ASYMPTOTIC FORMULAS FOR SOME ARITHMETIC FUNCTIONS

P. ErdO's
(received April 9, 1958)

Let $f(x)$ be an increasing function. Recently ${ }^{\text {l }}$ there have been several papers which proved that under fairly general conditions on $f(x)$ the density of integers n for which $(n, f(n))=1$ is $6 / \pi^{2}$ and that ($d(n)$ denotes the number of divisors of n)

$$
\sum_{n=1}^{x} d(n,[f(n)])=\left((1+o(1)) \pi^{2} x / 6\right.
$$

In particular both of these results hold if $f(x)=x^{\alpha}, 0<\alpha<1$ and the first holds if $f(x)=[\alpha x], \alpha$ irrational.

In this note we are going to prove the following:
THEOREM 1. The necessary and sufficient condition that for an irrational α we should have
(1) $\sum_{n=1}^{x} d(n,[\alpha n])=(1+o(1)) \pi^{2} x / 6$
is that for every $c>0$ the number of solutions of
(2) $\quad \alpha<a / b<\alpha+1 /(1+c)^{b}$
should be finite in positive integers a and b.
Denote $\quad \sigma(n)=\sum_{d \mid n} d$. It is easy to see that for $0<\alpha<\frac{1}{2}$
(3) $\sum_{n=1}^{x} \sigma^{\prime}\left(n,\left[n^{\alpha}\right]\right)=(1+o(1)) x \log x$

Very likely (3) also holds for $1 / 2<\alpha<1$ but I have not yet been able to show this. By more complicated arguments I can show

Can. Math. Bull., vol. 1, no. 3, Sept. 1958

THEOREM 2. The necessary and sufficient condition that for an irrational α we should have
(4) $\sum_{n=1}^{x} \sigma(n,[n \alpha])=(1 / 2+o(1)) x \log x$
is that for every $\mathcal{>}>0$ the number of solutions in positive integers a and b of

$$
\begin{equation*}
|\alpha-a / b|<\frac{1}{b^{2+\varepsilon}} \tag{5}
\end{equation*}
$$

and of
(6) $\alpha<a / b<\alpha+\varepsilon b^{-2} / \log b$
should be finite.

It is easy to see that conditions (5) and (6) are equivalent to the following: Put $\alpha=a_{0}+\frac{1}{a_{1+}+} \frac{1}{a_{2}+} \cdots$, then
$(1 / n) \log a_{n} \rightarrow 0,(1 / n) a_{2 n+1} \rightarrow 0$.
In the present note we will not prove Theorem 2 since the proof is similar to that of Theorem 1 , but is rather more complicated.

Similarly one could try to obtain an asymptotic formula for

$$
\sum_{n=1}^{x} \sigma(n,[f(n)])
$$

for more general functions $f(x)$, but I have not succeeded in obtaining any interesting results.

Now we prove Theorem 1. Denote by $N(y, 1 / k)$ the number of integers $\mathrm{I}<\mathrm{n}<\mathrm{y}$ for which

$$
\begin{aligned}
& 0<n \alpha-[n \alpha]<1 / k . \\
& (n,[n \alpha]) \equiv 0(\bmod k) \text { holds if and only if } n=v k \text { and } \\
& \quad v k \alpha=u k+\theta, 0<\theta<1,
\end{aligned}
$$

that is $(n,[n \alpha]) \equiv 0(\bmod k)$ holds if and only if
$0<v \alpha-[v \alpha]<1 / k$.

Thus the number of integers $n<x$ satisfying ($n,[n \alpha]) \equiv 0$ $(\bmod k)$ equals $N(x / k, 1 / k)$, (since $n=v k$ implies $v<x / k)$. Thus by interchanging the order of summation
(7) $\sum_{n=1}^{x} d\left(n,\left[\begin{array}{ll}n & \alpha\end{array}\right]\right)=\sum_{k=1}^{x} N(x / k, 1 / k)$.

Since $n \alpha-[n \alpha]$ is equidistributed $(\bmod 1)$ we evidently have
(8) $\mathrm{N}(\mathrm{x} / \mathrm{k}, 1 / \mathrm{k})=(1+\mathrm{o}(1))\left(\mathrm{x} / \mathrm{k}^{2}\right)$,
for fixed k as x tends to infinity. Thus from (7) and (8) for every irrational α
(9) $\sum_{n=1}^{x} d\left(n,\left[\begin{array}{ll}n & \alpha\end{array}\right]\right) \geq(1+o(1)) \sum_{k=1}^{\infty} x / k^{2}=(1+o(1)) \pi_{1}^{2} x / 6$

Assume now that (2) is not satisfied. Then there is a fixed $c>0$ and arbitrarily large values of b for which
(10) $\alpha<a / b<\alpha+1 /(1+c)^{b}$.

Put $(1+c)^{b}=x$. Write

$$
\sum_{n=1}^{x} d\left(n,\left[\begin{array}{ll}
n & \alpha \tag{11}
\end{array}\right]\right)=\sum_{1}+\sum_{2}
$$

where in $\Sigma_{1}, \mathrm{n} \neq 0(\bmod \mathrm{~b})$ and in $\Sigma_{2}, \mathrm{n} \equiv 0(\bmod \mathrm{~b})$. From the equidistribution of $n \alpha$. $[n \alpha]$ it follows that for fixed k the number of integers satisfying

$$
1<\mathrm{n}<\mathrm{x}, \quad \mathrm{n} \neq 0(\bmod \mathrm{~b}), 0<\mathrm{n} \alpha-[\mathrm{n} \alpha]<1 / \mathrm{k}
$$

is not less than
(12) $\mathrm{N}(\mathrm{x} / \mathrm{k}, \mathrm{l} / \mathrm{k})-\mathrm{x} / \mathrm{b}=(1+\mathrm{o}(1)) \mathrm{x} / \mathrm{k}^{2}-\mathrm{x} / \mathrm{b}$.

Thus from (7) and (12) we have for every fixed t
(13) $\sum_{1}>\sum_{k=1}^{t}\left((1+o(1)) x / k^{2}\right)-t x / b=(1+o(1)) \pi^{2} x / 6$.
$\operatorname{In} \Sigma_{2}, n=v b \leq x$. Thus from (10) and $v b \leq x,(1+c)^{b}=x$ we have

$$
\left[\begin{array}{ll}
\mathrm{n} & \alpha
\end{array}\right]=[\mathrm{vb} \alpha]=\left[\mathrm{va}+\theta \mathrm{vb} /(1+\mathrm{c})^{\mathrm{b}}\right]=\mathrm{va}(0<\theta<1)
$$

Thus $(\mathrm{vb},[\mathrm{vb} \alpha]) \equiv 0(\bmod \mathrm{v})$ for all $1 \leq \mathrm{v}<\mathrm{x} / \mathrm{b}$. Hence

$$
\begin{align*}
\Sigma_{2} \geqslant \sum_{1 \leq v<x / b} d(v) & =(1+o(1))(x / b) \log (x / b) \tag{14}\\
& =(1+o(1)) x \log (1+c)
\end{align*}
$$

Now (11), (13) and (14) show that (1) does not hold. Thus (2) is a necessary condition for the validity of (1).

To show that (2) is sufficient we need an upper estimation for $N(x / k, l / k)$ for large k. Put $x / k=y:$ it is well known that there exists an a / b satisfying

$$
\begin{equation*}
|\alpha-a / b|<1 /(2 b y), b<2 y,(a, b)=1 \tag{15}
\end{equation*}
$$

Now we distinguish two cases. First assume $b \geq k / 2$. Clearly for $1 \leq n \leq y$

$$
\begin{equation*}
n \alpha-[n \alpha]=u / b+\theta / b, \quad|\theta|<1 / 2 . \tag{16}
\end{equation*}
$$

Thus $0<n \alpha-[n \alpha]<1 / k$ can only hold if $u=0,1, \ldots, z+1$ where

$$
\begin{equation*}
z / b \leq 1 / k<(z+1) / k, \text { or } z \leq b / k \tag{17}
\end{equation*}
$$

The number of n 's not exceeding y for which u has a given value is clearly less than $2 y / b+1$. Thus from (17) and $b \geq k / 2$ we have
(18) $N(x / k, 1 / k)<(b / k+1)(2 y / b+1) \leq(3 b / k)(4 y / b)=12 x / k^{2}$.

Next assume $b<k / 2$. If $a / b<\alpha$ then $N(x / k, 1 / k)=0$ since in (16) $\theta \leq 0$, thus for $u=0 n \alpha-[n \alpha]$ is not in ($0,1 / k$) and for $u=1 \bar{n} \alpha-[n \alpha]>1 / 2 b>1 / k$.

Thus $a / b>\alpha$. Clearly $0<n \alpha-[n \alpha]<1 / k$ is only possible if $u=0$, that is if $n \equiv 0(\bmod b)$. Thus

$$
\begin{equation*}
N(x / k, 1 / k) \leqslant(x /(b k) \tag{19}
\end{equation*}
$$

If $N(x / k, 1 / k)>0$, then (since all the $n<x / k$ for which $0<n \alpha-[n \alpha]<1 / k$ are multiples of b) we have by (15)

$$
\mathrm{b} \alpha-[\mathrm{b} \alpha]<\min (\mathrm{k} / \mathrm{x}, 1 / \mathrm{k}) \leq \mathrm{x}^{-1 / 2},
$$

but this implies by (2) that
$(20) \mathrm{b} / \log \mathrm{x} \rightarrow \infty$.

Thus finally from (7), (8), (18) and (19) we have for every fixed t

$$
\begin{aligned}
& \sum_{n=1}^{x} d(n, \quad n \alpha) \leq(1+o(1)) \pi^{2} x / 6+12 x \sum_{k>t}\left(1 / k^{2}\right)+(x / b) \sum_{k<x} \frac{1}{k} \\
& \text { hence by }(20)
\end{aligned}
$$

$$
\begin{equation*}
\sum_{n=1}^{x} d(n,[n \alpha]) \leqslant(1+o(1)) \pi^{2} x / 6 \tag{21}
\end{equation*}
$$

From (9) and (21) we have that if (2) is satisfied, then

$$
\sum_{n=1}^{x} d(n,[n \alpha] \quad)=(1+o(1)) \pi^{2} x / 6
$$

Thus condition (2) is sufficient, which completes the proof of our Theorem.

University of British Columbia

1) See G.L. Watson, Canadian Journal of Math. 5(1953), 451-455, T. Estermann, ibid 5(1953), 456-459 and J. Lambek and L. Moser, ibid 7(1955), 155-158. See also a forthcoming paper by P. Erdös and G.G. Lorentz in Acta Arithmetica.

CORRECTION

In the paper "On an elementary problem in number theory" by Paul Erdös in Vol. 1, no. 1 of this Bulletin, P. 5, line 5 should read

$$
0 \leqslant u, v<f(x) \text { and }(x+u, y+v) \neq 1
$$

