)

It follows for co >_ 5 that among the power sums Sk (I _< k < w'), there is at
least one for which

This can be stated also as follows : For any choice of the unimodular numbers
z; (j = 1, 2, • • • , n), we have

(3)

	

max 1 Sk 1 >_ cn
1<k< [A(c)]-

for any c such that 0 < c < 1, where A(e) = [21r/arccos cl + 1 . (Here and
in what follows [x] denotes the integral part of x.)

It is well known that Dirichlet's theorem can not be improved . For in-
stance, if ~o; = 27r/w' (j = 1, 2, • • • , n), where w > 2 is an integer, then among
the integers 1 =< k < co ' - 1 there is none for which all the inequalities

where b 1 , b 2 , • • • , b .. are integers, would be satisfied .
A simple example of G . Hajós (see [1], p. 16) shows that Dirichlet's theorem

can not be much improved, even when we admit nonintegral values for k.

The example of Hajós is as follows: if we choose
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then among the real numbers 15 t < 6 . 5'-1 - I there is none for which the
relations

would all hold, where b, , b 2 , • • • , b. are integers . Similar examples could
be constructed for other values of co .

In the present paper we approach the same problems by an entirely dif-
ferent-probabilistic-method . Let C ( " ) = C (1) * C(1) * . . . * C (1) denote the
direct product of n unit circles, and define a probability measure P oil C ( ')
as the direct product of the uniform measures on each of the factors C (1) .
In other words, we consider the set z, , Z2, • • • , z . of complex random varia-
bles, where z; = e"i, and the co j are independent real random variables uni-
formly distributed in the interval (0, 2a) .

We shall show in §1, by using standard methods of the calculus of prob-
ability, that for every n > 1 and 0 < c < I the set of those n-tuples of uni-
modular complex numbers z, , z2 , • • • , z. (i .e . those points of C ( " ) ) for which

(4) Max

	

I Sk I < cn,
I<k<-,,exp(n,2/2)

1<6

	

(~=1,2, . . .,n)

has positive measure [Theorem 2] . This proves the existence of an infinity
of essentially different sets z, , z2 , z. with z ; = e ~' (0 < cp ; < 27r) for
which the inequalities

~oj	arccos c
(5)

	

Ic~oj

27r _
b ; <	

27r
(j = 1, 2, . . . , n)

can not hold for an integer k in the interval I _< k < 4e""212 (0 < c < 1) and
with integers b; (j = 1, 2, n), because (5) would imply I Sk ? cn . (In
fact we shall prove still more ; see Theorems 1 and 3 .)

In §1 we prove the existence of various sets z, , Z2, , z. of unimodular
complex numbers, such that many of their power sums are relatively small
(or, expressed in another form, such sets zI , z 2 , • • • , z . of unimodular com-
plex numbers that the numbers zi , zz , , zn are rather uniformly dis-
tributed on the unit circle for many values of k [Theorem 4]) . Our method
is principially unable to yield an explicit construction of such sets, though
such a construction by some other method would be rather interesting . The
reader, however, who is acquainted with the book [1] of P. Turán, will imme-
diately see why the proof of the existence of sets with the mentioned proper-
ties is also in itself not without interest . In fact our results show that the
inequality (3), which is a consequence of Dirichlet's theorem, can not be
essentially improved, i .e . the range of k can not be replaced by a range of
definitely smaller order of magnitude for n ---> . Now in the book of Turán
mentioned above, a series of important applications are given of lower esti-
mates concerning Max..<k<b I Sk j with a relatively small range (a, b) of k .
Such estimates have been found by Turán ; of course his results on the "short
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range" maximum of Sk I give only small lower bounds . Our results prove
that this is inevitable .

In §2 we also shall prove a result [Theorem 6] giving a lower estimate of
Maxl<k_ N I Sk I (and another [Theorem 5] of the maximal discrepancy of the
set z; (j = 1, 2, , n) for 1 < k <_ N), valid for every set z r , , zn of uni-
modular complex numbers, which shows that the results of §1 are not far
from being best possible . Theorem 6 differs from the much deeper results
obtained by P . Turán [1] in that it deals with the long range maximum of
Sk I , while Turán's results are on the short range maximum of I Sk I ; it

should be mentioned that Turán's results are valid under more general con-
ditions (the zk need not be unimodular) .
In §3 we call attention to some unsolved problems and to further possible

developments of our method .

1 . Construction of particular sets of unimodular complex numbers

THEOREM 1 . There exists for every integer n >= 2 a set z r , z2 ,

	

zn of
unimodular complex numbers such that, putting Sk = , j ., z j we have'

Sk I < -\/6n log (k + 1)

	

fork= 1, 2, . . . .

Theorem I clearly implies
(4')

	

Max

	

Sk I < en

	

for 0 < c < 1 ;r<k<exp(nc 2 /6)

the slightly stronger relation (4) can be proved by considerations similar to
those used in the proof of Theorem 1, but it does not follow from Theorem 1 .
Thus we have besides Theorem I the following

THEOREM 2 . There exists for every n >_ 2, a set z, , z 2 ,

	

, zn of unimodular
complex numbers such that, putting Sk = E r z ; (k = 1, 2,

	

), we have

Max

	

Sk I < cn
r<k<,exp(nc 2 /2)

for every c in 0 < c < 1 .
Remark . Of course Theorem 2 does not contradict (3), because

e~2/2 <

	

2r
arccos c

for 0 < c < 1 as e`2 /2 < eu2 < 4 < 27r/arccos c .
To prove Theorems 1 and 3 we shall need the following

LEMMA 1 . Let z r , z2 , • • • , zn denote independent complex-valued random vari-
ables, each of which is uniformly distributed on the circumference of the unit
circle . Then we have, putting J n = z r + z2 + • • • + zn ,

(7) ^ I
~n

I > en) < 4e c 2 n/2 (n=1,2, . . . ),
I The inequality (6) is of course interesting only for k + 1 < en/s, because for k + 1 Z

e n/ 6 the inequality becomes trivial as I Sx I < n for any k .
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for 0 < e < 1 . (Here and in what follows P( . . . ) denotes the probability of
the relation in the bracket .)

Proof of Lemma 1 . Let us evaluate the mean value of I e"~' I which we
denote by M(I e" r ' 1) where A is real . By our suppositions

M(I errn I) = M jIn 1 I erz, )
_ [M(I eTYII )fi n ,

and thus

(8)

	

M(I e"~' I) _

	

f" c""" d~ / _ (~o(iX n ,

where qo(x) denotes the Bessel function of order 0,

(9)

	

'JO
(x) _

	

(- l~~i(zx)2k

As

(2X)2k

	

(2X 	e	 ) 2k = X 2 /4
x=o lc !2

	

=o k

M(

W = \/u2 + v2 <_

	

Max(

e T~n I) < e nX 2 /4

nl,1v1)

Let us denote by (R(w) the real part of the complex number w . As the vari-
ables z; , -z; , iz; and (-iz;) are identically distributed, (R(z;), (R(-z;),

(R(iz;), and (R(-iz;) are also identically distributed . Taking into account

that for w = u + iv we have

= 1/2 Max ((R(w), (R(- W), (R(iw), (R(-iw)),

we obtain

(12)

	

,n I <

	

Max (a(~ .), (R( -J .),

It follows from (12) that for a > 0

(13)

	

P(I ~n I > cn) -<_ 4 P((R(~j >= cn/-\/2)

and thus

y
(14)

	

P(I , n I > cn) < 4 P
CI

exp Ann, I > exp
acn

2

Now we need the well known inequality of Markon according to which for
any nonnegative random variable ~ we have

P(~ > A) <= M(~)/A
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for any A > 0 . Applying this inequality to the probability on the right of
(14), we obtain, taking (11) into account, that

z
(15)

	

P i exp a~n _> exp
Xen
2> <_ exp n (4

	

ca

.

1/2

From (14) and (15) it follows that

(16)

	

P( I ~n I >_ cn) _<_ 4 exp n (42

	

c~) ,
4 1/2

for 0 < c < 1 and X > 0 . Choosing for a the value X = c

	

we obtain
the assertion of Lemma 1, which is therewith proved .
To prove Theorems I and 2, we start from the remark that if z ; is uni-

formly distributed on the unit circle, the same is true regarding z ; for k = 1,
2, • • • . It follows that if the random variables z l , z2 , • • • , zn are independ-
ent, and each is uniformly distributed on the unit circle, the random variables
Sk = E1 z, are all identically distributed, and we have by Lemma 1

(17)

	

P( Sk 1 > en) < 4e-` 2ní2

It follows from (17) that

(18)

	

P ( Max I Sk I > en _<
\1<k<N

Choosing N < 4e n°2 2 , we obtain

(19)

	

P \

	

Max

	

I S k >_ cnl < 1,
I <k<exp(nc 2 /2)

which implies the existence of a set z, , Z2,

	

zn , with I z,
(j = 1, 2, • • • , n), for which Ski < cn for k < 4e n ` 2 2
This proves Theorem 2 .
To prove Theorem 1, we deduce from (17) that

4Ne c 2 n1

(20)

	

P(I Sk

	

1/6nlog (k+ 1))
5 (k

4
1)3

	

(k = 1, 2, . . . ) .

Thus we obtain

Sk		\

	

1
(21)

	

P
C
Max

	

> v/6-n <_ 4 Z
k>1 1/log (k -}- 1)

	

k- 1 (k .+ 1)3 < 1

as

°

	

1

	

1

	

`° dx

	

1
~(k+l)3< 2 + 2 X3 - 4 •

This implies the existence of sets z1 , Z2, • • • , zn for which

Sk I < 1/6n log (k + 1)

	

for

(0<e<1) .

k=1,2, . . .

1
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Theorem 1 is thus also proved .
For values of c near to 1, the range 1 <_ k <_ N for which

Maxi_<k<N I Sk I G en, for a suitably chosen set zl, Z2,

	

, z., can be con-
siderably enlarged. This is expressed by

THEOREM 3 . There exists, for every n _>_ 10 and every e with 0 < E < is
a set z1 , Z2, • - • , z, of unimodular complex numbers such that, putting

we have

n
Sk = Zj=1 z

k
j

Max

	

Sk I < n(1
1<k< (1ónen -1 ) -1 /2

Proof of Theorem 3 . We have clearly
a

	

r/2
eXCOSV d(p < f ex"' d(o +

7r
0

	

0

	

2'

Introducing the new variable x = 1/2X(1 - cos gyp), we obtain

f e""' dip <

	

J
e~ fá/2x

	

ey2
/ 2 dx

	

,~
J0

	

1/1 - x2/4 + 2'

As 1/1/1 - t < 1 -I- t for 0 < t G 2, it follows that

d(p <

	

f P x2/2 dx + 1
J

x2e a2/2 dx) +
7r

o

	

0

	

4X 0

	

2'

Thus we obtain

1 r+ ~ roogs~

	

e~

	

1

	

1
(22)

	

27r J
e

	

d~ < 1/27rÁ (1 + 4a) + 2'

We follow an argument essentially the same as that used in the proof of
Theorem 2 . Taking into account that for any complex number w and any
positive integer h >= 4, we have

(23)

	

w I <_1 . Max (t (w exp -
27rir)

7r 0<r<h-1

	

h
cos

h
further that

(k = 1, 2, . . . ),

k exp

	

n (z

	

27rir) k
S p

_
h

_ j ' exp _

hk

has the same distribution as S , , we obtain for any k >= 1

2 It can be seen from the argument that the assertion

I Sk I < 1/6n log (k + 1)

	

(k = 1, 2,

could be replaced by I Sk I < V4n log (k + 4) or more generally by

I Sk I < 1/2(1 -{- s)n log (k + (45- 1) 1 /8)

	

for any 5 > 0 .



P(I Sk I >_ n(1 - E)) <_ P Max (R (Sk exp -
27rar) >_ n(1 - E) cos

7)

0<r«-1

	

h

	

h
which implies

(24)

	

P( Sk I >_ (1 - E)) <_ hP (&(S1) ? n(1 - e) cos h) .

Thus we obtain

P( I Sk I >_ n(1 - e)) <_ hP eTSI >_ exp` nX(1 - e) cos
hD

(25)

	

I ~27rX(1+4A)	+
2\n

<h .	(	

\exp (X(1 - E) cos
h}

/

As for A > 4, 2 < e~'/4X 1/27rX, it follows from (25) that

P
\
Max I Sk I >_ n(1 - e)1
1<k<N

(26)

and

(28)

	

h -
C

71 J/e J + 1 .

It follows from (26), (27), and (28) that

P (
Max I sk

	

n(1 - E) 1 < 4N1/ne (n-1)r2 .
1<k<N

Thus
P Max I Sk I ->_ n(1 - e) < 1 if N < ( 16nEn-1 )-1/2

1<k<N

Thus there exist sequences z, , z2 ,

	

z. of unimodular complex numbers
such that
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<_ Nh

Let us suppose n >_ 10 and 0 < e < X66 and choose

(1
}

	 2)
exp(

X	 (I
- (1 - E) cos

	 h),~

n

	 l	
~/2irA

Max

	

1 Sk 1 < n(1 - e) .
1<k< (lsnen-1 ) -1 / 2

Theorem 3 is therewith proved .
It is easy to see that by a slight modification of our argument we could

prove the existence of a set z 1 , Z2, • • • , zn of unimodular complex numbers
for which assertions of the type of Theorem 1 and Theorem 3 hold simul-
taneously ; of course the constants figuring in these theorems are to be
modified for this purpose . We obtain this way that, for n >_ 10 and

l
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0 < e < 1- i there exists a set zl , z2 ,

	

, z. of unimodular complex numbers
such that, putting Sk = 7, 1 z; , we have

Sk <= 1/6n log (k -f- 2) for k <= e n'6,

and at the same time

Sk < n(1 - -) for k <_ (64n,-'_1)-1j2.

In our Theorems 1, 2, and 3, instead of considering successive power sums,
i .e . S 1 , S2 ,

	

SN , we may consider Sk , , Sk 2 ,

	

, SkN , where k 1 , k2 ,

	

,
kN is any set of different integers . We formulate only Theorem 2 in this
generalized form .

THEOREM 2a . Let n >= 2 be an arbitrary integer, 0 < e < 1 and kl , k2 ,
kN an arbitrary set of different integers, N < 4e nc2/2 . Then there can be found
unimodular complex numbers zi , Z2,

	

, zn such that, putting Sk = F j'=, z ; ,

we have
Max I Skr I < cn .
1<r<N

The results proved up to now give no information whatever about the
numbers z1 , Z2, • • • , zn for which all the values Sk I (1 <_ k _< N) are rela-
tively small, except the existence of an abundant set of such n-tuples . Never-
theless we can say something about the numbers z ; figuring in our theorems,
by a slight modification of our argument .

In fact we can prove that the numbers z ; (j = 1, 2, , n) in Theorem 2
can all be chosen to be roots of unity of order p, where p is a prime greater
than e nl2 . The modification of the proof consists in that we suppose concern-
ing the random variables z; , not that they are equidistributed on the unit
circle, but that they take on each of the values ph (h = 0, 1, p - 1)
where p = e 2x ijp with the probability 1/p ; here as mentioned above, p is a
prime, p > e n/2 . In place of the fundamental formula (8) we obtain, pro-
vided that k is not divisible b

	

aagain
p

	

n k
by p, putting g'

	

J n = 1: j'. 1 z ; ,
[p/2] 1,)2r

(29)

	

M( j e x3 ' 1) = Cl + E
(	r	 )

	

r~
brX

J

where I br <_ 1 for r >_ p . Thus we obtain

e T ~
2

n
)< eT n/a if X < N/2- ,

and therefore Theorems 1 and 2 remain valid with the additional requirement
that z l , z2 , • • • , zn should all be roots of the equation z p = 1, where p > e nl2

is a prime . Theorem 3 can also be proved with this additional requirement,
but in this case we have to suppose of course

p > (1óne n-1
) -1 / 2

We can develop our results somewhat further by considering not only the
power sums Sk = ~ 1 z; for positive integer values of k,, but also the sums
& = J:1 z; for real values of a .
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In this direction we can prove the following result :

THEOREM 1b . There can be found for every n >= 2, a set z l , Z2,

	

, zn of
unimodular complex numbers

z . - e

	

(p <_ ~o ; < Zr; j = l , 2 , . . . n),
such that, putting S . _ E i e2 `'' . where a is real, we have

I Sa 15 A/6n log (a A/n + 1) + 2r( A/n + 2)

for any a _>- 1/[v'n] •

Proof of Theorem 1b. Let us choose numbers z; = e"i for which

E1 z; < 1/6n log (k + 1)

	

(k = 1, 2,

	

),

which is possible according to Theorem 1 . Let us put m = [ ,\//n-] and
w; = zm . Then we have

w; <_ A/6n log (a -\/n- + 1) for a = k , k = 1, 2,
=1

	

-

	

m

As for z = e2í'(0 <_ < 2r), we have

(31)

	

I z o - z' <_ ((3 - a) .2r

if 0 < a < 0, it follows that
n

ws
n

klmw2
~=1

+ tan
m

for k/m <_ /3 < (k + 1)/m . Thus by (30) and (32), for n >_ 2 and any
a > 1/m,

& 1 < A/6n log (a A/n -i- 1) + 2r(-\/n + 2),

which implies the assertion of Theorem 1b .
It follows simply from our results that there can be found a set zl , z 2 , zn

of unimodular complex numbers such that for no k < 14 e"' 12 do all the num-
bers z; (j = 1, 2, , n) lie on an arc of the unit circle of length 2 arccos c :
because if this were so, then, for the set z i , z 2 , • • • , z n figuring in Theorem 2,
for some k < 4enc212 we would have Sk > nc, in contradiction with The-
orem 2 . But in this way it is impossible to deduce the existence of sets z l ,
z2 , zn of unimodular complex numbers for which zi , zz , , zn do not
all lie on an arc of length l with r < l < 2r for some k < (1 + S) n . Never-
theless this is a consequence of Theorem 1, but to deduce it we need the finite
form of Weyl's theorem due to P. Erdős and P. Turán .

Let us denote by Nnk ~(a, (3) the number of those among the numbers
z; (z, = e2" i ; 0 < ~o; < 2r; j = 1, 2, • • • , n) for which

0 <= a <= k~o ; < 3 < 2r (mod 2r) .
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According to the theorem of Erdös and Turán [2] we have

(33)

where A > 0 is an absolute constant and m >_ I is an arbitrary integer . If
we choose the unimodular complex numbers zi , z2 , • , z .n so as to satisfy
Theorem 1, it follows from (33) that we have for k = 1, 2, • • •

(34)

Choosing

N(k)(a, ~) -

Nnk)(a a) _ (Q- a)n
27r

we obtain

N(k)(
n

	 a, Q) _ (3
2
-
7r

C'

(35)

Thus we have

(36)

(37) Nnk'(a,a)

	

l3- a
n

	

27r
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(~3 - a)n
27r

and further putting S = (log (k + 2)) /n,

<AC
	 n

	

~~Skz~1
m + 1

	

a=i l J'

< A	n +

	

-\/6n log (kl+1)M

+ 1 a-77i

	

l

	

)'

m = [
~/

log k + 2) ] '

< A

	

log (k + 2)W n

en .

	

n

	

,
+ log log (k + 2)

	

n log (k + 1)

	

log (k + 2)/

Nnk)(a,
	 0)

	

a
n

	

27r
< ci(log n)3í2

	

for k <= n,
1/n

where cl and C2 are positive constants . As 1/ó log (e/S) 0 for a ---> 0, it
follows that the points zi , z2 , , zn are asymptotically equidistributed on
the unit circle for n

	

oo and (log k)/n

	

0 .
The result obtained is expressed by the following

THEOREM 4 . There exists for every n a set zi, Z2, z n of unimodular
complex numbers such that, denoting by Nnk ' (a, 0) the number of those among
zi , z2 ,

	

zn which are lying in the arc (a, 0) of the unit circle, we, have

Nnk'(a,
0) _ (3 - a

n

	

27r

C2 1/S log
S

	

for log ( +2) < S <_ 1,

e 3/2
< C3 ~b (log

b)

for k < e á" - 2, where e 3 is an absolute constant and 0 < S < 1 .

Theorem 4 follows by combining the inequalities (36) and (37) .
It follows from Theorem 4 that there exist unimodular complex numbers

z1, Z2,***, zn such that, for any e > 0 with 0 < c < B1 , for no
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k _< exp {B2 nE 2 (log 1/E)-3 }
does there exist on the unit circle an arc of

length > 27rc which does not contain any of the numbers zi , z2 , zn ;
here B1 > 0 and B 2 > 0 are absolute constants .

2. Results valid for all sets of unimodular complex numbers

To show that Theorem 4 can not be essentially improved, let us consider
arbitrary unimodular complex numbers z ; = e"i (j = 1, 2, • • • , n) . Let us
choose an integer w (1 < w < n/2) ; according to Dirichlet's theorem, we can
find a positive integer k < w [n/"] such that

with some k < w ["w 1 < (w 1/") n .

< 1
w

for j = 1, 2, • • • , [n/w], where the b ; are integers . It follows that

N (k)

	

1 11
w'w

	

1
n

	

W7r

Thus we proved

> 1
6w

THEOREM 5 . Let z 1 , z2 , . . . , zn denote arbitrary unimodular complex num-
bers, and w > 1 an integer (w < 2n) . Then we have

Max

	

Max Nnk) (a,a) _ a - a > 1
1<_k<w[nlwl o<q«<2,r

	

n

	

tar

	

6w

To compare Theorem 5 with Theorem 4, let us mention that Theorem 4
can be brought to the following form :

Theorem 4 asserts that for any E with 0 < e < c1 and n >= 2

Min Max Max I Nn(k) (a, 0) - Q - a < p1(E),
yl„y2 ."'zn. 1<k<_(1+E)n 0_<a<0<2a

	

n

	

27r

where 0 < A1(E) < C2V (log 1/E) á/2 ; and Theorem 5 asserts that

(k)
Min

	

Max

	

Max Nn		a > 02(E),
Z1,z2,"- n 1_<_k<(1+E)n o<a<S<2a

	

n

	

27r

where

02(E) >	
C3e

log (1/E) '

C1, C2, and c 3 being absolute constants. Thus Theorem 4 and Theorem 5
each shows that the other is not far from being best possible .

Similarly we can prove a theorem which shows that Theorem 2 can not
be essentially improved . Let z1 , Z2, , zn denote an arbitrary set of uni-
modular complex numbers .

Let us suppose 2 <_ c < n - 1 and let us denote by r the least integer
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>_c . According to Dirichlet's theorem, if z; = e"', we can find an integer
l < (41rn 1/r + 1) r+1 such that

l,p;

	

1
27r - b' = [47rn 1/r + 1 ]

for j = 1, 2,

	

r + 1, where b 1 ,

	

br+1 are integers . Now let us put
z

	

a
W1 = Z,+2,

	

, wm_r_1 = z n ; according to a theorem of Cassels [3], there
can be found an integer h < 2(n

	

r such that (R

	

n
-r-1

- )

	

~~i=1 wti) _>_ 0 ; it
follows that

Thus we have proved

THEOREM 6 . For any set z1 , Z2,

	

z n of unimodular 3 complex numbers,
putting Sk = Y' ;i z; , we have for 2 _< c < n - 1

Max

	

Sk >_ C-
1 <k< (4-\/c+2-) c+2-2n

3. Some unsolved problems

(a) In §§1 and 2 we have shown that there exist positive functions fi(e),
,/2(E), 'A] (E), A2(E) (E > 0), all tending to 0 for e -> 0, such that, putting

A(n, E) = 1 Min

	

Max

	

Sk ~,
n z1 ..1<k<_(1+e)~

z j j=1
and

we have

and
o1(E) < B(n, E) <_ 02(E) .

The exact orders of magnitude of A(n, E) and B(n, E) for E

	

0 remain
however unknown .

(b) Dirichlet's theorem asserts that for any set z, , z2 , z n (n >= 2) of
unimodular complex numbers, and for any integer w > 2, there can be
found an integer k in the interval 1 <= k < co' such that the numbers zi ,
z2 , zn are all lying in an interval of length 47r/w on the unit circle, and
thus an interval of length 27r - 47r/w remains free from the numbers z ; .
Probably this is not a best possible result, and 27r - 47r/w can be replaced
by a greater number, but nothing is known in this direction . Moreover

a It is clear from the proof of Theorem 6 that, instead of I z, I = 1, it suffices to sup-
pose I z ; I >_ 1 .

1 Szh 1 > (R(Sah) ? (r + 1) cos ~ r +1 >= r > e .

B(n, E) = Min Max

	

Max
n 1<_k<_(1+e)1 U<a«<2r

f, (e) < A(n, E) < f2(E)

Nnk)(a,

n

	

27r
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it remains completely unsolved whether there exists a function b(e) > 0
(0 < e < 1) such that for any set zI , Z2, • • • , zn of unimodular complex num-
bers, there can be found an integer k, with I < k _< (1 + e)n, such that the
numbers z; , z2 ,

	

z., leave free on the unit circle an arc of length >_ 6(e) .
(c) Finally we should like to call attention to the following facts which

have not been used explicitly in this paper .
It can be shown by standard methods of the calculus of probability that

if Z1, Z2, • • • , z n are independent random variables, each of which is uni-
formly distributed on the unit circle, then, putting

n

Sk =

	

z7 ,

	

~nk)

	

(R(Sk), and nn
k)
_

	

- ~(Sk),
=I

	

n

the joint distribution of the random variables

BUDAPEST, HUNGARY

r(kil

	

(kil

	

~-(k,)

	

(kr)
$n

	

, 17n ,

	

. .

	

Sn , 1jn

	

,

where r is fixed and k i X ki for i j (i, j = 1, 2, • • • , r), tends for n --> -0
to the 2r-dimensional symmetrical normal distribution with the density
function
	 1

	

C 1~ 21
	 exp -

	

x l;(2,7r)T

	

2 ;=I

Thus the variables ink ' ) , 71nk ' ) are in the limit independent for n

	

It
seems that this fact has interesting consequences concerning diophantine ap-
proximations . We hope to return to this question in a forthcoming paper .
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