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MATHEMATICS

ON THE IRRATIONALITY OF CERTAIN SERIES

BY

P. ERDOS

(Communicated by Prof. J . POPKEN at the meeting of December 29, 1956)

Extending previous results of CHOWLA 1 1 ) proved that for every integer
t > 1 the series
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are irrational, where d(n) denotes the number of divisors of n and r(n)
denotes the number of solutions of n = x 2 + y 2 . In my above paper I re-
marked that I cannot prove that any of the series
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are irrational, where qq(n) is Euler's 92 function, 6(n) the sum of the divisors
of n and v(n) the number of distinct prime factors of n . On the other hand
by the methods used in the above paper I can prove without difficulty that
the two series
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are irrational, but I failed to prove the same for the two series
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The main difficulty seems to be that I cannot prove that for infinitely
many n
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(1) can be proved with v(m) instead of d(m) (2) . I cannot prove anything
about the series
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where pn is the greatest prime factor of n (if in (1) d(m) is replaced by
p(n), r(n) or pn (1) becomes false) .

1 ) Indian Journal of Math . 12, 63-66 (1948) .
2 ) In fact this is essentially contained in 1) .
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Quoting LANDAU 1 ) I remark that all these statements do not yet justify
writing a note. But I can (and will) prove that the two series
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are irrational .
Denote 6,(n)= 57. dk . KAC and 12) conjectured that

dIn

is irrational for every integer k > 0 . We proved this for k =1 and k = 2, for
k> 2 the proof seems to present great difficulties .

STRAUS and 1 3) proved that if n1 < n2< . . . is a sequence of integers

satisfying limsup log n k/log k=oo, then I 1 is transcendental . By a
k=1 t"nk

modification of our method used there I can prove that if limsup nk/k'= oo,

then ~ n does not satisfy an algebraic equation with integer coefficients
k=16 k

of degree not exceeding 1 . I do not know to what extent this theorem can

be improved, I do not know if a series I 1 satisfying limsup nk/k=oo
k=1 tnk

can be an algebraic number . On the other hand I cannot even prove that

if nk > ck 2 then (

	

n ) 2 is always irrational .
k=1 t k

Theorem 1 . The series

I
t~n) and
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are irrational .
First we prove three Lemmas .
Lemma 1 . Let a k , k=1, 2, . . . be a sequence of non-negative integers

such that

(2)

	

lim sup- Y ak < oo'n k= 1
Denote by /(n) the number o f k's 1 < k < n for which a k > 0. Assume that
f (n)->oo and liminf /(n)/n=0. Then
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24--

k=1 t°

is irrational .

1 ) Math. Zeitschrift 30, 610 (1929) .
2) This was a problem in Amer . Math. Monthly 1, 264, (1954), for k=2 solution

by R . BREUSCH, for k=1 solution by J . B . KELLY 60, 557, (1953) .
Elemente der Math . 9, 1S Problem 154, (1954) .
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The Lemma is known 1 ) . I do not give the proof, since Lemma 4 will
contain it essentially as a special case .
Lemma. 2 . The number o f integers n for which (p(n) < x holds is less

than c x. The same holds for 6(n) .
Since or(n) > n the Lemma obviously holds for a(n) with c = 1 . For q2(n)

the Lemma is known 2 ) but for completeness I give the simple proof .
We have
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Thus clearly the number of integers m < x with m/T(m) > r is less than
c 1.x/r2 where c1 is an absolute constant independent of x and r . Thus the
number of integers not exceeding 2k+ 1x for which m/(p(m) > 2k is less than

(3)
c1 2k+1 x _ c1 x

22k

	

2k-1

But if p(m) < x, then if m > x we must have for some k, k = 0, 1, . . .
2kx < m < 2k+1 x and m/q2(m) > 2k . Thus by (3) the number of integers
satisfying q(m)<x is less than

O0 cx(1-{
k
'~7o 2k-1)<cx=

which proves the Lemma .
L e m m a 3 . The number o f integers n < x for which one o f the equations

T(k)=n or a(k)=n is solvable is o(x) .
Lemma 3 is also known 3 ), but for sake of completeness we give the

proof. It will be more conveniant to prove the Lemma separately for
rp(k) and 6(k) . We want to prove that for every e there exists an x o so that
for x > x 0 the number of integers n < x for which qp(k) = n is solvable, is
less than e x . Choose first r so that 2 1 > 2/E. If k has r or more distinct
prime factors then T(k)-0 (mod 2'), hence the number of n < x of the
form qp(k), where k has at least r distinct prime factors is less than x/2? < sx/2 .
If k has fewer than r prime factors, the 9v(k)>k-1r, thus since q)(1c) < x we
can assume k < r •x . But a well known theorem of LANDAU 4 ) states that

1 ) This was a problem in the Amer . Math. Monthly proposed by me 62, 261, (1954)
solution by LORENTZ . The proof of lemma 4 will be similar to the proof of LORENTZ .

2 ) In fact TURÁN and I proved that the number of solutions of rp(n)<x is cx+o(x),
(P. ERnos, Bull. Amer. Math. Soc . 51, 543-544, (1945) .

3) For q2(k) this is due to SIVASANKARANARAYANA PILLAI and his proof easily applies
for 6(k) . For sharper results see P. ERnos Quarterly Journal 6, 205-213, (1935) .
See also a recent paper by H . J . KANOLD, Journal Reine and Angew. Math . 195,
180-195, (1955) .

4 ) E. LANDAU, Handbuch der Lehre von der Verteilung der Primzahlen, Volume
1, page 211 .
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the number of integers not exceeding y having fewer than r distinct
prime factors is less than

(4) y (loglog y)r - 1
C (r-1)! logy

Thus for x > xo the number of k < r •x , v(k)<r is less than sx/2, which
completes the proof of the Lemma for 99(k) .

To prove the Lemma for a(k), we first observe that because of a(k) > k,
we can assume k<x. Write k=alb where b is squarefree . If b has r or more
prime factors then a(k) =O(mod 2*) . The number of integers k < x with
a 2 > 16/8 2 is less than x

	

a2 <4, and finally the number of integers
a>4/e

k =alb < x with a<4/8 and b having fewer than r prime factors is o(x),
by (4) . Thus finally the number of integers n < x for which a(k)=n is
solvable is less than

2~x + 4x+o(x) < 8x,

which proves Lemma 3 for a(k) .
The proof of Theorem 1 now follows easily. Denote by ak the number

of solutions of T(1)=k and by a' the number of solutions of a(l)=k . We
have
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By Lemma 2 (2) is satisfied and by Lemma 3 /(n)/n--->O for both ak and
ak which completes the proof of Theorem 1 .

Clearly the conclusion of Theorem 1 holds for the more general multi-
plicative functions considered by KANOLD 1 ), but I expect that it will
hold for a much more general class of multiplicative functions, but I have
not yet succeeded in showing this .

Theorem 2 . Let 1 < n1 < n2< . . . be an infinite sequence of integers satis-
fying lim sup nk/kl = oo, then

(5 )
1 See foregoing page, note 3 ) .

a

.1 nk l d k

does not satisfy an algebraic equation with integer coefficients o f degree not
exceeding 1 .

First we prove
Lemma 4 . Let ak and b k be two sequences of non negative integers, the

sequence o f a's is supposed to be infinite . Denote by f (n) and g(n) the number
o f k's 1 < k < n satisfying ak > 0, respectively bk > 0. Assume that there exists
a n s so that for all sufficiently large k

ak < k8, bk < ks



and that there exists an infinite sequence m 2 for which

m=
(6)

	

1 (a k +bk) < c1 m2 , f(m;)=o(ma),g(mi)=o(mi /logm 2) .
k-1

Further assume the following condition (C) : There exists an absolute constant
c 2 so that if i1 and i 2 are two consecutive indices :with b %, > 0 and b *,, > 0, then
for every x satisfying i i + c2x < i2 there exists an index k satisfying a k > 0
and i 1+ x < k < i1 + c2x. Then
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c ak tk kbk , Ek =

	

1
k-1

is irrational.
Clearly Lemma 1 is a special case of Lemma 4 . In Lemma 1 all the

b's are 0 and mq =i ; ak >k0 is satisfied in Lemma 1 for every s> 1 (because
of (2)) .

Put

Ak= Ek+at21+ . . ., Bk=bt + bt2 1 + . . .

To prove Lemma 4 we first have to show that for every E> 0 there are
i's satisfying

(7)

2 1 6

A, + B; < .-, A ; > B; .

Assume that we already proved (7), then we prove Lemma 4 as follows :
If Lemma 4 would not hold we would have (u and v are integers)
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Choose E < -t~ . By (8) vt7-1 I ak tkkbz is an integer . But by (7)
ka1

I=vt'-1 I ak ekbk =I'+v (A,+0B;) (I, Tare integers, I ;t I < 1),
k=1

an evident contradiction, since by (7) 0<v (A,+1JB1)<1, which proves
the lemma .

Thus we only have to prove (7) . Denote by ati the number of

k < 2i for which

(9)

	

Ak+Bk > e

and by fl, the number of indices k,<n for which

(10)

	

Ak > Bk

First we show that

(11)

	

Ni=o(mi )

indices



and that for a certain constant c,

(12)

21 7

A > C3 'fill .

Clearly (11) and (12) imply (7) . Thus it will suffice to prove (11) and (12) .
We split the indices k<mi / 2 which satisfy (9) into two classes . In the

first class are the indices k for which there exists a j such that k < j < k + I
and for which a;+b; > 0 . It follows from (6) that the number of indices of
the first class is not greater than

( 13 )

	

(l+ 1 ) (f(mi)+g (mi))=o(mi) .

For the indices k of the second class 1 ) we have by (5) and (6) (the dash
in 57' indicates that the summation is extended over the k <mi/2 of the
second class) :

'n'

	

L
Y(Ak+Bk) < :S (ar+br) It + ti+1 + . . .)+

	

( I (ar+br)/tL-mi/2) <
T-1 L>mi T-1

Ls+
< 2 c1 -ini/tl+ 1 2 tL-m1/2 = 2 cl milt' +o(mi) < 77 m

L>m{

for all n if 1 is sufficiently large . Thus the number of k's of the second
class which satisfy (9) is less than

(14)

	

E rnL =o(m i)

since q can be chosen arbitrarily small . (13) and (14) clearly imply (11) .
Now we prove (12) . Let ak > 0 and i > k be the smallest index for which

b i > 0 . Assume' that i > k + c4 log k where c4 is a sufficiently large absolute
constant. Then A k > Bk . This is almost obvious, since by (5) if c 4 is suffi-
ciently large
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bi

	

1

	

i3Ak-Bk> -

	

ti-k > t

	

ti-k >i>k+c,logk

	

i>k+c,logk

> - ((k t.lo ok k)3 ) ( 1+ 3 + 9 + . . .) > 0t

	

g

(i.e . the terms of
l>k+c,logk tiZBk

drop off faster than a geometric series of
quotient 2/3) .

Thus if the above holds for k and j < k is such that there is no br > 0 with
j < r < k, then we have

(15)

	

Af > B ;

Let now j and j' be the indices of two consecutive positive b's (i .e . b; > 0,
b,,>0 and bk= 0 for j < k < j' ) . Clearly from (6)

Y (9'-9)=o(mi)

1 ) For the k of the second clan we have ak =ak+1= . . . = ak+l-bk -bk+l = . . . =
bk+ l= 0 .



where the dash indicates that j' - j < 2c4 log mi and j < mi/2 . Thus

(16)

where the double dash indicates that j' - j > 2c4 log mi , j < m//2 (if j < mi/2

< j', then we put j'= 2') . Let now j' - j > 2c4 log mi . Let kl > j be the

largest index for which a,,>0 and k l < (j+j')/2 . By (C) we have

( 17 )

	

k1 > j+(j'-j)/2 c 2 or k1 -j > (j' - j)/2 C2

By (15) we have for j < k < k 2

(18)

	

Ak > Bk .

(16 and (17) implies that

(19)
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Y' (j '- j) = 2mi+o(mi)

:`"
(kl- j) > (2 mi+o (mi))/2c2 > c3 mi .

(18 and (19) clearly imply (12) and thus the proof of lemma 4 . is complete .
With a little more trouble I can prove the following sharper
Lemma 4' . Let ak and bk be two sequences of non negative integers . The

a-s are supposed to be infinite . Assume that

lim sup (ak + b k )'"k < t,

and that there exist an infinite sequence mi for which
mi

(ak + bk) < clmi, f(mi)=o(mi), g(mi)=o(mi) •
ka1

Further assume that (C) holds. Then

ak
tkkbk' 5k- ± 1k-1

is irrational .
The proof is very similar to that of lemma 4, only the proof of Ni > c3 m;

is a bit more troublesome here .
Now we can prove Theorem 2 . Put a =

	

Fmk , and assume that
k-1

(20) do al , + d1 al' -1+ . . .+d 1,=0, 1 1 < 1, d o > 0, the d' s are integers .

First of all we can assume that for a certain c 5

(21)

	

nk+1 < C5 nk, 1 < k < oo .

For if (21) does not hold then lim sup nk+1/nk=oo, and therefore
)' 1

	

Uk
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1 'kk+1/sktnt=a - t,zk < Mk+1
2 (TIO

thus a is a Liouville number and therefore transcendental, which contra-
dicts (20) .
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Expanding by the polynomial theorem we obtain

00 00do a'1= I "-k, dl a'1-1+ . . .+d1,= I Ekbkk

k-1
l

	

k-1 l

(5) is clearly satisfied with s=1 1 + 1 . Further since lim sup n,,/k'=00, there
exists a sequence nki for which lim nk /kti = oo . Now ak > 0 if and only if k
is the sum of 11 n's, and bk > 0 implies that k is the sum of 1 1 -1 or fewer
n's. Thus by a simple argument

f(nk,) < k%1= o(nk), g(nk)
< k7,-1= o (n 1 1il' ) .

Further by a simple argument
"k,
I (a,+b;) < c b k; =o(nk ,)=
i-1

Thus (6) is satisfied with m;=nk . . To show that (C) is satisfied we observe
that if bk > 0 then k is the sum of say r n's, r < 11 . Thus all the integers
k + (11- r)n{ , i = 1, 2, . . . are the sum of 1 1 n's . Thus

ak+u,- .n,, > 0, i=1, 2 . . . .

Thus in view of (21) (C) is satisfied with c2 =11c4 . Hence by lemma 4

do a'1+d 1

	

. . .+d11 = 00 ¢k+kkbk
k-l

is irrational, which contradicts (20), and thus Theorem 2 is proved.


	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8

