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PART II

4 . The second term o f the asymptotic expansion for ak (for bk = ak and
any A > 1)

Using formula (4) and (26), we shall prove that :

(27)

	

7, _ 1 a a2 1 O(1) .
a, <k i

Indeed, the number Q in (4) is defined as the smallest integer for which
ak_Q<Q+1, whence, by (26) :

(28)

	

k-Q= [I+0(1)] klog k'

Formula (4) now becomes :
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akk -A[ T, (a
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with 0 < B <2 .
ai S Q a
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But it can be seen by using (26) and (28) that :
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+ o ((log k)z)'
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k--<rlosr<klog k

and further from (21) and (26) :

(29')

BY

a, <

	

a, =(1+0(1)) log k .
a <Qai-1 ai<¢kai-1

Thus (27) follows from (28'), (29) and (29') .
Now we want to prove that

(30)

	

a,,=n log n+(2+o(1)) n (log log n) 2 .

We will omit some of the details . Put :

(31)

	

a„=n log n+ 2 n (log log n)2+n /(n) log log n .
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To prove (30) we must prove that :

(32)

	

/(n)=o (log log n) .

First we show that for every e > 0 and n > n o (e)

(33)

	

/(n) < e log log n .

The proof of /(n) > - e log log n would be similar .
If (33) would not hold, a simple argument shows that there would

exist two infinite sequences n k and m k satisfying :

(34)
mk' < nk < Mk, l(Mk) > J (nk) +e,

f(Mk) > AU), 1 < u < mk, /(nk) < Ank+v), 0 < V < Mk-nk.

By (26) and (27) we have :

(35)
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n
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(1-á) +0(1)=n[
n
11 (1+~)+0(n)]+0(1)=

~a;,< m

	

~

	

5ai < m<m

	

~

= nn lj (1+ ) } 0(1) .
n-<ai<m

	

a

Hence from (31) by putting m=mk and n=nk in (35), for some c>e :

log m+ 21 (log log m) 2 + (/(n) +c) log log m=
(36)

	

_ [log n+ 2(log log n) 2 +/(n) log log n]
n
fj (1 + á2)+0(1) .

<_a i <m

Now we show that for n < ai < m

(37)

	

a i/i>log i+2(log log i)2+ (/(n)+o(1)) log log i .

For i > n this follows from the definition of ni . For the ai satisfying
n < ai < an it follows from (35) and ai = (1 + o (l)) i log i by a simple
computation .

Suppose now that (33) does not hold. Then, from (35) and (36), we
have /(m)=/(n)+c and :

log m -{- 2(log log m) 2 I [/ (n) -G- c] log log m <
(38)

	

< log n +'(log log n) 2 +l(n) -log log n - IT (1 + g( ~~) ),n_<ak <m

where
g(k)=k[log k+2(log log k) 2 +If(k)-i-o(1)1 log log k] .

Put m=n1+s . In the computation which follows we will neglect terms
which are o(log log n), or in estimating the product on the right side of
(38) we can neglect terms which are o(log log n/log n) .
We have (the equality sign is to be understood to mean that terms

which are o(log log n/log n) have been neglected)

(39) 1

	

[1

	

1

	

_

	

~

	

1 ,I
n_<ak<nl+ő

`1+g(k» n~klogk<m1+ő+ g(kJ

	

exp `'n_<kloak<mg(]C~,



Henceforth it is to be understood that in all the products and sums
n < k log k < nl+s . We have :

(log log k) 2

	

log log k
g(k) -

	

k log k

	

2

	

k (log k) 2 - f(n)

	

k log log k)2 '

Further clearly by the integral test

k	 1log k =log (, + 6)+ log log n 8
log n 1 +8'

(loglogk) 2 _ <5(loglogn.) 2-2 log (1 +6) log log n 2 6 log logn
k(log k)2 (1 +6) log n + 1+6 logn '
log log k

	

S log log n
-l k(log k)2 1+6 log ,

Thus
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(log log n) 2
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( I-6)- 2(1-1-6)

	

log 71

	

+

+ log (1 + S) log log n -1(n) 6 log log n .
(1 +S)logn

	

l+d log n

Hence from (39) :
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8 (loglog n) 2
~L 1+ 9(k) 1

= exp
~~g(k)J - (1+b) 2 log n? +

log (1 +d) loglog n

	

log log n
log n

	

- 8 f(n) log n

Thus if we put m=n 1+' in (38) we obtain from (40) :

(1 +8) log e+2 [log log n+log (1 x-8)]2+[f(n)+c] • [log log n+log (1+6)] <

< [log n + 2 (log log n) 2 + /(n) log log n] [ 1 + 8 -
2
(o

ólgonn)
2 +

log (1+6) log logn

	

log log nI
+

	

logn

	

~f(n) log n

which is easily seen to be false because of the uncancelled term c log log n
on the left side of the inequality (since the coefficient of /(n) is greater
on the left side than on the right side) .

5 . The third term o f the asymptotic expansion o f a, (for b, = a,L and any 2 > 1)

We note that formula (27) was obtained by using only step one for
the computation of a, that is by using formula (4) and not formula (6) .
It is not possible to get the next term without using steps of all orders .
To do this, we have to calculate successively for m=1, 2, . . . all the
q,, occurring in (6) . q„, is defined as the smallest integer for which :

(40)

1 26

m-1
m (ax-v„- 1) < mq„i--

	

qb .
=o

Because of (26) it can be seen that :

q =k- mlogk +o (logkJ'



and (6) becomes :
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i < m log k +0( 109k)
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with 0<0<1 . Writing 0m instead of 0 and using (26) this becomes :

ak -~ -~-~ (
ai

)]
[1+(-1+1+1+ . . .+1 + 0m)1

k

	

l k ai-1

	

1 2

	

m-1 m log k
(41)

	

ai<
mlogk

with 0 < dm < 1 .
We now use the fact that, because of (26) :

(42)
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logm-1

	

I
k	k 	(ai- 1) 1+ log k +

0 (log k)
m log k

<
"i < (m. 1) log k

Rewriting (41) for (m -1) instead of m and comparing with (41), we
find, using (42) :

1+(-1+1+1+ . ..+1	- + log m) 1 -1 2

	

m-

	

m-1

	

m-1 log k

=1 }(-1 } 1 I 2 I

	

l l + em)logk 1 0 (log J'
and so :

(43) 0m -1 + log M
=

6"'
+ 1 +o(')-M-1

	

am-1 m m-1

Rewriting (43) for (m-1), (m-2), . . ., 2 instead of m, summing up and
cancelling we find

(44)

	

°1 + log m = Bm + 1 + 2 . . . + m	 11 +0(1) .

But 0 < 0,m < 1 and for large k and m (44) can only hold if

Thus :
(45)

	

01 =Y+0(1) .

Formula (41) now becomes

(46)

	

k- [T (aiati1)] I (-l+y+ log m)+o(1) .
k

ai<-m

and, for m=1 :

(47)

	

k - [

	

( aa ai
1)] +(-1+Y)+0(1) .

1+0 (log k)1'

lim 01 =Y .
k--> oo
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We note that (45) and (26) together yield (46), so that (47) contains
all the information that results from the use of formula (6) with the

estimate qm = k - m log k + o (logk) of qm .

Any improvement of the o(1) term in (47) can only result from an
improvement of these estimates of qm .
Put now

k = log k + 2 (log log k) 2 ;- (2-y) log log k+ f (k) .

Then we can show by the same method as was used in proving (30), but
by more laborious computations that f(k) = o(log log k) : we supress all
details. This completes the proof of the result stated at the end of the
introduction .

Several further questions can be asked about the ak all of which
have been investigated for the sequence of primes e .g. Is it true that
lim inf (ak+, - ak ) < oo ?

Is it true that lim sup (ak+1 -ak)/log k=oo, 1 ) we do not know the
answer to any of these questions .
After writing our paper we find that the quadruple paper of V .

GARDINER, R. LAZARUS, N. METROPOLIS and S . ULAM deals with a slight
variant of our case bk =ak , they make a table of these numbers up to
48600 (Math. Magazine 29 (1956), 117-122) . They further conjecture
ak/p -~ 1 . HAWKINS proved this conjecture and CHOWLA proved

a k =k log k+(2+o(1)) k(log log k) 2 ,

the proofs of HAWKINS and CHOWLA are not yet published .
Added March 1957 . VIGGO BRUN asked the following question : Put

n = nl, n,+1= nt - [nl/ l] . Determine the smallest integer k for which

nk+l=nk (i .e . for which k+ 1 >n k ) .
By the methods used in in dealing with the case b k =k+ 1 we can prove

that k=(I+0(1)) ( .~C2/8) n7/a .

DAVID, in a paper to appear in Riveon le Matematika, vol_ 11, considers

the sequence ul = n, uk=k [Uk 1] and asks when uk= 0 . This reduces to

our problem for bk = k + 1 .
Israel Institute of Technology, Haifa

1 ) The fact that lim sup (p7. 1-Pk)/iogPk=O° is due to WESTZYNTHIUS, See
P . ERDÖS, Quarterly Journal of Math . 6, 124-128 (1934) . "M '11f (Pk+1-Pk)<
has never been roved .
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