MATHEMATICS

ON THE IRRATIONALITY OF CERTAIN SERIES

BY
P. ERDÖS

(Communicated by Prof. J. Popken at the meeting of December 29, 1956)

Extending previous results of Chowla I^{1}) proved that for every integer $t>1$ the series

$$
\sum_{n=1}^{\infty} \frac{d(n)}{t^{n}} \text { and } \sum_{n=1}^{\infty} \frac{r(n)}{t^{n}}
$$

are irrational, where $d(n)$ denotes the number of divisors of n and $r(n)$ denotes the number of solutions of $n=x^{2}+y^{2}$. In my above paper I remarked that I cannot prove that any of the series

$$
\sum_{n=1}^{\infty} \frac{\varphi(n)}{t^{n}}, \sum_{n=1}^{\infty} \frac{\sigma(n)}{t^{n}}, \sum_{n=1}^{\infty} \frac{v(n)}{t^{n}}
$$

are irrational, where $\varphi(n)$ is Euler's φ function, $\sigma(n)$ the sum of the divisors of n and $\nu(n)$ the number of distinct prime factors of n. On the other hand by the methods used in the above paper I can prove without difficulty that the two series

$$
\sum_{n=1}^{\infty} \frac{1}{t^{n+v(n)}}, \sum_{n=1}^{\infty} \frac{1}{t^{n-v(n)}}
$$

are irrational, but I failed to prove the same for the two series

$$
\sum_{n=1}^{\infty} \frac{1}{t^{n+d(n)}}, \sum_{n=1}^{\infty} \frac{1}{t^{n-d(n)}}
$$

The main difficulty seems to be that I cannot prove that for infinitely many n

$$
\begin{equation*}
\max _{m \leqslant n}\left(m+d\left(m<\min _{m>n}(m+d(m)) .\right.\right. \tag{1}
\end{equation*}
$$

(1) can be proved with $\nu(m)$ instead of $d(m)$ (2). I cannot prove anything about the series

$$
\sum_{n=1}^{\infty} \frac{1}{t^{n+\varphi(n)}}, \sum_{n=1}^{\infty} \frac{1}{t^{n+\alpha(n)}}, \sum_{n=1}^{\infty} \frac{1}{t^{n+p_{n}}}
$$

where p_{n} is the greatest prime factor of n (if in (1) $d(m)$ is replaced by $\varphi(n), \sigma(n)$ or $p_{n}(1)$ becomes false).
$\left.{ }^{1}\right)$ Indian Journal of Math. 12, 63-66 (1948).
${ }^{2}$) In fact this is essentially contained in 1).

Quoting LandaU ${ }^{1}$) I remark that all these statements do not yet justify writing a note. But I can (and will) prove that the two series

$$
\sum_{n=1}^{\infty} \frac{1}{t^{\varphi(n)}}, \sum_{n=1}^{\infty} \frac{1}{t^{\sigma(n)}}
$$

are irrational.
Denote $\sigma_{k}(n)=\sum_{d \mid n} d^{k}$. KAc and I^{2}) conjectured that

$$
\sum_{n=1}^{\infty} \frac{\sigma_{k}(n)}{n!}
$$

is irrational for every integer $k>0$. We proved this for $k=1$ and $k=2$, for $k>2$ the proof seems to present great difficulties.

Straus and I^{3}) proved that if $n_{1}<n_{2}<\ldots$ is a sequence of integers satisfying limsup $\log n_{k} / \log k=\infty$, then $\sum_{k=1}^{\infty} \frac{1}{t^{n_{k}}}$ is transcendental. By a modification of our method used there I can prove that if limsup $n_{k} / k^{l}=\infty$, then $\sum_{k=1}^{\infty} \frac{1}{t^{n_{k}}}$ does not satisfy an algebraic equation with integer coefficients of degree not exceeding l. I do not know to what extent this theorem can be improved, I do not know if a series $\sum_{k=1}^{\infty} \frac{1}{b_{k}}$ satisfying limsup $n_{k} / k=\infty$ can be an algebraic number. On the other hand I cannot even prove that if $n_{k}>c k^{2}$ then $\left(\sum_{k=1}^{\infty} \frac{1}{t^{n_{k}}}\right)^{2}$ is always irrational.

Theorem 1. The series

$$
\sum_{n=1}^{\infty} \frac{1}{t^{\varphi(n)}} \text { and } \sum_{n=1}^{\infty} \frac{1}{t^{\sigma(n)}}
$$

are irrational.
First we prove three Lemmas.
Lemma 1. Let $a_{k}, k=1,2, \ldots$ be a sequence of non-negative integers such that

$$
\begin{equation*}
\lim \sup \frac{1}{n} \sum_{k=1}^{n} a_{k}<\infty \tag{2}
\end{equation*}
$$

Denote by $f(n)$ the number of k 's $1 \leqslant k \leqslant n$ for which $a_{k}>0$. Assume that $f(n) \rightarrow \infty$ and liminf $f(n) / n=0$. Then

$$
\sum_{k=1}^{\infty} \frac{a_{k}}{t_{k}}
$$

is irrational.

[^0]The Lemma is known ${ }^{1}$). I do not give the proof, since Lemma 4 will contain it essentially as a special case.

Lemma. 2. The number of integers n for which $\varphi(n)<x$ holds is less than $c \quad x$. The same holds for $\sigma(n)$.

Since $\sigma(n) \geqslant n$ the Lemma obviously holds for $\sigma(n)$ with $c=1$. For $\varphi(n)$ the Lemma is known ${ }^{2}$) but for completeness I give the simple proof. We have

$$
\begin{aligned}
\sum_{m=1}^{x}\left(\frac{m}{\varphi(m)}\right)^{2}=\sum_{m=1}^{x} \prod_{p \mid m}\left(1+\frac{1}{p}+\ldots\right)^{2} \leqslant \sum_{m=1}^{x} \prod_{p \mid m}\left(1+\frac{6}{p}\right) \leqslant \\
\leqslant \sum_{m=1}^{x} \sum_{d \mid m} \frac{6^{v(d)}}{d}<x \sum_{d=1}^{\infty} \frac{6^{v(d)}}{d^{2}}=c_{1} x
\end{aligned}
$$

Thus clearly the number of integers $m<x$ with $m / \varphi(m)>r$ is less than $c_{1} \cdot x / r^{2}$ where c_{1} is an absolute constant independent of x and r. Thus the number of integers not exceeding $2^{k+1} x$ for which $m / \varphi(m)>2^{k}$ is less than

$$
\begin{equation*}
\frac{c_{1} 2^{k+1} x}{2^{2 k}}=\frac{c_{1} x}{2^{k-1}} \tag{3}
\end{equation*}
$$

But if $\varphi(m)<x$, then if $m>x$ we must have for some $k, k=0,1, \ldots$ $2^{k} x<m \leqslant 2^{k+1} x$ and $m / \varphi(m)>2^{k}$. Thus by (3) the number of integers satisfying $\varphi(m) \leqslant x$ is less than

$$
x\left(1+\sum_{k=0}^{\infty} \frac{c_{1}}{2^{k-1}}\right)<c x
$$

which proves the Lemma.
Lemma 3. The number of integers $n \leqslant x$ for which one of the equations $\varphi(k)=n$ or $\sigma(k)=n$ is solvable is $o(x)$.

Lemma 3 is also known ${ }^{3}$), but for sake of completeness we give the proof. It will be more conveniant to prove the Lemma separately for $\varphi(k)$ and $\sigma(k)$. We want to prove that for every ε there exists an x_{0} so that for $x>x_{0}$ the number of integers $n \leqslant x$ for which $\varphi(k)=n$ is solvable, is less than εx. Choose first r so that $2^{r}>2 / \varepsilon$. If k has r or more distinct prime factors then $\varphi(k) \equiv 0\left(\bmod 2^{r}\right)$, hence the number of $n<x$ of the form $\varphi(k)$, where k has at least r distinct prime factors is less than $x / 2^{r}<\varepsilon x / 2$. If k has fewer than r prime factors, the $\varphi(k)>k / r$, thus since $\varphi(k) \leqslant x$ we can assume $k<r \cdot x$. But a well known theorem of LaNDAU ${ }^{4}$) states that

[^1]the number of integers not exceeding y having fewer than r distinct prime factors is less than
\[

$$
\begin{equation*}
c \frac{y(\log \log y)^{r-1}}{(r-1)!\log y} \tag{4}
\end{equation*}
$$

\]

Thus for $x>x_{0}$ the number of $k<r \cdot x, v(k)<r$ is less than $\varepsilon x / 2$, which completes the proof of the Lemma for $\varphi(k)$.

To prove the Lemma for $\sigma(k)$, we first observe that because of $\sigma(k)>k$, we can assume $k \leqslant x$. Write $k=a^{2} b$ where b is squarefree. If b has r or more prime factors then $\sigma(k) \equiv 0\left(\bmod 2^{r}\right)$. The number of integers $k \leqslant x$ with $a^{2}>16 / \varepsilon^{2}$ is less than $x \sum_{a>4 / \varepsilon} \frac{1}{a^{2}}<\frac{\varepsilon x}{4}$, and finally the number of integers $k=a^{2} b \leqslant x$ with $a<4 / \varepsilon$ and b having fewer than r prime factors is $o(x)$, by (4). Thus finally the number of integers $n \leqslant x$ for which $\sigma(k)=n$ is solvable is less than

$$
\frac{\varepsilon \mathbf{1}}{2} x+\frac{\varepsilon}{4} x+o(x)<\varepsilon x
$$

which proves Lemma 3 for $\sigma(k)$.
The proof of Theorem 1 now follows easily. Denote by a_{k} the number of solutions of $\varphi(l)=k$ and by a^{\prime} the number of solutions of $\sigma(l)=k$. We have

$$
\sum_{n=1}^{\infty} \frac{1}{t^{\varphi(n)}}=\sum_{k=1}^{\infty} \frac{a_{k}}{t^{k}}, \sum_{n=1}^{\infty} \frac{1}{t^{\sigma(n)}}=\sum_{k=1}^{\infty} \frac{a^{\prime} k}{t^{k}} .
$$

By Lemma $2(2)$ is satisfied and by Lemma $3 f(n) / n \rightarrow 0$ for both a_{k} and a_{k}^{\prime} which completes the proof of Theorem 1.

Clearly the conclusion of Theorem 1 holds for the more general multiplicative functions considered by Kanold ${ }^{1}$), but I expect that it will hold for a much more general class of multiplicative functions, but I have not yet succeeded in showing this.

Theorem 2. Let $1<n_{1}<n_{2}<\ldots$ be an infinite sequence of integers satisfying $\lim \sup n_{k} / k^{l}=\infty$, then

$$
\sum_{k=1}^{\infty} \frac{1}{t^{n_{k}}}
$$

does not satisfy an algebraic equation with integer coefficients of degree not exceeding l.

First we prove
Lemma 4. Let a_{k} and b_{k} be two sequences of non negative integers, the sequence of a 's is supposed to be infinite. Denote by $f(n)$ and $g(n)$ the number of k 's $1 \leqslant k \leqslant n$ satisfying $a_{k}>0$, respectively $b_{k}>0$. Assume that there exists an s so that for all sufficiently large k

$$
\begin{equation*}
a_{k}<k^{s}, b_{k}<k^{s} \tag{5}
\end{equation*}
$$

${ }^{1}$ See foregoing page, note ${ }^{3}$).
and that there exists an infinite sequence m_{i} for which

$$
\begin{equation*}
\sum_{k=1}^{m_{i}}\left(a_{k}+b_{k}\right)<c_{1} m_{i}, f\left(m_{i}\right)=o\left(m_{i}\right), g\left(m_{i}\right)=o\left(m_{i} / \log m_{i}\right) . \tag{6}
\end{equation*}
$$

Further assume the following condition (C) : There exists an absolute constant c_{2} so that if i_{1} and i_{2} are two consecutive indices 'with $b_{i_{1}}>0$ and $b_{i_{2}}>0$, then for every x satisfying $i_{1}+c_{2} x<i_{2}$ there exists an index k satisfying $a_{k}>0$ and $i_{1}+x<k<i_{1}+c_{2} x$. Then

$$
\sum_{k=1}^{\infty} \frac{a_{k}+\varepsilon_{k} b_{k}}{t^{k}}, \varepsilon_{k}= \pm 1
$$

is irrational.
Clearly Lemma 1 is a special case of Lemma 4. In Lemma 1 all the b 's are 0 and $m_{i}=i ; a_{k}>k^{s}$ is satisfied in Lemma 1 for every $s>1$ (because of (2)).

Put

$$
A_{k}=\frac{a_{k}}{t}+\frac{a_{k+1}}{t^{2}}+\ldots, B_{k}=\frac{b_{k}}{t}+\frac{b_{k+1}}{t^{2}}+\ldots
$$

To prove Lemma 4 we first have to show that for every $\varepsilon>0$ there are j's satisfying

$$
\begin{equation*}
A_{j}+B_{j}<\varepsilon, \quad A_{j}>B_{j} . \tag{7}
\end{equation*}
$$

Assume that we already proved (7), then we prove Lemma 4 as follows: If Lemma 4 would not hold we would have (u and v are integers)

$$
\begin{equation*}
\frac{u}{v}=\sum_{k=1}^{\infty} \frac{a_{k}+\varepsilon_{k} b_{k}}{t_{k}} \tag{8}
\end{equation*}
$$

Choose $\varepsilon<\frac{1}{v}$. By (8) $v t^{j-1} \sum_{k=1}^{\infty} \frac{a_{k}+\varepsilon_{k} b_{k}}{t^{k}}$ is an integer. But by (7)

$$
I=v t^{j-1} \sum_{k=1}^{\infty} \frac{a_{k}+\varepsilon_{k} b_{k}}{t_{k}}=I^{\prime}+v\left(A_{j}+\vartheta B_{j}\right) \quad\left(I, I^{\prime} \text { are integers, }|\vartheta \vartheta| \leqslant 1\right),
$$

an evident contradiction, since by (7) $0<v\left(A_{j}+\vartheta B_{j}\right)<1$, which proves the lemma.

Thus we only have to prove (7). Denote by α_{i} the number of indices $k<\frac{m_{i}}{2}$ for which

$$
\begin{equation*}
A_{k}+B_{k} \geqslant \varepsilon \tag{9}
\end{equation*}
$$

and by β_{i} the number of indices $k \leqslant \frac{m_{i}}{2}$ for which

$$
\begin{equation*}
A_{k}>B_{k} \tag{10}
\end{equation*}
$$

First we show that

$$
\begin{equation*}
\alpha_{i}=o\left(m_{i}\right) \tag{11}
\end{equation*}
$$

and that for a certain constant c,

$$
\begin{equation*}
\beta_{i}>c_{3} m_{i} \tag{12}
\end{equation*}
$$

Clearly (11) and (12) imply (7). Thus it will suffice to prove (11) and (12).
We split the indices $k \leqslant m_{i} / 2$ which satisfy (9) into two classes. In the first class are the indices k for which there exists a j such that $k \leqslant j<k+l$ and for which $a_{j}+b_{j}>0$. It follows from (6) that the number of indices of the first class is not greater than

$$
\begin{equation*}
(l+1)\left(f\left(m_{i}\right)+g\left(m_{i}\right)\right)=o\left(m_{i}\right) \tag{13}
\end{equation*}
$$

For the indices k of the second class ${ }^{1}$) we have by (5) and (6) (the dash in Σ^{\prime} indicates that the summation is extended over the $k<m_{i} / 2$ of the second class):

$$
\begin{aligned}
\Sigma^{\prime}\left(A_{k}+B_{k}\right) \leqslant \sum_{r=1}^{m_{i}}\left(a_{r}+b_{r}\right) & \left(\frac{1}{t^{l}}+\frac{1}{t^{l+1}}+\ldots\right)+\sum_{L>m_{i}}\left(\sum_{r=1}^{L}\left(a_{r}+b_{r}\right) / t^{L-m_{i} / 2}\right)< \\
& <2 c_{1} m_{i} / t^{l}+\sum_{L>m_{i}} 2 \frac{L^{s+1}}{t^{L-m_{i} / 2}}=2 c_{1} m_{i} / t^{\prime}+o\left(m_{i}\right)<\eta m^{i}
\end{aligned}
$$

for all η if l is sufficiently large. Thus the number of k 's of the second class which satisfy (9) is less than

$$
\begin{equation*}
\frac{\eta}{\varepsilon} m_{i}=o\left(m_{i}\right) \tag{14}
\end{equation*}
$$

since η can be chosen arbitrarily small. (13) and (14) clearly imply (11).
Now we prove (12). Let $a_{k}>0$ and $i>k$ be the smallest index for which $b_{i}>0$. Assume that $i>k+c_{4} \log k$ where c_{4} is a sufficiently large absolute constant. Then $A_{k}>B_{k}$. This is almost obvious, since by (5) if c_{4} is sufficiently large

$$
\begin{aligned}
& A_{k}-B_{k} \geqslant \frac{1}{t}-\sum_{i>k+c_{4} \log k} \frac{b_{i}}{t^{i-k}}>\frac{1}{t}-\sum_{i>k+c_{4} \log k} \frac{i^{s}}{t^{i-k}} \geqslant \\
& \geqslant \frac{1}{t}-\left(\frac{\left(k+c_{4} \log k\right)^{s}}{t^{s} \log k}\right)\left(1+\frac{2}{3}+\frac{4}{9}+\ldots\right)>0
\end{aligned}
$$

(i.e. the terms of $\sum_{i>k+c_{4} \log k} \frac{i^{i s}}{t^{i-k}}$ drop off faster than a geometric series of quotient $2 / 3$).

Thus if the above holds for k and $j \leqslant k$ is such that there is no $b_{\tau}>0$ with $j<r<k$, then we have

$$
\begin{equation*}
A_{j}>B_{j} \tag{15}
\end{equation*}
$$

Let now j and j^{\prime} be the indices of two consecutive positive b 's (i.e. $b_{i}>0$, $b_{i},>0$ and $b_{k}=0$ for $j<k<j^{\prime}$). Clearly from (6)

$$
\Sigma^{\prime}\left(j^{\prime}-j\right)=o\left(m_{i}\right)
$$

${ }^{1}$) For the k of the second clan we have $a_{k}=a_{k+1}=\ldots=a_{k+1}=b_{k}=b_{k+1}=\ldots=$ $b_{k+i}=0$.
where the dash indicates that $j^{\prime}-j<2 c_{4} \log m_{i}$ and $j<m_{i} / 2$. Thus

$$
\begin{equation*}
\Sigma^{\prime \prime}\left(j^{\prime}-j\right)=\frac{1}{2} m_{i}+o\left(m_{i}\right) \tag{16}
\end{equation*}
$$

where the double dash indicates that $j^{\prime}-j>2 c_{4} \log m_{i}, j<m / / 2$ (if $j<m_{i} / 2$ $<j^{\prime}$, then we put $j^{\prime}=\frac{m_{i}}{2}$. Let now $j^{\prime}-j>2 c_{4} \log m_{i}$. Let $k_{1}>j$ be the largest index for which $a_{k_{1}}>0$ and $k_{1}<\left(j+j^{\prime}\right) / 2$. By (C) we have

$$
\begin{equation*}
k_{1}>j+\left(j^{\prime}-j\right) / 2 c_{2} \text { or } k_{1}-j>\left(j^{\prime}-j\right) / 2 c_{2} \tag{17}
\end{equation*}
$$

By (15) we have for $j<k<k_{2}$

$$
\begin{equation*}
A_{k}>B_{k^{\prime}} . \tag{18}
\end{equation*}
$$

(16 and (17) implies that

$$
\begin{equation*}
\Sigma^{\prime \prime}\left(k_{1}-j\right)>\left(\frac{1}{2} m_{i}+o\left(m_{i}\right)\right) / 2 c_{2}>c_{3} m_{i} . \tag{19}
\end{equation*}
$$

(18 and (19) clearly imply (12) and thus the proof of lemma 4. is complete.
With a little more trouble I can prove the following sharper
Lemma 4'. Let a_{k} and b_{k} be two sequences of non negative integers. The a-s are supposed to be infinite. Assume that

$$
\lim \sup \left(a_{k}+b_{k}\right)^{1 / k}<t,
$$

and that there exist an infinite sequence m_{i} for which

$$
\sum_{k=1}^{m_{i}}\left(a_{k}+b_{k}\right)<c_{1} m_{i}, f\left(m_{i}\right)=o\left(m_{i}\right), g\left(m_{i}\right)=o\left(m_{i}\right)
$$

Further assume that (C) holds. Then

$$
\sum_{k=1}^{\infty} \frac{a_{k}+\varepsilon_{k} b_{k}}{l_{k}}, \varepsilon_{k}= \pm 1
$$

is irrational.
The proof is very similar to that of lemma 4, only the proof of $\beta_{i}>c_{3} m_{i}$ is a bit more troublesome here.
Now we can prove Theorem 2. Put $\alpha=\sum_{k=1}^{\infty} \frac{1}{b m_{k}}$, and assume that

$$
\begin{equation*}
d_{0} \alpha^{l_{1}}+d_{1} \alpha^{l_{1}-1}+\ldots+d_{l_{4}}=0, l_{1} \leqslant l, d_{0}>0, \text { the } d^{\prime} s \text { are integers. } \tag{20}
\end{equation*}
$$

First of all we can assume that for a certain c_{5}

$$
\begin{equation*}
n_{k+1}<c_{5} n_{k}, 1 \leqslant k<\infty . \tag{21}
\end{equation*}
$$

For if (21) does not hold then $\lim \sup n_{k+1} / n_{k}=\infty$, and therefore

$$
\alpha-\sum_{i=1}^{k} \frac{1}{t_{i}}=\alpha-\frac{u_{k}}{t_{n_{k}}}<\frac{2}{p_{k+1}}=2\left(\frac{1}{t_{n_{k}}}\right)^{n_{k+1} / m_{k}},
$$

thus α is a Liouville number and therefore transcendental, which contradicts (20).

Expanding by the polynomial theorem we obtain

$$
d_{0} \alpha^{l_{1}}=\sum_{k=1}^{\infty} \frac{a_{k}^{\bar{l}}}{t^{k}}, d_{1} \alpha^{l_{1}-1}+\ldots+d_{l_{1}}=\sum_{k=1}^{\infty} \frac{\varepsilon_{k} b_{k}}{t^{k}}
$$

(5) is clearly satisfied with $s=l_{1}+1$. Further since $\lim \sup n_{k} / k^{l}=\infty$, there exists a sequence $n_{k_{i}}$ for which $\lim n_{k} / k_{i}^{l}=\infty$. Now $a_{k}>0$ if and only if k is the sum of $l_{1} n$'s, and $b_{k}>0$ implies that k is the sum of $l_{1}-1$ or fewer n 's. Thus by a simple argument

$$
f\left(n_{k_{i}}\right) \leqslant k_{i}^{k_{i}}=o\left(n_{k_{i}}\right), g\left(n_{k_{i}}\right) \leqslant k_{i}^{k_{i}-1}=o\left(n_{k_{i}}^{1-1 / k_{2}}\right) .
$$

Further by a simple argument

$$
\sum_{j=1}^{n_{k_{i}}}\left(a_{j}+b_{j}\right)<c_{5} k_{i}^{l_{i}}=o\left(n_{k_{i}}\right) .
$$

Thus (6) is satisfied with $m_{i}=n_{k_{i}}$. To show that (C) is satisfied we observe that if $b_{k}>0$ then k is the sum of say $r n^{\prime} s, r<l_{1}$. Thus all the integers $k+\left(l_{1}-r\right) n_{i}, i=1,2, \ldots$ are the sum of $l_{1} n$'s. Thus

$$
a_{k+\left(a_{1}-r\right) m_{i}}>0, \quad i=1,2, \ldots
$$

Thus in view of (21)(C) is satisfied with $c_{2}=l_{1} c_{4}$. Hence by lemma 4

$$
d_{0} \alpha^{l_{1}}+d_{1} \alpha^{l_{1}-1}+\ldots+d_{l_{1}}=\sum_{k=1}^{\infty} \frac{a_{k}+\varepsilon_{k} b_{k}}{t^{k}}
$$

is irrational, which contradicts (20), and thus Theorem 2 is proved.

[^0]: $\left.{ }^{1}\right)$ Math. Zeitschrift 30, 610 (1929).
 ${ }^{2}$) This was a problem in Amer. Math. Monthly 1, 264, (1954), for $k=2$ solution by R. Breusch, for $k=1$ solution by J. B. Kelly 60, 557 , (1953).

 Elemente der Math. 9, 18 Problem 154, (1954).

[^1]: ${ }^{1}$) This was a problem in the Amer. Math. Monthly proposed by me 62, 261, (1954) solution by Lorentz. The proof of lemma 4 will be similar to the proof of Lorentz.
 ${ }^{2}$) In fact Turán and I proved that the number of solutions of $\varphi(n) \leqslant x$ is $c x+o(x)$, (P. Erdös, Bull. Amer. Math. Soc. 51, 543-544, (1945).
 ${ }^{3}$) For $\varphi(k)$ this is due to Sivasankaranarayana Pillai and his proof easily applies for $\delta(k)$. For sharper results see P. Erdös Quarterly Journal 6, 205-213, (1935). See also a recent paper by H. J. Kanold, Journal Reine und Angew. Math. 195, 180-195, (1955).
 ${ }^{4}$) E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Volume 1, page 211.

