
ON THE SET OF POINTS OF CONVERGENCE
OF A LACUNARY TRIGONOMETRIC SERIES
AND THE EQUIDISTRIBUTION PROPERTIES

OF RELATED SEQUENCES
By P . ERDÖS and S . J. TAYLOR

[Received 3 May 1957 .-Read 16 May 1957]

1 . Introduction
WE consider the convergence of the series

sin(n k x+1tk ),
k=1

where {µk} ( k = 1, 2, . . .) is a sequence of constants satisfying 0 < µk < 2zr
and {nk } ( k = 1, 2, . . .) is an increasing sequence of integers satisfying

tk = nk+1 > p > 1 .

	

(2)
nk

It is well known from the classical theory of trigonometric series that the
series (1) cannot converge except possibly for values of x in a set of zero
Lebesgue measure . Our object is to discover how `thin' this set is for various
types of sequence {nk } . The first result of this kind is due to P . Turan who
proved, in 1941, that the series (1) converges absolutely in a set of positive
logarithmic capacity in the case

nk = (k!) 2 ,

	

Pk = 0

	

(k = 1, 2, . . .) .

	

(3)
It will follow from the results of the present paper that in the case (3) con-
sidered by Turan, the set of values of x for which (1) converges absolutely
has dimension 2, whereas (1) converges in a set of dimension 1 .

The convergence, or absolute convergence, of the lacunary trigonometric
series is intimately related to that of the series

I {((nkx))-cxk},

	

(4)
k=1

where {ak } ( k = 1, 2, . . .) is a sequence of real numbers satisfying 0 < ak < 1,
{nk} satisfies (2) and, for a positive real number ~,

((S)) = fl-[a]
denotes the non-integer part of P . We will consider the set of values of x
which make (4) convergent or absolutely convergent concurrently with the
corresponding sets for the series (1) . Absolute convergence is considered
in § 2, and convergence in § 3 .
Proc. London Math. Soc. (3) 7 (1957)
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Our discussion of the convergence of the series (4) leads naturally to the
problem of equidistribution of the sequence {((n k x))} (k = 1, 2, . . .) . By the
result of Weyl (3), given any increasing sequence Ink} (k = 1, 2, . . .) of posi-
tive integers, the set of values of x such that ((nk x)) (k = 1, 2, . . .) is equi-
distributed in (0, 1) has full measure in the Lebesgue sense . Our object in
§ 4 is to examine the exceptional set of values of x for which ((nk x))
(k = 1, 2, . . .) is not equidistributed for different types of sequence {nk} .
Among other results obtained, we prove that if {nk} satisfies (2), then
((nk x)) (k = 1, 2, . . .) is not equidistributed for values of x in a set of
dimension 1 .

For notation and definitions relating to the theory of Hausdorff measures,
see, for example, (2) . We need the following theorem which is a special
case of a result due to Eggleston (1) .

THEOREM A. Suppose Ik (k = 1, 2, . . .) is a linear set consisting of Nk closed
intervals each of length 8 k . Let each interval of Ik contain nk+l > 2 closed
intervals ofIk+l so distributed that their minimum distance apart is Pk+1 > Sk+1 •

Let

Then, if

LEMMA 1 . If the series

P = (~ Ik.
k=1

lim inf Nk+1 Pk+1 5ks-1 > 0,
k_m

the set P has positive As-measure .

2 . Absolute convergence
We first consider the cardinal number of the set of absolute convergence

of (1) or (4) . For sets known to have the cardinal number of the continuum,
we consider the dimension in the sense of Besicovitch . This classifies linear
sets of zero Lebesgue measure by considering their measures with respect
to the class of Hausdorff s-dimensional measures 0 < s < 1 .

The connexion between the absolute convergence of the series (1) and
(4) is given by

\nk 2a)) 2a converges, then the series

sin(n k x-tik ) converges absolutely .

The proof is trivial . The converse is not true, but we will see that the
infinite cardinal or dimension of the sets of absolute convergence of (1) and
(4) will always be the same . To save space we will state the theorems only
for the series (1) . Theorem nA will be the theorem for series (4) correspond-
ing to the Theorem n for series (1) .

We will see that the `size' of the set of absolute convergence depends on
the rate at which t k increases . First we consider the case of t k bounded.
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In Theorem 16 of (1), Eggleston proves that, given y (0 < y < 1), there
cannot be more than a countable set of x for which ((n k x)) -* y as k -> oo .
Trivial modifications of his proof give :

THEOREM 1 . If{µk} (k = 1, 2, . . .) satisfies 0 < µk < 27r and {nk } ( k = 1, 2, . . .)
is an increasing sequence of integers such that 1 < tk < K < oo, then there
is at most a countable set of values x such that

sin(n kx-µk) --> 0 as k - oo .

COROLLARY . Under the conditions of Theorem 1, there is at most a countable
set of values x such that sin(nkx-µk )

converges .

This theorem is best possible in the sense that the set of points where
(1) converges absolutely can have power N o . For example, take nk = 2k,

µk = 0 (k = 1, 2, . . .), then (1) converges absolutely if x = pir2 -4, for any
positive integers p, q . However, the result can be sharpened in the sense
that given {nk} with p < tk < K, for `almost all' sequences {µk} there will
be no points x for which (1) converges . We content ourselves with proving

THEOREM 2. Suppose the sequence of integers {n k} is such that

1<p<t k <K<oo.

Then there are at most enumerably many pairs (x, y) (0 < x < 29r, 0 < y < 27r)
such that

	

sin(nk x-y) -->0 as k - oo .

COROLLARY . Under the conditions of Theorem 2, there is a linear set Q with
cardinal number < N o such that, when y is not in Q, there is no x with
sin(nk x-y) --> 0 ; and therefore the series 2: sin(nk x-y) does not converge for
any x, unless y c Q .

Proof. Let E satisfy

	

0 < E < 8
P-1
K2

(5)

Let Ek be the subset of the closed square 0 < x < 27T, 0 < y < 21r such
that	sin(nkx-y)sin < E-

Since Since E < 8, it follows that, for every (x, y) in Ek , there must exist an
integer r such that

ink x-y-rir < 2E .

Hence Ek is a subset of the setFk consisting of the closed strips of the plane
nk x+17T-2E < y < nk x+liT }-2E,

where 1 takes all integer values satisfying
-2(nk+1) < 1 < 2(nk+1) .
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Then Fk fl Fk+1 consists of (4nk+5)(4nk+1+5) = Ck closed parallelograms
which are congruent, equally spaced, and similarly situated . Let the pro-

jection on the x-axis of one of these parallelograms have length 8 . By
elementary trigonometry it follows that, if nk > 10,

16E _

	

16E
8 C nk+1-nk nk(tk-1) .

Hence, by (2), we have

	

8 < 16E

	

(6)nk(P-1)

Now the parallel strips making up Fk+2 are separated by a horizontal

distance d ='r-4E . Thusn'k+2

d > 2 > 2 1 > 8 by (5) and (6) .
nk+2 K2 nk

The gradient of the parallel strips of Fk+2 is greater than that of either of the
sides of the parallelograms of Fk n Fk+1 • Hence not more than one strip of
Fk+2 can have a non-void intersection with a single parallelogram of Fk n Fk+1 •

M
Suppose, if possible, (x1, y1), (x2, Y2) are two points of (l Fi which are in

i=k
a single parallelogram of Fk n Fk+1 • Then for every positive integer r, the
two points must be in a single parallelogram of Fk+r n Fk+r+1 • But the pro-

jection of such a parallelogram on the x-axis has length which tends to zero
as r -* oo, by (6) . Hence x1 = x2. Thus the projection n Fi on the x-axis

i=k 00
has at most Ck points . But Ei c Fi (i = 1, 2, . . .), so the projection of f Ei

on the x-axis has at most Ck points .
Now if (x, y) is such that

sin(nkx-y) - 0 ask--co,

		

(7)m co
then (x, y) is in Ei for all sufficiently large i ; that is (x, y) is in U f Ei = E .

k=1 i=koo
Since the projection of n Ei on the x-axis is finite for each k, it follows

i=k:
that the projection of E on the x-axis is at most countable . Thus the set
of x for which there is a y such that (x, y) satisfies (7) is at most countable .
For each such x there are at most 3 values of y in 0 < y < 2i such that
(7) is satisfied . Hence the set of pairs (x, y) satisfying (7) has cardinal
number < No .

We now consider the case of a sequence {nk} such that tk -* oo . In this
case, there can be a set of power continuum for which (1) or (4) converges
absolutely.
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THEOREM 3 . I f {nk } is such that tk is an integer for large values of k, and
tk - co as k - co, then the set of x such that I sin nk x converges absolutely
has power continuum .

Proof. It is clearly sufficient to prove that I ((nkx)) converges for x in
a set of power continuum . Let k1 be such that tk is an integer for k > k 1-1.
Define a sequence {ki } (i = 1, 2, . . .) inductively by letting k i be the smallest
integer such that k i > k i_ 1 , and tk > 2i for every k > ki- 1. Let

Co

i=2

where

	

0 or 1 for each i . Let E be the set of values taken by x for all
such sequences {-]i} (i = 2, 3, . . . ) . ClearlyE has the power of the continuum .
Suppose x is in E. Then if k > k2 ,

Z nk,
nk

where the summation extends over those i for which ki > k. Hence
co

	

ki-1

A ((nk X)) k

	

k '
z

	

k=ka ki>k nki

	

i=3

	

nki n

Now when k = ki- 1, nk/nk, < 2- i, and, for k > k2, nk_ 1/nk < 2 . Hence

((nkx)) =

Thus for all x in E, the series I ((nk x)) converges .

Remark . The condition that tk be an integer in the above theorem cannot
be omitted. For, if {nk } is defined inductively by

n1 = 1, nk = knk_ 1+ 1 for k = 2, 3, . . .,
then it can be shown that sin(nk x-y) converges absolutely for no
pairs (x, y) .
Theorem 3 shows that, when tk is an integer, and tk -->- oo, there are some

sequences {µ k } for which (1) converges absolutely in a set of power con-
tinuum. In fact if tk increases smoothly in some sense and I ti,-1 diverges,
one can prove that for almost all y (in the Lebesgue sense) there is no
value of x such that I sin(nk x-y) converges absolutely. This means that
if tk increases slowly and smoothly the series (1) will not converge absolutely
for any x unless {µ k } is a special sequence . We do not make this idea precise
because we have not obtained nice conditions which are best possible .

k; -1

211 ;
n2

nk < 2i[1+2+ . ..] =
k=ka k.

1Co 1
and so ((nkx)) < =2i-1 2'

k- s i=3
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Instead we state a result which shows that the conclusion of Theorem 3 is
more or less `best possible' .

THEOREM 4 . Suppose nk = k! (k = 1, 2, . . .) and 0 < y <,, or 7r < y < 2,r .
Then the series I sin(n k x-y) converges absolutely for no value of x .

This is easily proved using the comparison test .

COROLLARY . Suppose nk = k! (k = 1, 2, . . .), then the series I ~cosnk x1
diverges for every x .

The above theorems show that if :E tk1 diverges, then the series (1) is
unlikely to converge for a set of values of x of power continuum . The
situation is completely different when tk increases rapidly enough to make

ti-1 convergent . This is given by

THEOREM 5 . Suppose {n k } is such that I tk1 converges ; then for any {µk }
the series I sin (nk x-µk) converges absolutely for values of x in a set of power
continuum .

Proof. In view of Lemma 1, it is sufficient to prove the absolute con-
vergence of I {((nkx))-ak} for continuum many values of x. Let ko be
such that t k > 10 fork > ko . Let Ik be the set of closed intervals of x such
that 0 < x < 1, and

sin ((nkx))- aksin < 4 .
tk

Then Ik contains at least (nk-2) closed intervals of length lk, whose cen-
tres are distance nk 1 apart, where

4 =4 < lk < 8

tk nk

	

nk+1

	

nk+1
Each interval of Ik contains at least 2 intervals of Ik+1 of length 1k+1, whose

ka+r
centres are distance apart nk+1 . Hence (l Ik contains at least 2r(nka-2)

k=ko
disjoint closed intervals of length lka+r. Thus E = n Ik has a perfect

k=ko
subset, and therefore has power continuum . But, if x is in E, then

sin ((nkx))- aksin < t for k > ko ,
k

and so I sin ((nk x))-ak I converges .
We now study the dimension in the sense of Besicovitch of the sets of

absolute convergence of (1) and (4) . The dimension is interesting only in
the case where the set has power continuum since enumerable sets neces-
sarily have dimension 0 . Various results can be obtained showing how the
dimension depends on the rate at which tk ->_ oo . We prove only
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THEOREM 6 . Suppose A > 0, µ > 0, p > 0 are constants, and {n k} is an
increasing sequence of integers such that AkP < tk < akP for each integer k,
and {fck} is any sequence of constants 0 < µk < 27r. Then

(i) if 0 < p < 1, the dimension of the set of x for which I sin(nk x-µk)
converges absolutely is zero;

(ii) if p > 1, the dimension of the set of x for which I sin(n k x-(Lk ) con-
verges absolutely is 1 - 1/p .

To obtain Theorems 6 A (ii) and 6 (ii) it is sufficient to prove
(a) the set where (4) converges absolutely has dimension at least (1-1/p) ;

and
(b) the set where (1) converges absolutely has dimension at most (1-1/p) .

Proof of (a) . Let e satisfy 0 < E < p-1 and s satisfy

0 < s < 1- 1+E.
P

For any such s we will prove that the set of x for which (4) converges
absolutely has positive As-measure . Then the result (a) will follow by taking
values of E which are arbitrarily small .

Put

	

'tk = [2 klk-]
(k = 1, 2, . . .),

	

(8)

and let ko be a fixed integer such that

ktk€- 2 > "ik, fork > ko .

	

(9)

ko exists since tk > AkP and p > 1+e . Let Pk be the set of x such that
0<x<1and

sin ((nkx))-akl < kl+e

	

( 10 )

Then Pk consists of a finite number of closed intervals, at least (nk- 1) of
which are of the same length yk . If ak = 0 or 1, Yk = (nk kl+E)-1 while if
ak is not near 0 or 1, yk = 2(n k kl+E) -1 : in any case

kl
1
nk < Yk < k12nk

The centres of the intervals of Pk are distant apart 1/nk . Now define a
subset Ik of Pk (k > ko ) as follows . Let

5k = (nkk1+e )-1 < Yk •

	

( 11 )
Let Iko be a set of (n,,,-1) closed intervals each of length 8ko, concentric
with intervals of Pko of length yka . Each interval of Iko contains at least
(tko ko1-E-2) intervals of Pko+1 of length Yko+v by (10) . Define Iko+1 as a
set consisting of closed intervals of length 8k,+1 concentric with some of
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the complete intervals of Iko n Pka+1 so chosen that each interval of Iko
contains precisely 71ko intervals of Iko+i : this is possible by (9) .

For k > ko , suppose Ik has been defined and consists of closed intervals
of length Sk . Define Ik+l as a set consisting of closed intervals of length
Sk+1 concentric with some of the intervals of length Yk+1 of Ik n Pk+l so
chosen that each interval of Ik contains precisely '/k intervals of Ik+i •

Write p = n 1k . The conditions of Theorem A are satisfied with
k=ko

N

	

1

	

> 2 kn
I(ko-1)!11+E

by (8) ;

	

( 12 )k+1 = (nko- )~ko~]ko+1 • • • ~k i

	

k+1

	

kl

Pk+1 > 1Tlnk+1

	

(13)

for large k, by (10) since k -1- E < 41 . Thus, by (11), (12), (13),

Nk+1 Pk+1 Sk 1 > (2 )k+1(k I )-1-E(nk k1+6)1-8

> 2(2A)kka+Ex1- S~(k!){Pa - S>-1-E}

since nk > Ak(k!)P . Since p(1-s)-(1+E) > 0, Nk+1 Pk+1 Sk 1 -* ce ask -- co .
By Theorem A, ASP > 0. But P is a subset of the set of x such that

sin ((n'kx))-akl < k-1 E

for sufficiently large k . Hence this set has positive AS-measure . But for x
in this set, the series (4) converges absolutely. Hence the set of x for which
(4) converges absolutely has positive AS-measure. This completes the proof.

Proof of (b) . Let E be the set of x such that I I sin(nkx-µk ) I converges .
Suppose 1 > s > 1-1/p; then it is sufficient to prove that AS(E) = 0 for
all such s. Let E satisfy

0 < e < 1-p(1-s) .

	

(14)

For each x in E, let k 1 , k 2 , . . ., kq , . . . be the sequence of values of the integer k

must have zero density. This implies that there exists an integer N (depend-
ing on x in E) such that, when n > N, the number of integers k < n which
satisfy (15) is less than En .
Let Qk be the set of x such that 0 < x <_ 27T, and

j sin(nkx -µk)1 < 4k

	

( 16 )

Then Qk C'k , where Ik consists of (2n k +3) closed intervals of length 1/knk

and centres at the points (µ k+l7r)/nk with 1 taking integer values between
- 2 and 2nk • Since the centres of the intervals of Ik are distance apart 7rnk 1 ,

for which
sin(n k x -µk)1 > 4k • ( 15 )

Then since (1) converges absolutely for this x, the sequence {ki} ( i = 1, 2, . . .)
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the number of intervals of Ik+1 which have a non-void intersection with a
single interval of Ik is at most

kin { 2 < k tk .
k

m
Letn Ik consist of tN,m closed intervals of length not greater than 1/mnm .k

Then
~N+1	nmtN,m < (2nN }

3)Nnv
. .
.(m-1)nm_l'

so that

	

tN,m < 3nm1) ! .

	

(17)
km-

Now suppose {ki} is an increasing sequence of integers such that
N<kl<k2< . . . <kq < . .<

and, if kq < r, then

	

q < Er

The number of such sequences which differ in the range N < k < m is
certainly less than 2m .

For each ki (i = 1, 2, . . .) the number of intervals inn Ik differs from
k#kiN<k<m

the number in n Ik by a factor < 27rki since the intervals of Ik, have
N<k<m

length 1/ki nk{ and centres distance apart 7r/nka . Hence for a fixed sequence
satisfying (18), the number of intervals of length 1/mnm needed to cover

n

	

Ik is not greater than
k#k; (1<i<q)
N<k<m

rN,m
s
m

~q
WNm, = tN,m 11 (21Tk i )

3(27Tm)q
(MN!

1)
! n
m ,

by (17) . Hence, by (18), we have
WN,m < 3(27rm)Em (mN!1)

! n„t .

	

( 19 )

Thus, ifEv is the set of values of x such that x is in Qk for k > N, except
for a sequence {ki } satisfying (18) where (16) is not known to be satisfied,
then EN can be covered by rN,m intervals of length 1/mnm = lm , where

!
rN,m < 2mWN,m < 15mmEm	nm,

(m-1)!
by (19) . Hence

< 15mrymem	N!	 n	 1

	

= 15mmEm+1-sr~l-s
!

(m-1)! m mnm/S

	

m m !'

But nm < µm(m!)P, and hence
rN,m lm < fGm(1-s)15mmem+1N! (m!)P(1-s)-1 < vmmcmm[E+P(1 -s)-11
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where v, c are suitable finite constants, since m! > (4m)m . By (14), it
follows that E+p(1-s)-1 < 0, and hence

rNm ln,-±0 as m-~oo.
M

Thus AS(EN) = 0 . But E c U EN. Hence As(E) = 0 as required .
N=1

To prove Theorems 6 A (i) and 6 (i) it is sufficient to prove
(c) When 0 < p < 1, the set where (1) converges absolutely has dimension

zero .

This can be proved by making a few obvious modifications to the
proof of (b) .

Remark 1 . If this theorem is applied to the case n k = k! of Theorem 4
we see that, if y is not a multiple of -,T, then I sin(n k x-y) converges
absolutely for no value of x, while if y = 0, 7r, or 27r, I sin nk x converges
absolutely in a set of power continuum but zero dimension .
Remark 2 . In the hypothesis of Theorem 6, if one assumes only one-sided

inequalities to be satisfied by tk , then one obtains by the above method of
proof upper or lower bounds for the dimension of the appropriate set of
absolute convergence . In particular, if

n 1 = 1,

	

n2 =2,

	

tk = kk (k = 2, 3, . . .),

the series (1) and (4) each converge absolutely on a set of dimension 1 .
The same methods can be used to prove the following
THEOREM 7 . If {µk} is any sequence of constants 0 < µk < 2-,T and h(z) is

any measure function of class 1,t there exists an increasing sequence {nk} of
integers such that the set of values of x for which I sin(nk x-µk ) converges
absolutely has infinite measure with respect to h(z) .

3. Convergence
Clearly the series (1) or (4) may converge without converging absolutely,

so that, in general the set of points x making (1) or (4) converge will be
larger than the set making the series converge absolutely . However, if
(1) is to converge, sin(nk x-µk) must tend to zero as k - cc). Thus, by
Theorem 1, if tk is bounded for all k, then the set of convergence of (1) is
at most enumerable . We now see that if tk - oc, however slowly, as k -* cc,
then the set of convergence has dimension 1. Thus the situation is much
simpler than for absolute convergence .
THEOREM 8 . Suppose {µk} is any sequence of constants, 0 < µk < 27r,

and {nk} is an increasing sequence of integers such that tk _> ee, then the set
of values of x such that I sin(nk x-µk) converges has dimension 1 .

t See (2) for a definition of measure function of class 1 .
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Proof. Let E be the set of x such that the series (1) converges . Suppose
s is fixed and 0 < s < 1 . It is sufficient to prove that, for any such s,
A8(E) > 0. We prove this by defining a perfect set P and an integer j such

i k
Then g(k) ->- 0, h(k) -* 0 as k -> oo, h(k) decreases as k increases, and

h(k) > g(k) (k = 1, 2, . . .) . Put

with l taking all integer values . Let Sk be the corresponding set given by

x = n {µ k ~hr { (-1)i } (-h(k) < 6 < 0) .
k

Then

	

sin(nkx-µk)

	

0 for x in Rk ,
{ < 0 for x in Sk .

	

(29)

Each of the sets Rk, Sk consists of closed intervals of length h(k)nk'separated

bk - Stk h(k) . (25)

Then

	

~k < h()nk+l - 4 , (26)
k

by (23) and (24) .
Choose an integer j so large that

nj > 100 and h(k) < 1'-o for k > j . (27)

2, . . .) . (28)

By (23) and (24),
nk -8)Ik > {1g(k)J -1 > { 1h(7c)j-1 ,

and therefore

	

n1-8 > {Sh(k)} -k .

Since h(k) decreases, there is a constant C such that

n,1- > C{$h(j)lh(j+1) . . .gh(j+r)}-1 (r = 0, 1,

Let Rk be the set of closed intervals given by

x =
n

	

(0 <
k

6 < h(k)),

that, when x is in P,
sin(nk x-11k)-> 0 as k -->oo ; (20)

and, fork > j,
k

sin(nr x-µr) have opposite signs . (21)sin(nk+lx-µk+1) and
r=7

Clearly P is a subset of E, and so it is sufficient to prove that
A8(P) > 0 . (22)

Now nk Ilk -* 0 as k - oo, since tk -> oo. Fork = 1, 2, . . ., let

(23)g(k) = max{40 nk-, 8nk (1-s)Ikl
nk+1

h(k) = sup g(i) . (24)
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by distances of either 7rnk1 or {7r-2h(k)}nk 1 . By (27), there are at least

(2nj-1) complete intervals of Rj in 0 < x < 27r . Choose precisely nj of
these, and call this set I0 . In each interval of I0 there are at least

nj+1(h(j) 7rn -2j

	

I
complete intervals of Sj+1 • By (25), we can choose exactly ~j such intervals
in each interval of Io : call this set Il . Then for any x in 10 fl Il , (21) is true

for k = j . We proceed inductively. Suppose Ir (r > 1) has been defined
and consists of closed intervals of length

8, = h(.l +r)nj+r •

	

(30)
Let (1, m) be a typical interval of Ir . There exists a point y (1 < y < m)
such that +rI sin(nkx-µ k ) < 0 when l< x< y

k=)*

	

(31)
j+r

but

	

sin(nk x-Ntk ) > 0 when y < x < m
k=j

In (1,y) there are at least {(y-l)(nj+r+1/7r)-2} complete intervals of

Rj+r+1, and in (y, m) there are at least {(m-y)(nj+r+1/7r)-2} complete
intervals of Sj+r+1 • Hence, by (26) and (30), since 8, = m-l, we can choose
precisely ~j+r intervals of length 8r+1 such that some of these are complete
intervals of (1, y) n Rj+r+l and others are complete intervals of (y, m) n Sj+r+1 •
Call the set obtained by treating each interval of Ir in this way Ir+1 • Then,

oo
by (31), for x in Ir+l (21) is satisfied with k = j+r . Thus the set P = fl Ir

r=0
satisfies the conditions (20) and (21) . We now apply Theorem A to this set :

Nr+1 = njb
y
jb

y
j+1 ~j+r ;

	

Pr+1

	

7r-2h(j+r+1)

	

l>

	

> ~j+r+1>
nj+r+1

and 8, is given by (29) . Hence

N

	

88-1 > n . y y n1-s{h(j+r)}-c1-s>r+iPr+1 r

	

i

	

- bj . . . bj+r 9+r
nj+r+1

>nj tj tj+l . . .tj+r C{h(j+r)}-(1-s),
nj+r+1

by (28) and (25) . Thus

Nr+1 Pr+1 8r' -1 > C{h(j+r)}-(1-s) > C, by (27) ;

and P satisfies (22), as required .

Remark 1 . Theorem 8A is not true for completely arbitrary folk}: for
example it is not true if ak - 0, since in this case the series (4) converges
only if it converges absolutely . However, if0 < 8 < ak < 1-8 (k = 1, 2, . . .)
and tk -* ao, it can be proved that (4) converges for x in a set of dimension 1 .

5388 .3 .7

	

R r
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Remark 2 . By making some modifications to the argument of Theorem 8,
it can be shown that, with the same hypothesis, and any real number K,
the set of values of x such that

W

sin(n kx-µk) = K
k=1

has dimension 1 .

4. Equidistribution of ((nkx))

We say that the sequence z1 , z2 , . . ., z,, . . . is equidistributed in (0, 1) if, for
every 1, m satisfying 0 < 1 < m < 1, the density of integers r for which
l < zr < m is exactly (m-l) : that is, if

- 1 when 1 < z,. < m,
E'

	

0 otherwise,

then

	

lim (1
t-.o t r=1

THEOREM 9 . The sequence z1 , z 2 , . . . of real numbers is equidistributed in
(0, 1) if and only if t

lim1 exp(gzr 2,ri) = 0
t--, t

for every positive integer q .

This result is due to Weyl (3) . By the method of Weyl one can prove
easily

THEOREM 10 . If {n k} (k = 1, 2, . . .) is an increasing sequence of integers,
then the set of values of x such that ((n kx)) (k = 1, 2, . . .) is not equidistributed
in (0, 1) has zero Lebesgue measure .

The `size' of the exceptional set of x for which ((nk x)) is not equidistri-
buted depends on the sequence {nk} . For example, it is known that if nk
is given by a polynomial in k with integer coefficients, then the set of x
for which ((nk x)) is not equidistributed is enumerable . In this case t k - 1
as k -~- oo . However, we first see that tk --> 1 is not a sufficient condition
to ensure that the exceptional set has power No .

THEOREM 11 . There exists a finite constant C, and an increasing sequence
of integers {n k} such that

nk+l -nk < C (k = 1, 2, . . .)

and the set of x such that ((nk x)) is not equidistributed is not enumerable .

Proof. We define a sequence {nk} for which there is a GS-set E, such that
E is dense in an interval, and for x in E, ((nk x)) is not equidistributed .
By the Baire category theorem, a GS-set which is dense in an interval

r=1

t

l
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cannot have power < X o so that it is clearly sufficient for the truth of the
theorem to define such a sequence .

Suppose {Az} (i = 1, 2, . . .) contains all the rationals p satisfying s < p < ,

and each rational occurs in the sequence infinitely often. Let

ks = 51, (s = 0, 1, 2, . . .) .

	

(32)

Put n1 = 1. Suppose for some positive integer r, n k has been defined for

k < kr_ l . We define nk by induction in the range

kr_ 1 < k < k r (r = 1, 2, . . .)

as follows . Suppose nk_ 1 has been defined . Let n k be the smallest integer
greater than nk_ 1 for which

cos(nk Ar .21r) > 2 .

	

(33)
Since 2 > A r > 8, it is clear that

nk-nk-1 < ~ < 24rr
A,

so that

	

nk+l-nk < 100 (k = 1, 2, . . .) .

	

(34)

By (33),

	

kr
cos(n k Ar 2rr) > 2(k r-kr_ 1 ) = 2kr _1, by (32) .

k=k,_,+1
k,

Hence

	

k

	

cos(nk Ar 2rr) >
kk 1 = 5 .r k=1

	

r

Let Ir be an open interval containing , such that if x is in Ir, then

I k

k=1

Let

	

E = n u Ir .
q=1 r=q

Then E contains all points x which are in infinitely many Ir . Thus E
contains every rational in s < p < s, and is therefore everywhere dense
in the interval

	

Further, E is a Gs-set .
If x E E, then given N, x is in Ir for some r > N. By (35), there is an

integer t = kr > N such that

-

	

cos{((nk x))2rr} =
t

	

cos(nk x2rr) >
k=1

Hence, for any x in E,

lim sup1	cos{((nkx))2rr}> 5,
t-o

	

1, k=1
and therefore, by Theorem 9, ((n k x)) is not equidistributed in (0, 1) . By
(34), the sequence {n k } satisfies the required conditions with C = 100 .

1

cos(nk x 27r) > 5 .

	

(35)

k=1
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It now becomes interesting to ask what is the dimension of the excep-
tional set of non-equidistribution for a sequence satisfying the conditions
of Theorem 11 .

THEOREM 12 . Suppose C is a constant, and {nk} an increasing sequence
of integers such that

nk+i-nk < C (k = 1, 2, . .),

then the set of points x for which ((nk x)) is not equidistributed has dimension
zero .

Proof. Under the given conditions, there is a constant A such that
n k < Ak (k = 1, 2, . . .) .

	

(36)

For s = 1, 2, . . ., t = 1, 2, . . ., put
t

fm(x) =
k=1~

cos(nk x 27rs) .

	

(37)

For any rational µ > 0, let FS µ be the set of x such that

Ifs,l(x)I > µt .

	

(38)

Put am = [exp(m/logm)] (m = 3, 4, . . .) : then {am } (m = 3, 4, . . .) is an
increasing sequence of integers such that

am+i --> 1 as m -* oo .
am

Then if (38) is satisfied for infinitely many integers t (fixed s, µ), it must
be satisfied for infinitely many integers of the sequence {am}, that is

ES,µ = 1 1 U Fs .a>n ./L
1=3 m=l

contains the set of x such that

lim sup
t_~

so

I
fs.t(x) > µ .

(39)

Given a satisfying 1 > a > 0, we prove that
A"&µ = 0.

	

(40)

This, together with the corresponding result for polynomials of sines
instead of cosines, implies the truth of the theorem by taking the union
ofEs,µ for s = 1, 2, . . ., and all positive rationals µ, and applying Theorem 9.

2n

Now

	

f sinf',, (X ) 12 dx = art,
0

sinFs,hµ < µ2 t ,

	

(41)
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by (38) . Now

dxf8' t(x)

•

	

7TAt 2 .

Hence, if x o E FS,t,,,, there is an interval containing x 0 of length at least
VA t

which is a subset of F3,, ,1µ . The total length of F,, , ,1µ is less than w2 t , by
(41), so that F3 ,, µ can be enclosed in a finite set of not more than K3 ,µ

intervals of total length
42

t where
µ
K = L

42 -
-}-

µ
1 .S,µ

	

µ
If 11, 1 2 , . . ., lp (p < KS, µ ) are the lengths of a set of intervals covering F,, ,t,µ ,
but contained in FS,t,1µ , we have

p

Z~ li
< sinFs.~,kµ < 2 t ,

and therefore

	

P l« < KS 47r 1 1

µ2 t KS,µYl

since the real function z" is convex . It follows that there is a constant LS,µ ,
and a covering by a finite set of intervals of lengths 11, 12 , . . ., l2 of the set
FS such that

oo
By (39) the set ES,µ c U FS,a.,µ (1 = 3, 4, . . .) and therefore E,,,, can be

m=l
covered by a sequence of intervals of lengths 1, 1 2 , . . . such that

l« < L.,11 I am
m=q

Since the series on the right-hand side of this expression converges (40) is

proved. This completes the proof of the theorem .

Remark . The method of proof used is good enough to strengthen the
result in Theorem 12 . Thus the exceptional set of x for which ((nk x)) is
not equidistributed has zero measure with respect to the measure function

[log(1/z)]-1_E for every e > 0. We have been unable to decide whether or
not this set must have zero capacity-this would follow if the measure
with respect to [log(1/z)]-1 is finite .

e
•

	

27r nk
1

t
•

	

27rAkI k, by (36),
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By the same method of proof used in Theorem 12 one can prove

THEOREM 13 . Suppose C > 0, p > 1 are constants and {n k } is an increasing

sequence of integers such that

n k < CkP (k = 1, 2, . . .),

then the set of points x for which ((n k x)) is not equidistributed has dimension

not greater than (1-1/p) .

By constructing a special sequence {nk} one can prove that the bound
(1-1/p) of this theorem can be attained .

So far, in the present section, we have been considering sequences {n k }
which do not increase too quickly . They are certainly not lacunary, for
under the hypotheses of Theorem 12 or 13

lim inf tk = 1
k-w

The case t -- oc is easily decided. For in § 3 we proved that the set E of
values of x such that {((nk x))-a} converges, 0 < a < 1, has dimension 1 .

For x in this set E,
((nkx))

	

a,

and therefore ((nk x)) is certainly not equidistributed. We now show that

the condition (2) that the sequence {nk} be lacunary is sufficient to imply
that the exceptional set of x for which ((nk x)) is not equidistributed has
dimension 1 . Zygmund, in (4), proved that the set of x for which

lim sup
t

	

cos(nkx 2lr) > 0
t~00

is everywhere dense in (0, 1), but his method does not seem to give the
dimension.

THEOREM 14 . If {n k} is an increasing sequence of integers such that
tk > p > 1, then the set E of values of x such that ((n kx)) is not equidistributed
in (0, 1) has dimension 1 .

Proof. It is sufficient to show that E has positive As-measure for any s
satisfying 0 < s < 1 . Let / > 1/(1-s) . Choose C so that io > C > 0,
and

	

Ci-fla-s) > 3

Let

	

V=
L
Rl0g(1/C)~ -F-1,I log p

where p satisfies (2) . Then for any positive integer k,

nk+v > C-9 > 10 .
nk

Let Qr be the set of x such that 0 < x < 1, and

0 < ((n'rv x)) < C (r = l, 2, . . .) .

(42)

(43)

(44)

I
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Then Qr contains at least nrv closed intervals of length

8, = C,

	

( 45)
nr ,,,

whose centres are distance n,.,, 1 apart. Put

Cn(r+1)uYr =	 -2

	

(r = 1, 2, . . .) .
nr,

Then, by (44),

	

yr > 2Cn(r+1)v > 2C1- S,

	

(46)
nrv

and each interval of Qr contains at least y, complete intervals of Qr+1 •
Let I1 consist of nv complete intervals of Q1. Suppose Ir has been defined,

r > 1, so that it consists of some of the intervals of Qr of length 8r . In
each interval of Ir choose yr complete intervals of Qr+1, and call this set Ir+1 •

Now let us apply Theorem A to P = n Ir . 8, is given by (45) ;
r=1

Cr+1
Pr+1 > n(r+1)v ;

	

Nr+1 = nvY1Y2 . . .Yr >	2r n(r+i)v, by (46)-2

Hence

	

N1-+1 Pr+18s-1 > (2) -1(nrv)1-3

By (44), n,.,, > n„ C-g(r-1) > (;-mr-1), and

1

so

Nr+1 Pr+1 sr -1 > C
1-g(1-s) rC1+P-ps

{

	

2

	

}

	

2
as r --)- oo by (42) .
Thus As(P) > 0 . Now, if x is in P, the lower density of integers q such

that 0 < ((nx)) < C is at least 1/v. By (43), if C is small enough,

1 > 10C .
v

Thus, for x in P, ((nk , x)) has too many members in the interval (0, C),
and is therefore not equidistributed in (0, 1) . Hence P c E, and As(E) > 0,
as required .
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