ASYMPTOTIC FORMULAS FOR SOME ARITHMETIC FUNCTIONS

P. Erdős (received April9, 1958)

Let f(x) be an increasing function. Recently ¹ there have been several papers which proved that under fairly general conditions on f(x) the density of integers n for which (n, f(n) = 1is $6/\pi^2$ and that (d(n) denotes the number of divisors of n)

$$\sum_{n=1}^{x} d(n, [f(n)]) = ((1 + o(1)) \pi^{2} x/6.$$

In particular both of these results hold if $f(x) = x^4$, $0 \le 4 \le 1$ and the first holds if f(x) = [qx], \measuredangle irrational.

In this note we are going to prove the following:

THEOREM 1. The necessary and sufficient condition that for an irrational \prec we should have

(1)
$$\sum_{n=1}^{\infty} d(n, [\alpha n]) = (1 + o(1)) \pi^{2} x/6$$

is that for every c > 0 the number of solutions of

(2)
$$a < a/b < a + 1/(1+c)^{b}$$

should be finite in positive integers a and b.

Denote
$$\sigma'(n) = \leq d$$
. It is easy to see that for $0 < \ll \frac{1}{2}$
(3) $\sum_{n=1}^{\infty} \sigma'(n, \lfloor n^{\ll} \rfloor) = (1 + o(1)) \times \log x$

1

Very likely (3) also holds for $1/2 < \ll < 1$ but I have not yet been able to show this. By more complicated arguments I can show

Can. Math. Bull., vol. 1, no. 3, Sept. 1958

THEOREM 2. The necessary and sufficient condition that for an irrational $\boldsymbol{\alpha}$ we should have

$$(4) \sum_{n=1}^{x} \sigma'(n, [n \alpha]) = (1/2 + o(1)) \times \log x$$

is that for every $\boldsymbol{\xi} > 0$ the number of solutions in positive integers a and b of

(5)
$$|\alpha - a/b| < \frac{1}{b^{2+\varepsilon}}$$

and of

(6)
$$\alpha < a/b < \alpha + \varepsilon b^{-2}/\log b$$

should be finite.

It is easy to see that conditions (5) and (6) are equivalent to the following: Put $d = a_0 + 1 - 1$..., then

$$(1/n) \log a_n \rightarrow 0, (1/n) a_{2n+1} \rightarrow 0.$$

In the present note we will not prove Theorem 2 since the proof is similar to that of Theorem 1, but is rather more complicated.

Similarly one could try to obtain an asymptotic formula for

$$\sum_{n=1}^{x} d'(n, [f(n)])$$

for more general functions f(x), but I have not succeeded in obtaining any interesting results.

Now we prove Theorem 1. Denote by N(y, 1/k) the number of integers 1 < n < y for which

0 < n < - [n] < 1/k. $(n, [n]) \equiv 0 \pmod{k}$ holds if and only if n = vk and $vk = uk + \theta$, $0 < \theta < 1$.

that is $(n, [n \prec]) \equiv 0 \pmod{k}$ holds if and only if $0 < v \prec - [v \prec] \leq 1/k$. Thus the number of integers n < x satisfying $(n, [n]) \ge 0$

(mod k) equals N (x/k, 1/k), (since n = vk implies v < x/k). Thus by interchanging the order of summation

(7)
$$\sum_{n=1}^{x} d(n, [n]) = \sum_{k=1}^{x} N(x/k, 1/k)$$
.

Since $n \neq - [n \neq]$ is equidistributed (mod 1) we evidently have

(8) N
$$(x/k, 1/k) = (1 + o(1)) (x/k^2)$$
,

for fixed k as x tends to infinity. Thus from (7) and (8) for every irrational \prec

$$(9) \sum_{n=1}^{\infty} d(n, [n \prec]) \ge (1 + o(1)) \sum_{k=1}^{\infty} x/k^2 = (1 + o(1)) \eta x/6$$

Assume now that (2) is not satisfied. Then there is a fixed c > 0 and arbitrarily large values of b for which

.

(10)
$$\alpha < a/b < \alpha + 1/(1+c)^{b}$$
.

Put (1+c)^b = x. Write

(11)
$$\sum_{n=1}^{x} d(n, [n \prec]) = \Sigma_1 + \Sigma_2$$

where in Σ_1 , $n \neq 0 \pmod{b}$ and in Σ_2 , $n \equiv 0 \pmod{b}$. From the equidistribution of $n \ll - \lfloor n \ll \rfloor$ it follows that for fixed k the number of integers satisfying

$$1 < n < x$$
, $n \neq 0 \pmod{b}$, $0 < n < - [n <] < 1/k$

is not less than

(12) N
$$(x/k, 1/k) - x/b = (1 + o(1)) x/k^2 - x/b$$
.

Thus from (7) and (12) we have for every fixed t

$$(13)\Sigma_{1} > \sum_{k=1}^{t} ((1 + o(1)) x/k^{2}) - tx/b = (1 + o(1)) \pi^{2}x/6.$$

In Σ_2 , n = vb $\leq x$. Thus from (10) and vb $\leq x$, (1+c)^b = x we have

$$[n \alpha] = [vb \alpha] = [va + \theta vb/(1+c)^{b}] = va (0 < \theta < 1)$$

Thus $(vb, [vb \leq]) \equiv 0 \pmod{v}$ for all $1 \leq v \leq x/b$. Hence

(14)
$$\Sigma_2 \ge \sum_{\substack{1 \le v \le x/b}} d(v) = (1 + o(1))(x/b) \log(x/b)$$

= $(1 + o(1))x \log(1 + c)$

Now (11), (13) and (14) show that (1) does not hold. Thus (2) is a necessary condition for the validity of (1).

To show that (2) is sufficient we need an upper estimation for N (x/k, 1/k) for large k. Put x/k = y: it is well known that there exists an a/b satisfying

(15) $|\alpha - a/b| < 1/(2by), b < 2y, (a,b) = 1.$

Now we distinguish two cases. First assume $b \ge k/2$. Clearly for $l \le n \le y$

(16) $n\alpha - \lceil n\alpha \rceil = u/b + \theta/b, |\theta| < 1/2.$

Thus 0 < n < - [n <] < 1/k can only hold if u = 0, 1, ..., z + 1 where

(17) $z/b \leq 1/k < (z+1)/k$, or $z \leq b/k$.

The number of n's not exceeding y for which u has a given value is clearly less than 2y/b + 1. Thus from (17) and $b \ge k/2$ we have

(18) N (x/k, 1/k) < (b/k + 1) (2y/b + 1) \leq (3b/k) (4y/b) = $12x/k^2$.

Next assume b < k/2. If a/b < < then N(x/k, 1/k) = 0 since in (16) $\theta < 0$, thus for u = 0 n a - [n <] is not in (0, 1/k) and for u = 1 n a - [n <] > 1/2b > 1/k.

Thus a/b > <. Clearly 0 < n < - [n <] < 1/k is only possible if u = 0, that is if $n = 0 \pmod{b}$. Thus

(19) N(x/k, 1/k) \leq (x/(bk).

If N(x/k, 1/k) > 0, then (since all the n < x/k for which 0 < n < - [n <] < 1/k are multiples of b) we have by (15)

 $b \neq -[b \neq] \leq \min(k/x, 1/k) \leq x^{-1/2}$,

but this implies by (2) that

(20) $b/\log x \rightarrow \infty$.

Thus finally from (7), (8), (18) and (19) we have for every fixed t

$$\sum_{n=1}^{x} d(n, n \ll) \leq (1 + o(1)) \pi^{2} x/6 + 12 x \sum_{k>t} (1/k^{2}) (1/k^{2}) \frac{1}{k}$$

hence by (20)

(21)
$$\sum_{n=1}^{x} d(n, [n \ll]) \leq (1 + o(1)) \pi^{2} x/6$$
.

From (9) and (21) we have that if (2) is satisfied, then

$$\sum_{n=1}^{x} d(n, [n \prec]) = (1 + o(1)) \eta^{2} x/6.$$

Thus condition (2) is sufficient, which completes the proof of our Theorem.

University of British Columbia

 See G.L. Watson, Canadian Journal of Math. 5(1953), 451-455, T. Estermann, ibid 5(1953), 456-459 and J. Lambek and L. Moser, ibid 7(1955), 155-158. See also a forthcoming paper by P. Erdös and G.G. Lorentz in Acta Arithmetica.

CORRECTION

In the paper "On an elementary problem in number theory" by Paul Erdös in Vol. 1, no. 1 of this Bulletin, P. 5, line 5 should read

 $0 \leq u, v < f(x)$ and $(x+u, y+v) \neq 1$.