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Let f(x) be an increasing function. Recently ‘) there have 
been several papers which proved that under fairly general con- 
ditions on f(x) the density of integers n for which (n, f(n) )= 1 
is 6/n’ and that (d(n) denotes the number of divisors of n ) 

t 
x d(n, [f(nd ) = (( 1 + o(l)) T2x/6. 
n= 1 

In particular both of these results hold if f(x) = x “, 0 4 O( 4 1 
and the first holds if f(x) = [q xl , a irrational. 

In this note we are going to prove the following: 

THEOREM 1. The necessary and sufficient condition that 
for an irrational d we should have 

d(n,[en] ) = (1 +o(l) ) I12x/6 

is that for every c 7 0 the number of solutions of 

(2) d c a/b d oc+ l/(l+~)~ 

should be finite in positive integers a and b. 

Denote e’(n) = fd. 

din 

It is easy to see that for 04 P(e i 

t3) 21 = 1 cftn, Ln’l) = (1 + o(l) ) xlogx 

Very likely (3) also holds for l/2 C d C 1 but I have not 
yet been able to show this. By more complicated arguments I 
can show 
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THEOREM 2. The necessary and sufficient condition that 

for an irrational d we should have 

(4) fl dh cn 41 1 = ( l/2 + o( 1) ) x log x 

is that for every E > 0 the number of solutions in positive inte- 
gers a and b of 

and of 

(6) ~4 < a/b < o( + Eb-2/log b 

should be finite. 

It is easy to see that conditions (5) and (6) are equivalent 
to the following: Put d= ao + 1 1 . . . , then -- 

a1t a2+ 
(l/n) log an3 0, (l/n) a 2n+l -+ O* 

In the present note we will not prove Theorem 2 since the 
proof is similar to that of Theorem 1, but is rather more com- 
plicated. 

Similarly one could try to obtain an asymptotic formula 
for 

-2 
X 

b(n, [f(nl-J 1 

n=l 

for more general functions f(x), but I have not succeeded in ob- 
taining any interesting results. 

Now we prove Theorem 1. Denote by N(y, l/k) the number 
of integers 1 c n ( y for which 

(n, [n 4-J): 0 (mod k) holds if and only if n = vk and 

vk ei - uk+/3 , O<fj<l, 

that is (n, [n 42 ) I 0 (mod k) holds if and only if 
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Thus the number of integers n( x satisfying (n, c n 4 ] ) L 0 
(mod k) equals N (x/k, l/k), (since n - vk implies VG x/k). Thus 

by interchanging the order of summation 

(7) r; I l d(n 9 En d 3 ) =zkx 1 N(x/k, l/k) , 
I 

Since nd - [n 4 ] is equidistributed (mod 1) we evidently have 

(8) N (x/k, l/k) - (1 + 4 1) ) (x/k2) , 

for fixed k as x tends to infinity. Thus from (7) and (8) for every 
irrational 4 

(9)znfl d(n, Ln a( ] ) 2 (1 c o(1) )~&x/k2 = (1+0(l) kr2,/6 

Assume now that (2) is not satisfied. Then there is a fixed 
c > O and arbitrarily large values of b for which 

(10) ol c a/b 4 0l.c l/( l+~)~, 

Put (14c)b = x. Write 

where in 21, n * 0 (mod b) and in s 2, n= 0 (mod b) . From 

the equidistribution of n =L- [ng it follows that for fixed k 
the number of integers satisfying 

14 ncx, n+O(modb), Ocn$ - [noc]Ll/k 

is not less than 

(12) N {x/k, l/k) - x/b = (1 +0(l)) x/k2 - x/b. 

Thus from (7) and (12) we have for every fixed t 

(13Eiq t ((1 + o(l) ) x/k’) - tx/b = (1 + o( 1) ) v2x/6. 
k=l 

Inr2, n = vbC x. - 
we have 

Thus from (10) and vb& x, (1~)~ - x 

Thus (vb,&vb d-j) s 0 (mod v) for all 15 v< x/b. Hence 
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(14 & 3 r: d(v) = (1 + o( 1) )(x/t) log(x/b) 
15~ ‘5% 

= (1 + o(l))x log(l + c) 

Now (111, (13) and (14) show that (1) does not hold, Thus (2) is 
a necessary condition for the validity of (1). 

To show that (2) is sufficient we need an upper estimation 
for N (x/k, l/k) for large k. Put x/k - y : it is well known that 
there exists an a/b satisfying 

(15) Id-a/b} < l/(W) , b ( 2y, (a,b) = 1. 

Now we distinguish two cases. First assume b > k/2. 
Clearly for 15 n L y 

(16) kd. - Ltr4-j = u/b + O/b, \e\ < l/2 . 

Thus O<na- [no(]<l/kcanonlyholdifu=O, 1, . . ..z+ 1 
where 

( 17) z/b L l/k < (z *1)/k , or z L b/k . 

The number of n’s not exceeding y for which u has a given 
value is clearly less than 2y/b + 1, Thus from (17) and b > k/2 
we have 

(18) N (x/k, l/k) c (b/k + 1) (2y/b + 1) 2 (3b/k) (4y,b) = 12x/k’ . 

Next assume b< k/2. If a/bL ti then N(x/k, l/k) q 0 since 
in (16) 8 L 0, thus for u = 0 nP1- 
forusli0(- End] > 1,2b ::,l? 

is not in (0, l/k) and 

. 

Thus a/b > ti , Clearly O< n d - 

if u - 
[n d]c l/k is only possible 

0, that is if n L 0 (mod b). Thus 

(19) Nx/k, l/k) b jx,(bk). 

If N(x/k, l/k) > 0, then (since all the n < x/k for which 
Oc n ol- Ln al<l/k are multiples of b) we have by (15) 

b 4 -Lb < 1 c min (k/x, l/k) L x-1,2 , 

but this implies by (2) that 

(20) b/log x + m. 
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Thus finally from (7), (8)) (18) and (19) we have for every 
fixed t 

X 

> 
d(n, non )L (1 +o(l))z&c/6 +12x 2 we+wvL$ 

n-1 k>t 44% 

hence by (20) 

(21) x 

z 
n-1 

d(n, [n *] & (1 +0(l) )srz,/6 . 

From (9) and (21) we have that if (2) is satisfied, then 

X 

z nll d(n, Lcl ) = (1 +0(l)) W2x/6 . 

Thus condition (2) is sufficient, which completes the proof of 
our Theorem. 

University of British Columbia - 

1) See G .L. Watson, Canadian Journal of Math. 5( 1953), 451-455, 
T. Estermann, ibid 5( 1953)) 456-459 and J. Lambek and 
L. Moser, ibid 7(1955), 155-158. See also a forthcoming 
paper by P. Erdgs and G.G. Lorentz in Acta Arithmetica. 

CORRECTION 

In the paper “On an elementary problem in number theory” 
by Paul Erdb’s in Vol. 1, no. 1 of this Bulletin, P. 5 , line 5 
should read 

0 L, u,v c f(x) and (s&u, y+v) # 1. 
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