COLLOQUIUM MATHEMATICUM

on a perfect set

BY
P. ERDÖS (BUDAPEST) AND S. KAKUTANI (NEW HAVEN)
(From a letter of P. Erdös to E. Marczewski)
... Enclosed I send you our promised solution to your problem ${ }^{1}$). The problem is this: A linear set S is said to have property $\left(S_{n}\right)$ if there exists an η_{n} such that if $x_{1}<x_{2}<\ldots<x_{n}, x_{n}{ }^{\bullet}, x_{1}<\eta_{n}$ are any n real numbers, there exist n elements $y_{1}, y_{2}, \ldots, y_{n}$ of S, congruent to x_{1}, x_{2}, \ldots, x_{n}. You ask: Does there exist a perfect set S of measure 0 having property $\left(S_{3}\right)$?

Kakutani and I have constructed a perfect set S of measure 0 having property $\left(S_{n}\right)$ for all $n \geqslant 2$. Our set S is defined as the set of non-negative numbers

$$
\sum_{k=2}^{\infty} \frac{a_{k}}{k!}, \quad 0 \leqslant a_{k} \leqslant k-2 .
$$

It is easy to see that the measure of S is 0 (every number x, $0 \leqslant x \leqslant 1$, is uniquely of the form

$$
\left.\sum_{k=2}^{\infty} \frac{a_{k}}{k!}, \quad 0 \leqslant a_{k} \leqslant k-1\right) .
$$

Thus we only have to prove that S has property $\left(S_{n}\right)$ for all $n \geqslant 2$.
To show that S has property $\left(S_{n}\right)$ it clearly suffices to show that if we put $x_{2}-x_{1}=z_{1}, x_{3}-x_{1}=z_{2}, \ldots, x_{n}-x_{1}=z_{n-1}, z_{n-1}<\eta_{n}$, there exists a number z_{0} in S such that all the numbers $z_{0}+z_{i}, 1 \leqslant i \leqslant n-1$, are also in S. Assume $\eta_{n}<1(m-1)$! where m will be determined later. Then clearly

$$
z_{i}=\sum_{k=m}^{\infty} \frac{b_{k}^{(i)}}{k!}, \quad 0 \leqslant b_{k}^{(i)} \leqslant k-1, \quad 1 \leqslant i \leqslant n-1 .
$$

[^0]Now we have to determine

$$
z_{i}=\sum_{k=2}^{\infty} \frac{b_{k}^{(0)}}{k!}, \quad 0 \leqslant b_{k}^{(i)} \leqslant k-2 .
$$

so that all the $z_{0}+z_{i}$ are in S. To do this put $b_{k}^{(0)}=0,2 \leqslant k \leqslant m-1$, and further for $k \geqslant m, 1 \leqslant i \leqslant n-1$,

$$
\begin{equation*}
b_{k}^{(0)}+b_{k}^{(i)} \neq k-1, k-2,2 k-2,2 k-3 . \tag{1}
\end{equation*}
$$

If $m>4 n$ such a choice of $b_{k}^{(0)}$ is always possible since for each i (1) excludes at most 4 values of $b_{0}^{(i)}$ and there are $k-1 \geqslant m-1$ possible values for $b_{k}^{(0)}$ (i.e. $0 \leqslant b_{k}^{(0)} \leqslant k-2$ and $k \geqslant m$).

If $b_{0}^{(k)}$ satisfies (1) for all $k \geqslant m$ then $z_{0}+z_{i}$ is clearly in S since the k-th digit of $z_{0}+z_{i}$ is $\leqslant k-2, i . e$.

$$
z_{0}+z_{i}=\sum_{k=2}^{\infty} \frac{c_{k}}{k!}, \quad 0 \leqslant c_{k} \leqslant k-2 . \quad \ldots
$$

Budapest, October 4, 1955

[^0]: ${ }^{1}$) E. Marczewski, P 125, Colloquium Mathematicum 3.1 (1954), p. 75.

