COLLOQUIUM MATHEMATICUM

concerning approximation with nodes

BY
P. ERDÖS (LONDON)

This note contains a remark on the subject treated by Paszkowski [1], [2].

Define

$$
E_{n}=\min _{P_{n}(x)} \max _{-1 \leqslant x \leqslant 1}\left|f(x)-P_{n}(x)\right|, \quad E_{n}^{\prime}=\min _{P_{n}(0)=f(0)} \max _{-1 \leqslant x \leqslant 1}\left|f(x)-P_{n}(x)\right|
$$

where $P_{n}(x)$ runs through all polynomials of degree n. Clearly

$$
\begin{equation*}
E_{n} \leqslant E_{n}^{\prime} \leqslant 2 E_{n} . \tag{1}
\end{equation*}
$$

I shall prove that there exists an $f(x)$ satisfying
(2)

$$
\varlimsup_{n=\infty} E_{n}^{\prime} / E_{n}=2 .
$$

Let $n_{k} \rightarrow \infty$ sufficiently fast. Put

$$
f(x)=\sum_{k=1}^{\infty} T_{2 n_{k}}(x) / k!
$$

where $T_{n}(x)$ is the n-th Tchebycheff polynomial. Because of $\left|T_{2 n}(0)\right|=1$ we have

$$
\begin{equation*}
E_{2 n_{k}} \leqslant(1+o(1)) /(k+1)!\quad\left(P_{n}(x)=\sum_{j=1}^{k} T_{2 n_{j}}(x) / j!\right) . \tag{3}
\end{equation*}
$$

Next we show that

$$
\begin{equation*}
E_{2 n_{k}}^{\prime} \geqslant(2+o(1)) /(k+1)! \tag{4}
\end{equation*}
$$

Equality (2) follows from (1), (3) and (4). Thus we only have to show (4).

Let $\Theta_{2 n_{k}}(x)$ be the polynomial of degree $\leqslant 2 n_{k}$ for which

$$
\max _{-1 \leqslant x \leqslant 1}\left|f(x)-\Theta_{2 n_{k}}(x)\right|=E_{2 n_{k}}^{\prime}
$$

Denote by y the nearest extremum of $T_{2 n_{k+1}}(x)$ to 0 ; clearly $|y|<\pi / n_{k+1}$ and $\left|T_{2 n_{k+1}}(y)-T_{2 n_{k+1}}(0)\right|=2$. If the n_{k} tend to ∞ fast enough we clearly have

$$
\begin{equation*}
|f(y)-f(0)|=(2+o(1)) /(k+1)! \tag{5}
\end{equation*}
$$

i. e. $f(x)=\Sigma_{1}(x)+\Sigma_{2}(x)+\Sigma_{3}(x)$ where

$$
\begin{gathered}
\Sigma_{1}(x)=\sum_{j=1}^{k} T_{2 n_{j}}(x) / j!, \quad \Sigma_{2}(x)=T_{2 n_{k+1}}(x) /(k+1)! \\
\Sigma_{3}(x)=\sum_{j=k+2}^{\infty} T_{2 n_{j}}(x) / j!.
\end{gathered}
$$

Now clearly

$$
\Sigma_{1}(y)-\Sigma_{1}(0)=O\left(\frac{n_{k}^{2}}{n_{k+1}}\right)=o\left(\frac{1}{(k+1)!}\right)
$$

if $n_{k} \rightarrow \infty$ fast enough, i. e. if $\left|g_{n}(x)\right| \leqslant 1, g_{n}(x)$ is a polynomial of degree n, then by Markoff $\left|g_{n}^{\prime}(x)\right| \leqslant n^{2},-1 \leqslant x \leqslant 1$,

$$
\Sigma_{2}(y)-\Sigma_{2}(0)=\frac{2}{(k+1)!}, \quad \Sigma_{3}(y)-\Sigma_{3}(0)=o\left(\frac{1}{(k+1)!}\right)
$$

Thus (5) follows.
Now $\left|\Theta_{2 n_{k}}(x)\right| \leqslant 2 e$ for $-1 \leqslant x \leqslant 1$ (since $\left.|f(x)| \leqslant e\right)$ and since $\Theta_{2 n_{k}}(x)$ is a polynomial of degree at most $2 n_{k}$, we have, by Markoff's theorem $\left|\Theta_{2 n_{k}}^{\prime}(x)\right| \leqslant 8 e n_{k}^{2},-1 \leqslant x \leqslant 1$. Thus

$$
\begin{equation*}
\left|\Theta_{2 n_{k}}(y)-\Theta_{2 n_{k}}(0)\right| \leqslant 8 e n_{k}^{2} y<8 \pi e n_{k}^{2} / n_{k+1}=o\left(\frac{1}{(k+1)!}\right) \tag{6}
\end{equation*}
$$

if $n_{k} \rightarrow \infty$ fast enough. Thus from (5) and (6)

$$
\left|f(y)-\Theta_{2 n_{k}}(y)\right|=(2+o(1)) /(k+1)!
$$

Hence (2) follows and our proof is complete.
By a simple modification of this argument it is easy to construct an $f(x)$ with

$$
\varlimsup \overline{\lim } E_{n}^{\prime} / E_{n}=2, \quad \underline{\lim } E_{n}^{\prime} / E_{n}=1
$$

(it suffices to put $f(x)=\sum T_{n_{k}}(x) / k!$ where $n_{2 k} \equiv 0(\bmod 2), n_{2 k+1} \equiv 1(\bmod 2)$ and $n_{k} \rightarrow \infty$ fast enough).

I expect that one can show $\lim E_{n}^{\prime} / E_{n}=2$ for suitable $f(x)$, but I have not succeeded in doing it.

Note of the Editors. It has been stated by Paszkowski ([2], theorem 5.2) that for the approximation with algebraic polynomials the inequality

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty} \varepsilon_{n}(\xi ; T) / \varepsilon_{n}(\xi) \leqslant 2 \tag{7}
\end{equation*}
$$

holds for an arbitrary continuous function $\xi(t)$ and for an arbitrary system T of nodes the notation being that of [1].

The relation (2) proved here by Erdös shows that (7) cannot be strengthened.

REFERENCES

[1] S. Paszkowski, On the Weierstrass approximation theorem, Colloquium Mathematicum 4 (1957), p. 206-210.
[2] - On approximation with nodes, Rozprawy Matematyezne 14, Warszawa 1957.

