COLLOQUIUM MATHEMATICUM

VOL. 1V

1957

FASC. 2

(Pages 195-196)

ON A PERFECT SET

BY

P. E R D Ö S (BUDAPEST) AND S. K A K U T A N I (NEW HAVEN)

(From a letter of P. Erdös to E. Marczewski)

... Enclosed I send you our promised solution to your problem¹). The problem is this: A linear set S is said to have property (S_n) if there exists an η_n such that if $x_1 < x_2 < \ldots < x_n, x_n - x_1 < \eta_n$ are any n real numbers, there exist n elements y_1, y_2, \ldots, y_n of S, congruent to x_1, x_2, \ldots, x_n . You ask: Does there exist a perfect set S of measure 0 having property (S_3) ?

Kakutani and I have constructed a perfect set S of measure 0 having property (S_n) for all $n \ge 2$. Our set S is defined as the set of non-negative numbers

$$\sum_{k=2}^\infty rac{a_k}{k!}, \quad 0\leqslant a_k\leqslant k\!-\!2.$$

It is easy to see that the measure of S is 0 (every number x, $0 \leq x \leq 1$, is uniquely of the form

$$\sum_{k=2}^{\infty}rac{a_k}{k!}, \quad 0\leqslant a_k\leqslant k\!-\!1).$$

Thus we only have to prove that S has property (S_n) for all $n \ge 2$.

To show that S has property (S_n) it clearly suffices to show that if we put $x_2-x_1 = z_1, x_3-x_1 = z_2, \ldots, x_n-x_1 = z_{n-1}, z_{n-1} < \eta_n$, there exists a number z_0 in S such that all the numbers z_0+z_i , $1 \le i \le n-1$, are also in S. Assume $\eta_n < 1/(m-1)!$ where m will be determined later. Then clearly

$$z_i = \sum_{k=m}^\infty rac{b_k^{(i)}}{k!}, \quad 0 \leqslant b_k^{(i)} \leqslant k\!-\!1, \quad 1 \leqslant i \leqslant n\!-\!1.$$

1) E. Marczewski, P 125, Colloquium Mathematicum 3.1 (1954), p. 75.

Now we have to determine

$$z_0 = \sum_{k=2}^{\infty} \frac{b_k^{(0)}}{k!}, \quad 0 \le b_k^{(l)} \le k-2,$$

so that all the z_0+z_i are in S. To do this put $b_k^{(0)} = 0$, $2 \leq k \leq m-1$, and further for $k \geq m$, $1 \leq i \leq n-1$,

(1)
$$b_{k}^{(0)} + b_{k}^{(1)} \neq k-1, k-2, 2k-2, 2k-3.$$

If m > 4n such a choice of $b_k^{(0)}$ is always possible since for each i(1) excludes at most 4 values of $b_0^{(i)}$ and there are $k-1 \ge m-1$ possible values for $b_k^{(0)}$ (i. e. $0 \le b_k^{(0)} \le k-2$ and $k \ge m$). If $b_0^{(k)}$ satisfies (1) for all $k \ge m$ then $z_0 + z_i$ is clearly in S since the

If $b_0^{(k)}$ satisfies (1) for all $k \ge m$ then $z_0 + z_i$ is clearly in S since the k-th digit of $z_0 + z_i$ is $\le k - 2$, *i. e.*

$$z_0+z_i=\sum_{k=2}^\infty rac{c_k}{k!}, \quad 0\leqslant c_k\leqslant k\!-\!2. \quad \ldots$$

Budapest, October 4, 1955

196