On Sets Which Are Measured by Multiples

 of Irrational Numbersby
P. ERDÖS and K. URBANIK

Presented by E. MARCZEWSKI on October 10, 1958

The frequency of naturals n satisfying a condition Φ is defined as the limit

$$
\operatorname{fr}\{n: n \text { satisfies } \Phi\}=\lim _{N \rightarrow \infty} \frac{1}{N} \overline{\overline{\{n: n} \text { satisfies } \Phi, n \leqslant N\}}
$$

provided this limit exists. (\bar{A} denotes the power of A).
We say that a set $A(A \subset[0,1))$ belongs to the class Ξ if for every irrational ξ the frequency $\operatorname{fr}\{n: n \xi \in A(\bmod 1)\}$ exists and does not depend on the choice of ξ. It is well-known that every Jordan measurable set belongs to Ξ and, moreover, the frequencies fr $\{n: n \xi \in A(\bmod 1)\}$ are equal to the measure of A. Further, it is easy to verify that every Hamel base $(\bmod 1)$ belongs to Ξ, which shows that sets belonging to Ξ may be Lebesgue non-measurable.

We say that a class E_{0} is the base of the family \bar{Z} if for every $A \in \Xi$ there exists a set $B \in \Xi_{0}$ such that

$$
\left.\operatorname{fr}\{n: n \xi \in A-B(\bmod 1)\}=0^{*}\right)
$$

for any irrational ξ.
We say that a class Ξ_{1} is the weak base of the family Ξ if for every $A \in \Xi$ there exists a set $B \in \Xi_{1}$ such that

$$
\operatorname{fr}\{n: n \xi \in A-B(\bmod 1)\}=0
$$

for almost all ξ.
The purpose of this note is the investigation of Lebesgue measurability of sets belonging to a base or to a weak base of the family E. Namely, we shall prove with the aid of the axiom of choice
*) $A-B$ denotes the symmetric difference of the sets A and B.

Theorem 1. Every base of the family Ξ contains $2^{2^{*}}$ Lebesgue noumeasurable sets.

Theorem 2. Every weak base of the family Ξ contains at least $2^{y_{2}}$ Lebesgue non-measurable sets.

Corollary, Under assumption of the continuum hypothesis every weak base of the family Ξ contains $2^{2^{x_{0}}}$ Lebesgue non-measurable sets.

Before proving the Theorems, we shall prove three Lemmas. Let us introduce the following notations

$$
\mathcal{U}_{k}=\left\{x: x \text { rational, } k(k-1) \leqslant x<k^{2}\right\} \quad(k=1,2, \ldots),
$$

$$
\begin{equation*}
\mathscr{W}_{+}=\bigcup_{k=1}^{\infty} \mathscr{W}^{k}, \quad \mathscr{O}_{-}=\left\{x ;-x \in \mathscr{W}_{+}\right\}, \quad \bigoplus=\mathscr{W}_{+} \cup \mathscr{W}_{-} . \tag{1}
\end{equation*}
$$

Lemma 1. For every rational number $r \neq 0$ the equality

$$
\operatorname{fr}\{n: n r \in \mathscr{C}\}=\frac{1}{2}
$$

is true.
Proof. It is sufficient to prove that, for every positive rational number r, the equality $\operatorname{fr}\left\{n: n r \in \mathscr{O}_{+}\right\}=\frac{1}{2}$ holds.

Let $I^{(k)}(r)$ denote the number of such naturals n that $n r \in \mathcal{U}_{k}$.
Obviously,

$$
\begin{equation*}
\left[\frac{k}{r}\right]-1 \leqslant I^{(k)}(r) \leqslant\left[\frac{k}{r}\right]+1, \tag{2}
\end{equation*}
$$

where $[x]$ denotes the greatest integer $\leqslant x$.
$I_{N}(r)$ will denote the number of such naturals $n(n \leqslant N)$ that $n \in \mathscr{O}_{+}$. If $k \leqslant|\sqrt{N r}|$ and $n r \in \mathcal{U}_{k}$ then, in view of (1), $n r<k^{2} \leqslant|\sqrt{N r}|^{2} \leqslant N r$, which implies the inequality $n<N$. Hence, we obtain the inequality

$$
I_{N}(r) \geqslant \sum_{k=1}^{[\sqrt{N r}]} I^{(k)}(r) \quad(N=1,2, \ldots) .
$$

Consequently, taking into account (2), we have the inequality

$$
\begin{equation*}
I_{N}(r) \geqslant \sum_{k=1}^{\lfloor\sqrt{N r]}}\left[\frac{k}{r}\right]-|\sqrt{N r}| \quad(N=1,2, \ldots) . \tag{3}
\end{equation*}
$$

Further, if $k>|\sqrt{N r}|+1$ and $u r \in \mathcal{U}_{k}$ then, in view of (1), $w \geqslant$ $\geqslant k(k-1)>N r$, which implies the inequality $n>N$. Hence, we obtain the following inequality

$$
I_{N}(r) \leqslant \sum_{k=1}^{[\sqrt{N r}]+1} I^{(k)}(r) \quad(N=1,2, \ldots) .
$$

Consequently, taking into account (2), we have the inequality

$$
\left.I_{N}(r) \leqslant \sum_{k=1}^{[\sqrt{N r}]+1}\left[\frac{k}{r}\right]+\mid \sqrt{N r}\right]+1 \quad(N=1,2, \ldots)
$$

Hence, and from (3), it follows that

$$
\begin{equation*}
I_{N}(r)=\sum_{k=1}^{[\sqrt{N r}]}\left[\frac{k}{r}\right]+o(N) \quad(N=1,2, \ldots) . \tag{4}
\end{equation*}
$$

Setting $r=\frac{p}{q},|\sqrt{\sqrt{N r}}|=d_{N} p+s_{N}\left(0 \leqslant s_{N}<p\right)$, where p, q, d_{N} and s_{N} are integers we obtain by simple reasoning

$$
\begin{aligned}
\sum_{k=1}^{[1 / N r]}\left[\frac{k}{r}\right] & =\frac{1}{2} p q d_{N}\left(d_{N}-1\right)+d_{N} \sum_{j=1}^{p}\left[\frac{j}{r}\right]+\sum_{j=1}^{s_{N}}\left[\frac{j}{r}\right]+q d_{N} s_{N} \\
& =\frac{1}{2} p q d_{N}^{2}+o(N)=\frac{1}{2} N+o(N) .
\end{aligned}
$$

Hence, in virtue of (4), we obtain the equality $I_{N}(r)=\frac{1}{2} N+o(N)$. The Lemma is thus proved.
By γ we denote the first ordinal number of the power continuum. Let us consider a Hamel base $x_{0}=1, x_{1}, x_{2}, \ldots, x_{a}, \ldots(\alpha<\gamma)$. Every irrational number x may be represented as a linear combination with rational coefficients $x=r_{0}+r_{1} x_{o_{n}}+\ldots+r_{n} x_{o_{n}}$, where $1 \leqslant \alpha_{1}<\alpha_{2}<\ldots<\alpha_{n}$, $r_{1} \neq 0$. In the sequel we shall use the notations $r(x)=r_{1}, \alpha(x)=a_{1}$.

Let \mathfrak{B} be the class of all subsets of the set of all positive ordinals less than γ. Obviously,

$$
\begin{equation*}
\overline{3}=2^{x_{0}} . \tag{5}
\end{equation*}
$$

For every $V \in \mathfrak{B}$ we define the set

$$
\begin{aligned}
A_{V}=\{x: x & \text { irrational, } 0<x<1, r(x) \in \mathscr{W}, \alpha(x) \in V\} \cup \\
& \{x: x \text { irrational, } 0<x<1, r(x) \text { non } \in \mathscr{W}, \alpha(x) \text { non } \in V\} .
\end{aligned}
$$

Lemma 2. For every $V \in \mathfrak{B} A_{V} \in E$. Moreover,

$$
\operatorname{fr}\left\{n: n \xi \in A_{V}(\bmod 1)\right\}=\frac{1}{2}
$$

for each irrational ξ.
Proof. Since $r(n \xi)=\operatorname{ar}(\xi)$ and $a(n \xi)=\alpha(\xi)$ we have the following equality
$\left\{n: n \xi \in A_{V}(\bmod 1), n \leqslant N\right\}=\left\{\begin{array}{lll}\{n: n r(\xi) \in \mathscr{W}, n \leqslant N\} & \text { if } & a(\xi) \in V, \\ \{n: n r(\xi) \text { non } \in \mathscr{W}, n \leqslant N\}\end{array}\right.$ if $a(\xi)$ non $\in V$.

Hence, according to Lemma 1 , for every irrational ξ, we obtain the equality $\operatorname{fr}\left\{n: n \xi \in A_{V}(\bmod 1)\right\}=\frac{1}{2}$, which was to be proved.

Lemma 3. Let $D(D \subset[0,1)$) be a set satisfying the equality

$$
\begin{equation*}
\operatorname{fr}\left\{n: n \xi \in A_{V}-D(\bmod 1)\right\}=0 \quad(V \in \mathfrak{B}) \tag{6}
\end{equation*}
$$

for almost all ξ. Then, D is Lebesgue non-measurable.
Proof. Suppose the contrary, i. e. that D is Lebesgue measurable. First we shall prove that, for every interval $U(U \subset[0,1))$ and for almost all ξ,

$$
\begin{equation*}
\operatorname{fr}\left\{n: n \xi \in A_{V n} U(\bmod 1)\right\}=\frac{1}{2}|U|, \tag{7}
\end{equation*}
$$

where $|U|$ denotes the measure of U.
For brevity, we shall use the notations

$$
\oiiint^{0}=\omega^{2} \quad \oiiint^{1}=W^{\prime}, \quad V^{0}=V \quad \text { and } \quad V^{1}=V^{\prime},
$$

where \mathscr{W}^{\prime} denotes the complement of the set \mathscr{W} to the set of all rationals and V^{\prime} denotes the complement of the set V to the set of all positive ordinal numbers less than γ.

For every rational $r(r \neq 0)$ we denote by $k_{n}^{(i)}(r)(n=1,2, \ldots)$ the sequence of naturals n such that $n r \in \mathscr{W}^{i}(i=0,1)$.

It is well-known ([2], p. 344-346) that, for every sequence of integers $k_{1}<k_{2}<\ldots$ and for every interval $U(U \subset[0,1)$),

$$
\operatorname{fr}\left\{n: k_{n} \xi \in U(\bmod 1)\right\}=|U|
$$

for almost all ξ. Consequently, for almost all ξ and for every rational r $(r \neq 0)$, the equality

$$
\begin{equation*}
\operatorname{fr}\left\{n: k_{n}^{(i)}(r) \xi \in U(\bmod 1)\right\}=|U| \quad(i=0,1) . \tag{8}
\end{equation*}
$$

From the definitions of the set A_{V} and the sequences $k_{n}^{(i)}(r)$ it follows directly that
$\overline{\overline{\left\{n: n \xi \in A_{V} \cap U(\bmod 1), n \leqslant N\right\}}}=\overline{\overline{\left\{n: k_{n}^{(i)}(r(\xi)) \xi \in U(\bmod 1), k_{n}^{(n)}(r(\xi)) \leqslant N\right\}}}$ and

$$
\overline{\overline{\left\{n: k_{n}^{(i)}(r(\xi)) \leqslant N\right\}}}=\left\{\overline{\left.\overline{n: n r(\xi) \in W^{i}, n \leqslant N}\right\}}\right.
$$

if $a(\xi) \in V^{i}(i=0,1)$. Hence,

$$
\begin{aligned}
& \frac{1}{\bar{N}} \overline{\overline{\left\{n: n \xi \in A_{V} \cap U(\bmod 1), n \leqslant N\right\}}}= \\
& =\frac{1}{N} \overline{\overline{\{n: n r(\xi) \in \mathscr{W}, n \leqslant N\}}} \cdot \frac{\overline{\overline{\left\{n: k_{n}^{(i)}(r(\xi)) \xi \in U(\bmod 1), k_{n}^{(n)}(r(\xi)) \leqslant N\right\}}}}{\overline{\left\{n: k_{n}^{(i)}(r(\xi)) \leqslant N\right\}}}
\end{aligned}
$$

if $a(\xi) \in V^{i}(i=0,1)$, which implies, in view of (8) and Lemma 1 , the equality

$$
\begin{aligned}
\operatorname{fr}\left\{n: n \xi \in A_{V} \cap U(\bmod 1)\right\} & = \\
& =\operatorname{fr}\left\{n: n r(\xi) \in \mathscr{C}^{i}\right\} \operatorname{fr}\left\{n: k_{n}^{(i)}(r(\xi)) \xi \in U(\bmod 1)\right\}=\frac{1}{2}|U| .
\end{aligned}
$$

The formula (7) is thus proved.
From (6) and (7) it follows directly that, for every interval U and for almost all ξ, the following equality holds

$$
\begin{equation*}
\operatorname{fr}\{n: n \xi \in D \cap U(\bmod 1)\}=\frac{1}{2}|U| . \tag{9}
\end{equation*}
$$

Further, in view of a Theorem of Raikov ([1], p. 377),

$$
\lim _{N \rightarrow \infty} \int_{0}^{1}\left|\frac{1}{N} \sum_{n=1}^{N} \chi(n \xi)-|D \cap U|\right| d \xi=0,
$$

where χ is the characteristic function of $D \sim U$ extended on the line with the period 1. Hence, and from (9), for every interval U, we obtain the equality $|D \cap U|=\frac{1}{2}|U|$, which contradicts the Lebesgue density theorem. The Lemma is thus proved.

Proof of Theorem 1. Let $V \in \mathfrak{B}$. By B_{V} we denote a set belonging to the base of the family \bar{z} such that

$$
\operatorname{fr}\left\{n: n \xi \in A_{V} \not-B_{V}(\bmod 1)\right\}=0
$$

for each irrational ξ. (According to Lemma 2 the sets $A_{V}(V \in \mathfrak{B})$ belong to Ξ). Applying Lemma 3 we find that the sets B_{V} are Lebesgue nonmeasurable. Since the power of the base is $\leqslant 2^{2^{z_{0}^{\prime}}}$, then, to prove the Theorem, it suffices to show, in virtue of (5), that the function $V \rightarrow B_{V}$ establishes a one-to-one correspondence between sets V and sets B_{V}. Suppose $V_{1} \neq V_{2}$. There is then an irrational ξ_{0} such that $\alpha\left(\xi_{0}\right) \in V_{1}-V_{2}$. Taking into account the definition of A_{V}, we have $n \xi_{0} \in A_{V_{1}}-A_{V_{2}}(\bmod 1)$ $(n=1,2, \ldots)$. Hence, fr $\left\{n: n \xi_{0} \in A_{V_{1}}-A_{V_{2}}(\bmod 1)\right\}=1$, which implies fr $\left\{n: n \xi_{0} \in B_{V_{1}}-B_{V_{2}}(\bmod 1)\right\}=1$. Consequently, $B_{V_{1}} \neq B_{V_{2}}$.

Theorem 1 is thus proved.
Proof of Theorem 2. By \mathfrak{Z}_{0} we denote the class of all subsets of the set of all denumerable ordinal numbers. Obviously, $\mathfrak{B}_{0} \subset \mathfrak{B}$ and $\overline{\mathfrak{B}}_{0}=2^{\kappa_{1}}$. By $C_{V}\left(V \in \mathfrak{B}_{0}\right)$ we denote a set belonging to the weak base of the family E such that

$$
\operatorname{fr}\left\{n: n \xi \in A_{V} \div C_{V}(\bmod 1)\right\}=0
$$

for almost all ξ. According to Lemma 3, the sets C_{V} are Lebesgne nonmeasurable. To prove the Theorem it suffices to show that the function: $V \rightarrow C_{V}\left(V \in \mathfrak{B}_{0}\right)$ establishes a one-to-one correspondence between the
sets V and the sets C_{V}. Suppose $V_{1} \neq V_{2}\left(V_{1}, V_{2} \in B_{0}\right)$. Similarly to the preceding proof we find that

$$
\operatorname{fr}\left\{n ; n \xi \in C_{V_{1}} \div C_{F_{2}}(\bmod 1)\right\}=1
$$

for almost all ξ satisfying the condition $\alpha(\xi) \in V_{1} \div V_{2}$. Obviously, to prove the inequality $C_{V_{1}} \neq C_{V_{2}}$ it is sufficient to show that the outer Lebesgue measure of the set $S=\left\{\xi: \alpha(\xi) \in V_{1}-V_{2}\right\}$ is positive. Suppose the contrary, i. e.

$$
\begin{equation*}
|\boldsymbol{S}|=\theta \tag{10}
\end{equation*}
$$

Let η be the first ordinal number belonging to $V_{1} \perp V_{2}$. It is easy to verify that the real line R may be represented as the denumerable union of sets congruent to S

$$
R=\bigcup_{\substack{r_{1}, \ldots, r_{n} \\ a_{-1}, \ldots, c_{n} \leqslant \pi}}\left\{x+\sum_{i=1}^{n} r_{i} x_{a_{i}}: x \in S\right\},
$$

where r_{1}, \ldots, r_{n} are rationals $(n=1,2, \ldots)$. Hence, and from (10), it follows that $|R|=0$, which is impossible. The Theorem is this proved.

```
INSTITUTE OF MATHEMATICS, POLISH ACADFMY OF SCTENCES
```


REFERENCES

[1] D. A. Raikov, On some arithmetical properties of summable functions (iit Russian), Matem. Sbornik 1 (1936), 377-384.
[2] H. Weyl, Dler die Gleichrerteilang von Zahlen mod. Eins., Math. Aunalen 77 (1916), 313-352.

