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PART I

0 . Introduction

The Sieve of Erathostenes is an algorithm which yields the sequence

of all primes . This paper deals with a family of somewhat similar algorithm s

for creating sequences of integers .

These algorithms depend on an initial integer 2 and on an auxilary

sequence B of integers b k (k = 1, 2, . . .) with b k > 2 . A family of inter-

mediary sequences Xi ) (i = 1, 2, . . .) is formed, A(i) consisting of the

integers ai> (k =1, 2, . . .) . The sequence A'1> is defined by :

ak > = 2+k.

The sequence A'i+l> is obtained from the sequence A(i ) by striking

out all the terms of the form (m = 0, 1, . . .) and by renaming the

remaining terms : a ±' > , a2 +1> , . . . . Finally, the sequence A consisting o f

integers ak (k= 1, 2, . . .) is defined by :

ak —al .

Two examples of sieves will be considered : in the first the sequence B

will be given in advance while in the second it will be determined by the

sieving process itself.

In the first example we will take b k = k + 1 . If we choose 2=0, the

first terms of the first several sequences A ' i> are (the numbers in bold are
those to be struck out in the next sequence) :

A'1>(b1=2) : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 3 0
3 0
3 0
3 0
3 0

Therefore, in this case a 1 =1, a2 = 2, a3 = 4, a4 = 6, a,— 10 . Also a 6 =12,

a,— 18, a s = 22 and a9 = 30 because these numbers will no longer be struc k
out in the following sequences until each one of them reaches the hea d

of the line .

Ac2>(b2=3) :
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In the second example we shall take b,i = ak . If we choose 2=1, the

first terms of the first several sequences are :

A 11> (b1=2) : 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 3 0

A(2)(b2=3) :
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A(3)(63=5) :
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2 9
A(4)(b4=7) :
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2 9

Therefore, in this case : a1 = 2, a2 = 3, a3 = 5, a4 = 7 and also as = 11 ,

as =13, a,=17, a5 =23, a9 =25 and a 10 =29 .
The following are the principal results obtained .

1. General explicit formulas giving ak in terms of the b2 (i = 1, 2, . . ., k 1 )
are found and various more or less precise estimates of a k are given under

different restrictive assumptions as to the nature of the sequence B .

The various estimates of ak will be known respectively as the zero-step ,

the one-step and the multi-step estimate .

2. For bk = k + 1 it is shown using the more precise multi-step estimates

that :

ak = 72 +

3. For bk = ak it is shown that ak Ic log Ic . The ak are in this case

(for every 2) asymptotic to the primes . The proof has some similarit y

to that of the prime number theorem and makes use of the Tauberia n

self regulation of the sieving process . However, because of the greate r

regularity of the present process as compared to the Erathostenes method ,

the asymptotic formula for ak is obtained much more easily than tha t

for the primes .

4. Again for bk= ak, using the one-step formulas, it is shown that :

ak=l~<llc
a2

+0(1) ,k.

	

ati — 1a

and hence it will follow that ak=1c log k + z lc (log log k) 2 ± o(lc log log k) 2 .
Thus it is seen that for large k we have a k > pk . It was surmised by ER'

JABOTINSKY in a paper read to the 1953-meeting of the Israel Mathematica l

Society, on heuristic grounds, that ak — p2 and that ak oscillates aroun d

pk . The second surmise is thus proven to be wrong .

5. Again for bk = ak using the more precise multi-step estimates fo r

ak it is shown that (y Euler 's constant )

k̀= H a7—(1 — y)+o(]) .
ai<k a

From this it is deduced tha t

a k =1c log 1c -F 21c (log log k) 2 +(2—y) Ic log log Ic+o(Ic log log k) .
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1 . General Explicit Formulas
We shall denote by TX] the smallest integer > X .
Considering the generation of the sequence A( i + l) from the sequence

Am , we see that :
(i+1) __ (i)k

	

bibi

1
k~

Repeating this reasoning i times we find that :

a)+1)=a~~) with k'=
Ib1 vl 1Ib zb2— 1I . . . [bi

b
— .1 /cl . . .

111

(1)

	

ak=íl+Ib1ó11Ib1

	

1 r
. . .rbkb 1 1 l l . . .111 ,

which is the first of the announced explicit formulas for ak. We have :

b' mrb7 v' 1 m1b,	 1

	

+ bi	 1 m .

Applying this to (1) we deduce the following estimate for ak (lc> 2) :

2 + r

	

k— 1

r-( b )

	

+ rr( b )+'
l

rr( bi=1 bi — 1

	

~~

	

i=1 bi i

	

s=1 Li =1 bi — 1)1 '

or, because
bvb2
	 1 > 1 :

	

k—1

	

.

	

7r—1

	

b .
A+17( bZ 1)~ ai~< A +(k—1)fI(b i 1 ) .

	

i=1

	

a

	

i= 1

This formula will be called the zero-step estimate for ak .
Formula (1) can be used for actual computation of the ak . Thus, in

the case bk = k+ 1, A= 0, let us for example compute a9 . We have :

a9 I 1 r2 r3 r4 r5 r6 r7 r81 .. .
Now :

[ 1 =2, r8 . 21 =3, r6 .31 4, r5 . 41 =5, r4 .51 =7 ,

r3 .71 10, r2 .101 = 15 and
ri

• 151 = 30 .

Therefore a9 = 30 .
We see that a9 is the last of the sequence of integers : 2, 3, 4, 5, 7, 10 ,

15, 30, which are the values of the successive brackets FT. We note that
these integers first increase by 1, then by 2, then by more and more .
If we knew how many brackets produce an increase by 1, how man y
by 2 and so on, we would get much shorter expressions for ak .

In the general case, let Q be the smallest integer such that :

bk_Q —1<Q .

Using the fact that ag, = A+ k ' and a(,i+1) = ai+1 we get, putting i + 1=k :

`a1 =íl+1,

(2)
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Then the first Q —1 brackets give an increase by 1 and we have fo r

every q< Q :

a 1C
= A+ I blbl 1 I b 2 b

?
1 r

. . . [ b,cb 	
g
	 - 1 qi . . .11 1

Formula (3) takes into account the brackets which increase by step s
of 1 and can be called, " the explicit formula for the one-step " . By the

same token formula (1) is "the explicit formula for the zero-step " .
Formula (3) with q = Q leads to a second estimate for ak . Namely :

k Q
akak = A + [k -0 (k —Q)1 TI (b2 	 ), with 0 < 0 1,

i=i

which is the one-step estimate for a1 . Explicit formulas for steps 2, 3
and so on are conveniently established under the restrictive assumption
that B is a non-decreasing sequence (bk+l bk for all k) . This assumption

happens to hold in the two particular examples considered by us . Then

the explicit formula for m-step is (for m= 1, 2, . . .) :

ak = A +
[b- 1 [b2 b2 1

[ . . . [ITb'`gmgm i mqm — lqi,}1 . . .111 ,i= o

where qo = 0 and qm is the smallest integer for which :

m— 1

m(bk-a,,,.— 1) < mqm — 1 q

i= o

The proof by induction is immediate. We note that is the

number of brackets which give increases of n . For m=1 formula (5 )

becomes formula (3) with Q= q1. Formula (5) leads to the m-step estimat e

of a1 . Indeed, from (5) :

1 — 4,,,

	

an—1

	

k— Q„c

	

m— 1
A+[

	

(biba
1 )1 ( mq m — qi) aT .<A+ II (bi v

1)1 (mqm — qi) ± R
z—1

	

i=o

	

i=1

	

i= o

(3 )

(4 )

(5 )

with :

k 4

	

1

	

s

R=

	

(1-js
b-_i) (k—qm

s=1

	

i=1
	 1[ 'Fr(b2 bi 1 ) .1

and therefore :

Tc — 4»,

	

m

(6) ak=2+ [ H (b .b?'
1)] . [mggm—

	

qi+0 (lc— qm)], with 0 < 0 < 1 ,
z—1

	

,— o

which is the multi-step estimate for ak .
Another result of a different kind which will be needed holds in the
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particular case when
be

= oo (but the assumption that bk+l > b k forlim
Co

all k is not required), namely if b~' -- oo then :

= [1+

	

k

0 (1 )] ~
(biv

I) .

Indeed, in this case the smallest Q for which b k_ Q <Q + 1 is such that

k-Q=o(k) and inequality (4) becomes :

All that has to be proven is that :

k
	 	 bi1-1 (
	 ) = 1+o(1) •

i=k—Q+1
bi— 1

This will follow if we prove that :

k

= 0(1) .
i=k—Q+1 '

Choose any small e> 0 and write :

	

1

	

[Is k]

	

1

	

k

	

1

	

i—k—Q+1 bi

	

i-k-Q+1
bi

	

i=[ekj+l b i

We have :

[ek]

1 <LQ1<	 sk <2s,
i=k—Q+1 b i

	

k—8k

because by definition, Q is the smallest integer such that bk_Q <Q+ 1

and so b k_ i > j for j < Q and here bi > Ic - i > Q -I- 1 .

Also from %-~ oo we have :

k

1 < k =o(1 ) ,
i=[ekj+1

bi

	

min b i
ek<i< k

which completes the proof of (7') :

2 . The case bk =k+1, 2= 0

We shall need an auxiliary sequence ai (i = 1, 2', . . .) of numbers defined

by the recurrence relation :

(7 )

(7' )

(8) m( 1 -

	

a'i)=

	

i ai
i=1

	

i1

(for m= 1 . 2, . . .) .

By a suitable combination of relation (8) for m, (m + 1) and (m+2),

one sees readily that :

1

	

(2m-2
m•2 2m- 1 ' m-1) '(9 )
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and:
m

	

1 1

	

Ki = 22m (2—

	

r)
i= 1

well known that :

(11) 2 2
1
m (2 m)

= m 1 + ' ~z)

We shall now use formula (5) which becomes :

n a

[T2
r r

	

-1

(12) ak=

	

2 I
. . .

[7c,C	 q qm
1 { mqm —

i=o
qi } 1 . . .

111 ,

where the qm are defined as follows : qo = 0 and q,, is the smallest intege r
for which :

na— 1

m(k—qm) < mqm —

	

qi .
i= 0

(10 )

It is

Therefore is an integer for which :qm

m— 1
(13)

	

mk+1 < 2mgm —

	

qi < mk+2m .
i= o

We now use the sequence ai and define the numbers Oak) by the relation :

(14 )

From (14) we deduce that :

qm = k ( .G ai) +

	

Oi
k)

x=1

	

1

and :

	

m—1

	

m

	

m
(16) mqm —

	

qi=k (

	

Z (xi) +

	

201" )
i=1

	

x=i

	

i= 1

or, using (13), (15), (16) and (8) we obtain by a simple computation :

m
(17)

	

1 <

	

(m+i) O)'` ) < 2m .
i= 1

We note that the sum in inequality (17) is an integer because th e
middle term in (13) is an integer . We shall not use this fact .

Formula (12) now leads to the following estimate for a1 analogous to (6) :

m— 1
a k = ( k—qm+ 1 ) [mqm —

	

q i+ O ( ic—qm)], with 0 < 0 < 1 ,
i= o

or, using (15), (16), (8) and (10) :

ai = rk (2
m

) 22m1
—

	

B2k)
-Li

i 1 • [k (2 ) 22m

	

~ iO )]
1 Oa ( k— gna) 2 ,

L

	

i=1

	

J L

	

i= 1

qi —q2 _ 1 =kai -I-O( 1)

(15)
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or again by (15) :

zz

	

2m

	

(2m) 1
k)

ak =
k2 .

24m
(2m) 2

792 ) — k (rn) 22m

	

(m — i) 0i +

(18)
1r
s
\/1

+ 0B( b.) (1— o(k)) Mk (2m)
+0' [IC

na
2m\

•
1

— B

Z

t k)] 2
2

	

2m

	

/fi=1

	

i=1

	

m

	

22m

	

i= 1

with 0<0 ' < 2 .

na

	

m

	

m

We now need estimates for 1 0?), for

	

i Oak) and for

	

(m—i) 0°a ) .
i

	

i=1

	

i

Indeed, the first inequality of (19) holds for m= 1 and by induction
for all m and the two other inequalities follow from this and (17) .

(All these are not the best possible inequalities .) Using (11) and (19)
in (18) we find :

2

ak= - [1+0(m»+kO(vm)—O(m)+0(~n) + 'nk +O(k) .
Vn m

Choosing m= [k" ] we find :

k 2
a1 = — ± 0(k'is) .

A sharpening of the inequalities (19) should lead to the reduction o f

the index 3 . Numerical evidence indicates that :

ak=
a2

+0(k) .

3 . The ease b ig = ak (and any > 1 )

We shall show that in this case ak/k oo so that formula (7), which

now becomes :

k

( 21 )

	

~~` = [1 + 0 ( 1 )] n(ai a2 1) ,
i= 1

holds. Indeed, ak —>k and ak is an unbounded and increasing function

of k . Let Q be the smallest integer such that ak_Q Q+1 . Then Q is such
that k—Q—2<Q+1 and :

Q

	

1 — R 1

Inequality (17) yields easily :

7 010?)<2,
i= 1

— 2m < (m—i) 0°c) < 4m .
i = 1

m

(19) —m < i Bik) < 2m,
i= 1
m

(20)
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Formula (4) now becomes, by using first 0=0 and then 0=1 :

iaii)

	

a(22)

	

k

	

(2

	

2k

	

(ai —1 /

When lc --> oo both Q and (k—Q) --> oo . If the product in (22) converged ,

a7c /k would be bounded, but then the product would diverge . Therefore

the product diverges, so that ak /k tends to 0o and Q/k to 1 .

From (21) we easily see that :

ak+l _ a7c_ o a9
k±1 k

	

k

and thus that ak /k changes slowly .

We now want to show that :

(23)

	

liminf
klog
	 k < 1 .

Indeed we would otherwise have :

ak > (1 + 6) k log lc for k > k o with 6> 0 ,

and so from (21) :

Ckk

	

l
-1

	

(1+ö)ilo g

i

	

i(1+6) Jog k < cl~(1— (1+6)i log

	

= c 2
ei= 1

~

Since :
k

	

1

2 Jog 2
= c3 +log log k±o(1) ,

we would have :

logloglc
(1+6) log k < c4 e 1+6 = c4 (log k)1+h

which is wrong . Similarly it can be shown that :

(24)

	

limsup	 klog,c > 1 .

Suppose now that :

lim sup k 1og k = 1 + c (c > 0) .

Then, because of the slowness of change of ak/k and because of (23) ,
for a suitable choice of cl and c 2 so that 0 < c l < c2 < c, there exist two num -

bers kl and k 2 such that :

	 ak' < 1 + c l and	 a7c 7clo g	 k > 1 + cl for k l < k < k2 ,
k l log k1

and :

(IN

k 2 log k~ >
1 + c2 and

k
ak

k <
1 + c 2 for k l < k < Ice .
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We have :

(25 )

But from (21) we have :

ak ., , aka

	

( l---ca) log /c2

k2 k 1

	

(1+c1) log ki '

kz
kz

	

1
Ic,~ 1c11 — [ 1 i 0 ( 1 )]

	

(aia
y

1 ) = [ 1 ±0(1)] ei=k, Q G

i=k 1

1

	

[1+

	

g

1

	

ci
[1+0(1)] ei 7 (1+c,)ilogí

=

	

o(1)] (log 2
) 1 +

which contradicts (25) . Therefore :

lim sup
kl

ac;k =1 .
7c—roe

Similarly it can be shown that :

lim inf
k log k 1 '

and hence :

k-,00

(26) lim
k log k 1 'k—c o

as stated in the introduction .
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