ON SINGULAR RADII OF POWER SERIES

by|
Pacl ERDŐS and Alfréd RÉNYI

Let $\mathcal{R}_{l} d$ denote the class of analytid functions

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \tag{1a}
\end{equation*}
$$

which are regular and unbounded in $|z|<1$. According tol D. Gaier and W. Meyer-König [1] we call the radius R_{φ} defined by $\mathfrak{a} \sqsupset r e^{i \varphi}, 0 \leqq r \triangleleft \mathbf{1}$ singular for $f(z)$, if $\mathrm{f}(\mathrm{z})$ is unbounded in any sector $|z| \triangleleft 1, q \mid-\mathrm{a}<\arg a<$ $\Delta \varphi \mid+\varepsilon$ with $\mid \mathrm{a}>0$. A radius which is not singular for $\mathrm{f}(\mathrm{z})$ is called regular for $\mathrm{f}(\mathrm{z})$. In [1] it has been shown that if $\mathrm{f}(\mathrm{z})$ belongs to the class $\left.\mathcal{R}_{t}\right]$ and the power series of $f(z)$ has Hadamard-gaps, i. e.

$$
\begin{equation*}
f(z)=\sum_{k=0}^{\infty} c_{k} z^{\dot{n_{k}}} \tag{1b}
\end{equation*}
$$

with

$$
\begin{equation*}
\frac{n_{k+1}}{n_{k}} \geq q>1 \quad(k=0,1, \ldots \tag{2a}
\end{equation*}
$$

then every radius is singular for $\mathrm{f}(\mathrm{z})$. Clearly for every $\left.f(z) \in \mathcal{R}_{v}\right]$ there is at least one singular radius. It is easy| to see that if we suppose only| that the power series (lb) has FABRY-gaps, i. e. if instead of (2a) we suppose only

$$
\begin{equation*}
\lim _{x \rightarrow+\infty} \frac{1}{x} \frac{\}{n_{k}<x} 1 \sqsupset 0 \tag{2b}
\end{equation*}
$$

then it is possible that there is only one singular radius for $f(z)$. A simple example is furnished by

$$
\begin{equation*}
f_{1}(z)=\sum_{k=1}^{\infty} \frac{1}{k^{2}} \sum_{j=0}^{k^{2}-1} z^{N_{k}+j} \tag{3a}
\end{equation*}
$$

where $N_{k+1} \geqq N_{k} \mid+k^{2}(k=1,2, \ldots)$ Clearly $f_{1}(z)$ is regular in $|z| \triangleleft 1$ and if a is real, we have

$$
\lim _{x \rightarrow 1-0} f_{1}(x)=H \infty
$$

thus $f_{1}(z)$ belongs to the class $\left(R_{v} d\right.$ and $R_{0} d$ is a singular radius for $f_{1}(z)$. On the other hand we have by (3a)

$$
\begin{equation*}
\left|f_{1}(z)\right| \leqq \frac{\pi^{2}}{3 \mid 1-z} \quad \text { for } \quad|z|<1 \tag{3b}
\end{equation*}
$$

thus every radius $R_{\varphi} \mid$ with $0 \| \varphi<2 \pi$ is regular for $f_{1}(z)$,
It is also clear from this example that to ensure that every radius should be singular for $f(z)$ it is not sufficient to prescribe the rate in which the ratio

$$
\frac{1}{x} \sum_{n_{k}<x} 1
$$

tends to 0 for $x \rightarrow+\infty$. As a matter of fact, for $f_{1}(z)$ defined by (3a) we have

$$
\frac{1}{x} \underset{n_{k}<x}{\sum} 1 \leqq \frac{s^{3}}{N_{s}}
$$

where $s t$ is defined by the inequality $N_{s} \leqq \mathrm{x}<N_{s+1} \|$ and thus we can choose the sequence N_{s} so that

$$
\frac{1}{x} \sum_{n_{k}<x} 1<\varepsilon(x)
$$

holds, where $\mathrm{E}(\mathrm{x})(x=1,2, \ldots)$ is a sequence of positive numbers, tending to 0 arbitraryl rapidly.
P. Erdốs [2] has shown - answering a question of Gaier and Meyer-König - that to ensure that every radius should be singular for $f(z)$, it is not even sufficient to suppose that the exponent's n_{k} of the lacunary power series (lb) of $\mathrm{f}(\mathrm{z}) \in \mathbb{R}_{u} \backslash$ satisfy the condition

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left(n_{k+1}-n_{k}\right)=+\infty \tag{2c}
\end{equation*}
$$

The question arises, for which sequences n_{k} does there exist a function $\mathrm{f}(\mathrm{z})$ belonging to the class $\mathcal{R}_{u t}$ and having the power series expansion (lb), which has only one singular radius? Clearly it is impossible to give a criterion, which depends only on the rate of growth of the sequence n_{k}, because the number-theoretical properties of the sequence n_{h} come in. As a matter of fact let the sequence n_{k} satisfy the following condition :
D) for every $m(m|=1,2, \sqrt{ }|$. $)$ there exists an integer $k_{m} \mid$ such that for $k \geqq k_{m} n_{h}$ is divisible by 2^{m} 」

In this case if R_{q} is a singular radius for $\mathrm{f}(\mathrm{z})$ then $R_{\varphi^{\prime}}$, where $\varphi^{\prime} \sqsupset \varphi+$ $+2 \pi l / 2^{m}$ is also singular for any pair of positive integers d and m ; as a matter of fact, if $\left.z_{j}(j)=\mathbf{1}, \mathbf{2}, \ldots\right)$ is a sequence of complex numbers with $\left|z_{j}\right|<1, \varphi —$ 』 $<\arg z_{j} \triangleleft \varphi \mid H$ a and

$$
\lim _{j \rightarrow+\infty}\left|f\left(z_{j}\right)\right|=H \infty
$$

then putting $\varphi^{\prime}=\varphi_{1}+2 \pi l / 2^{m}$ andl $z_{j}^{\prime} \mid=z_{j} \exp \left(2 \pi i l / 2^{m}\right)$ we have $\varphi^{\prime}-\mathrm{E}<$ $\arg z_{j}^{\prime} \triangleleft \varphi 1+a$ and as the series for $f\left(z_{j}^{\prime}\right)$ differs from that for $f\left(z_{j}\right)$ only in a finite number of terms, we have also

$$
\lim _{j \rightarrow+\infty}\left|f\left(z_{j}^{\prime}\right)\right|=+\infty
$$

As the set of values of φ for which R_{q} is singular for $\mathrm{f}(\mathrm{z})$ is clearly olosed (see [1]), it follows that every radius R_{q} is singular for $f(z)$, Now the divisibility condition D) implies (2 c), but (except for this) is compatible with every possible order of growth of n_{k}; by other words if ω_{k} is an increasing sequence of positive integers, tending arbitrarily slowly to $+\infty$, then there exists a sequence n_{k} of integers having the property D) and satisfying the condition $n_{k+1}-n_{k}<\omega_{k}$ Thus our question has to be modified to some extent,. We ask for which sequences n_{k} does there exist a sequence n_{d}^{\prime} such that $0 \leqq n_{k}^{\prime} \mid$ - $n_{k} \leqq \omega_{k \mid}$ where $\omega_{k d}$ is a sequence tending arbitrarily slowly to $+\infty$, and a function

$$
\begin{equation*}
f(z)=\sum_{k=0}^{\infty} c_{k} z^{n_{k}^{\prime}} \tag{lc}
\end{equation*}
$$

belonging to the class \mathcal{R}_{q}, which has R_{d} as its only singular radius? We shall prove, by using standard methods of probability theory, that if $n_{\text {d }}$ satisties the condition

$$
\begin{equation*}
\liminf _{(k-j) \rightarrow+\infty}\left(n_{k}-n_{j}\right)^{k-j}=\mathbb{1} \tag{2~d}
\end{equation*}
$$

then there exists always such a function,
Thus we prove the following
Theorem 1. Let n_{h} be an increasing sequence of natural numbers, satisfying the condition (2d), Then for any sequence ω_{k} of natural numbers for which

$$
\lim _{k \rightarrow+1 \infty} \omega_{k \mid}=+\infty_{\lambda}
$$

therd exists a sequence n_{k}^{\prime} of natural numbers such that $0 \leq n_{k}^{\prime}-n_{k} \triangleleft \omega_{k}$ and an analytic function $f(z)$, which is regular in the unit circle has the power series $\left.{ }^{1}\right\rangle(\mathbf{I c})$, is unbounded \mid in $|z| \triangleleft \mathbf{1}$, but is bounded in the domain $|z| \triangleleft \mathbf{1},|\arg | z \mid>$ a for any al >0.

Our proof of the above Theorem is not constructive; we prove only by using probabilistic methods, the existence of a suitable function $\mathrm{f}(\mathrm{z})$, but can not give it explicitely.

The condition (2d) plays a role in other problems of a similar kind too ; e. g. P. Erdős has proved [3] that if (2d) is satisfied, there exists a power series (lb) which converges uniformly but not absolutely for $|z|=1$.

Proof of theorem 1. We shall need the following
Lemma. ${ }^{2}$ Let $m_{1} \triangleleft m_{2} \triangleleft \ldots<m_{d}$ be natural numbers, $v_{1} \downarrow \nu_{2 \downarrow} \ldots, v_{d}$ independent random variables, each of which takes on the values $0,1, \ldots, s-1$ with the same probability \mathbf{I} / s. Let a be a complex number such that $|z| \leqq \mathbb{I}$ and $2 s|1-z| \geq 1$. Let us consider the random variable

$$
\begin{equation*}
Z=\sum_{j=1}^{d} z^{m_{i}+v_{j}} \tag{4a}
\end{equation*}
$$

[^0]Then we have ${ }^{3)}$

$$
\begin{equation*}
\mathbf{P}\left\{|Z| \geqq \frac{4 d}{s|1-z|}\right\} \leqq 4 e^{-\frac{d}{32 s^{2}}} \tag{5}
\end{equation*}
$$

Proof of the Lemma. Let us put $\exists=r e^{i \varphi}$ and denote by C resp. S the real resp. imaginary part of Z, i.e. we put

$$
\begin{equation*}
C=\sum_{j=1}^{d} r^{m_{j}+v_{j}} \cdot \cos \left(m_{j}+\mathrm{v}_{\mathrm{j}}\right) \varphi \tag{4b}
\end{equation*}
$$

and

$$
\begin{equation*}
S I=\underset{j=1}{\sum} \mid r_{j}^{m_{j}+v_{j} \mid} \cdot \sin \left(m_{j}+\mathrm{v}_{\mathrm{j}}\right) \varphi \tag{4c}
\end{equation*}
$$

As

$$
\mid Z \leqq \sqrt{2} \max (|C|,|S|)
$$

we have evidently

$$
\begin{equation*}
\mathbf{P}\left\{|Z| \geqq \frac{4 d}{s|\mathbf{1}-z|}\right\} \leqq \mathbf{P}\left\{|C| \geqq \frac{2 \sqrt{2} d}{s \mid \mathbf{1}-z}\right\}, \mathbf{P}\left\{|S| \geqq \frac{2 \mid \sqrt{2} d}{s|\mathbf{1}-z|}\right\} \tag{6}
\end{equation*}
$$

Now letl us calculate the mean value of $e^{t C}$ where we shall choose the valud of the real number t later. We have

$$
\begin{gathered}
\mathbf{M}\left\{e^{t C}\right\}=\prod_{j=1}^{d} \boldsymbol{M}\left\{e^{t m_{j}+v_{i} \cos \left(m_{j}+v_{j}\right) \varphi}\right\}= \\
=\prod_{j=1}^{d}\left(\sum_{N=0}^{\infty} \frac{t^{N}}{N!}\left(\frac{1}{s} \sum_{h=0}^{s-1} r^{N\left(m_{j}++^{\prime}\right)} \cos ^{N}\left(m_{j}+h\right) \varphi\right)\right)
\end{gathered}
$$

As

$$
\left|\frac{1}{s} \sum_{h=0}^{s-1} r^{m_{j}+h} \cos \left(m_{j}+h\right) \varphi\right| \leqq\left|\frac{1}{s} \sum_{h=0}^{s-1} z^{m_{j}+h}\right| \leqq \frac{2}{s|1-z|}
$$

and

$$
\left.\left|\frac{1}{s} \sum_{k=0}^{s-1} r^{N\left(m_{j}+h\right)} \cos ^{N}\left(m_{j} H \mathbf{h}\right) \varphi\right| \leqq 1 \quad \quad \text { (iv }=2,3, \ldots \ldots\right\rangle
$$

we have for $0<|t|<1 / 2 \mid$

$$
\begin{equation*}
\left.\mathbf{M}\left\{e^{\text {tc }}\right\}|\leqq| 1+\frac{2|t|}{s|1-z|}+t^{2}\right\}^{d} \tag{7}
\end{equation*}
$$

Evidently

$$
\mathbf{P}\left\{C_{i} \geqq \frac{2 \sqrt{2} d}{s|1-z|}\right\}=\mathbf{P}\left\{C \geqq \frac{2 \sqrt{2} d}{s|1-z|}\right\}+\mathbf{P}\left\{C \leqq-\frac{2 \sqrt{2} d}{s|1-z|}\right\}
$$

[^1]further if $\#<0$, then
\[

$$
\begin{equation*}
\mathbf{P}\left\{C \geqq \frac{2 \sqrt{2} d}{s 1-z \|} \| \leq \mathbf{M}\left\{e^{t C}\right\} e^{\frac{2 \sqrt{2} t, 1}{s i 1-.1}}\right. \tag{8a}
\end{equation*}
$$

\]

and

$$
\begin{align*}
& \left.2|\sqrt{2} d| \mid \leqq M\left\{e^{-t C}\right\} e\right]^{\frac{2 \xi \overline{2}+d}{s \mid 1-z \|}} \tag{8b}\\
& s \left\lvert\,=\frac{1}{4 s|1-z|}\right.
\end{align*}
$$

By choosing in (7)
we obtain, taking into account that $8 \sqrt{2} \mid-9>2$ and that $|1-z|^{2} \leqq 4$ d

$$
\begin{equation*}
\mathbf{P}\left\{C \left\lvert\, \geqq \frac{2 \sqrt{2} d}{s|1-z|}\right.\right\} \leqq 2 e^{-\frac{d}{325^{2}}} \tag{9a}
\end{equation*}
$$

In the same way it can be shown that

$$
\begin{equation*}
\mathbf{P}\left\{\left\lvert\, S_{\mid} \geqq \frac{2 \sqrt{2} d}{s \mid 1-z}\right.\right\} \leqq 2 e^{-\frac{d}{32 s^{2}}} \tag{9b}
\end{equation*}
$$

Clearly (6), (9a) and (9b) imply (5), Thus our Lemma is proved.
Let us choose now a subsequence $n_{k_{p}}$ of the sequence $n_{k d}$ such that. $k_{1} \triangleleft k_{2} \triangleleft ., \triangleleft k_{p} \triangleleft \ldots$,

$$
\begin{equation*}
\left.\lim _{p \rightarrow+\infty}\left(k_{2 p+1}\right)-k_{2 p}\right) \mid=H \infty \tag{10a}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{p \rightarrow+\infty}\left(n_{k_{2 p+1}}-n_{k_{2 p}}\right)^{\frac{\mathrm{k}}{2 p+1}-k_{2 p}}=\mathbf{1} \tag{10b}
\end{equation*}
$$

By (2d) this is possible. As a matter of fact, if $0 \triangleleft \varepsilon<\frac{1}{4}$ and $\left.\left(n_{k} \mid-n_{j}\right)^{\frac{1}{k-j}} \right\rvert\, \triangleleft 1 H \varepsilon$, then either $\eta>[k \varepsilon]$ or $\eta \leqq[k \varepsilon]$; in thel latter case we have

$$
\left.\left(n_{k}-n_{[k \in]}\right)^{\frac{1}{k-[k \varepsilon]}} \leqq\left[\left(n_{k}-n_{j}\right)^{-1}\right]\right]^{\dot{k-j}-[k \varepsilon]} \leqq(1 H \varepsilon)^{\frac{1}{1-\varepsilon}} \leqq 1+3 \varepsilon
$$

Thus we may suppose that there exists a sequence of pairs (k, j) such that $k \rightarrow+\infty, j \rightarrow+\infty,(k-j) \rightarrow H \infty$ and $\left(n_{k}-n_{j}\right)^{k-j} \rightarrow 1$ 1. This implies the existence of a sequence k_{p} having the required properties.

Clearly we may rarify the sequence k_{p} as much as we want, : thus itl can be supposed that besides (10a) and (lob) the following three conditions are also satisfied :

$$
\begin{gather*}
\left(n_{k_{2 p+1}}-n_{k_{2 p}}\right)^{k_{2 p+1}-k_{2 p}} \tag{10c}\\
p^{4} \leqq \omega_{k_{2 p}}
\end{gather*}
$$

and

$$
\begin{equation*}
k_{2 p+1}-k_{2 p}>64 p^{10} \tag{10e}
\end{equation*}
$$

Now let us put

$$
\begin{equation*}
d_{p}=k_{2 p+1}-k_{2 p} \tag{11a}
\end{equation*}
$$

and

$$
\begin{equation*}
m_{p j}=n_{k_{2 p}+j}-n_{k_{2 p} \mid} \quad\left(j=1,2, \ldots, d_{p}\right) \tag{11b}
\end{equation*}
$$

further put

$$
\begin{align*}
\delta_{p} & =\frac{\mathbf{1}}{p} \tag{llc}\\
s_{p} & =p^{4} \tag{11d}
\end{align*}
$$

and
(1le) $\quad N_{p}=\left(m_{p d_{p}} H s_{p}\right) \mid s_{p} \delta_{p}^{2} \quad(p=1,2,1 .$.
Let us put

$$
\begin{equation*}
z_{p h \mid}=\mathrm{e}^{2 \pi i \nmid n} \quad\left(h\left|=0,1, \ldots, N_{p}\right|-\mathbf{1}\right) \tag{12a}
\end{equation*}
$$

further

$$
z_{p h}^{*}=\left\lvert\, \begin{align*}
& z_{p h} \mid \text { for } \delta_{p} N_{p} \mid \leqq \mathbf{h} \leqq\left(1-\delta_{p}\right) N_{p} \tag{12b}\\
& |2| \cos 2 \pi\left|\delta_{p}\right|-z_{p h} \mid \text { for } 0 \leqq h<\delta_{p} N_{p} \text { and }\left(1-\delta_{p}\right) N_{p}<h<N_{p}
\end{align*}\right.
$$

(clearly in the second case $z_{p h}^{*}$ is obtained by reflecting $z_{p h}$ on the line $\left.\operatorname{Re}(z)=\cos 2 \pi \delta_{p}\right)$.

Evidently

$$
\begin{equation*}
\mid z_{p h}^{*}-1 \geqq \mathrm{I}-\cos 2 \pi \delta_{p} \geqq 8 \delta_{p}^{2} \text { f o r } \quad p \geqq 4, \quad h\left|=1,2, \ldots, N_{p}\right| \tag{13}
\end{equation*}
$$

Let us denote by \mathcal{L}_{p} the contour consisting of the arc $2 \pi \delta_{p} \leqq \varphi \mid \leq 2 \pi\left(1-\delta_{p}\right)$ of the unit circle $z=e^{i \varphi}$ and of the arc $|\varphi|<2 \pi \delta_{p} \mid$ of the circle $a=$ $=2 \cos 2 \pi \delta_{p}-e^{i \varphi}$; clearly the points $\left.z_{p h}^{*}(h)=1,2, \ldots, N_{n}\right)$ divide the line \mathscr{L}_{p} into arcs of the length $2 \pi / N_{p}$. By our lemma we have, denoting by v_{p}, $\left(j=\mathbf{1}, \mathbf{2}, \ldots d_{p}\right)$ independent' random variables, each of which takes on the values $0, \mathbf{1}, \ldots, s_{p}-\mathbf{1}$ with the probability $1 / s_{p}$,

$$
\begin{equation*}
\mathbf{P}\left\{\max _{1 \leqq h \leqq N_{p}} \sum_{j=1}^{d_{p}} z_{p h}^{*} m_{p i}-v_{p j} \left\lvert\,>\frac{4 d_{p}}{8 s_{p} \delta_{p}^{2}}\right.\right\} \leqq 4 N_{p} e^{-\frac{d_{p}}{32 \frac{s p}{p}}} \tag{14}
\end{equation*}
$$

Now putting

$$
\begin{equation*}
Q_{p}(z)=\sum_{j=1}^{d_{p}} z^{m_{p i} \div} v_{p i} \tag{15}
\end{equation*}
$$

we have

$$
\begin{equation*}
Q_{p}^{\prime}(z) \mid \leqq d_{p}\left(m_{p d p}+s_{p}\right) \quad \text { for } \quad z \mid \leqq 1 \tag{16}
\end{equation*}
$$

and thus for any two points z, z^{\prime} of the closed unit circle

$$
\begin{equation*}
\left|Q_{p}(z)\right|-Q_{p}\left(z^{\prime}\right)\left|\mathbf{I} \leqq d_{p}\left(m_{p d_{p}}+s_{p}\right)\right|!z-z^{\prime} \mathbf{I} . \tag{17}
\end{equation*}
$$

Thus we obtain

$$
\begin{equation*}
\max _{z \in L_{p}}\left|Q_{p}(z)\right| \leqq \max _{1 \leqq h \leqq N_{p}}\left|\sum_{j=1}^{t_{p}} z_{p h}^{*} m_{p j}+v_{p j}\right|+\frac{d_{p} \cdot 2 \pi}{s_{p} \cdot \delta_{p}^{2}} \tag{18}
\end{equation*}
$$

and therefore by (14)

$$
\begin{equation*}
\mathbf{P}\left\{\max _{z \in L_{p}}\left|Q_{p}(z)\right| \geqq \frac{7 d_{p}}{s_{p} \delta_{p}^{2}}\right\} \leqq 4 N_{p} e^{-\frac{d_{p}}{32 s_{p}^{2}}} \tag{19a}
\end{equation*}
$$

and thus with respect to (10a)-(lle) that for $\mathrm{p} \geqq 64$

Thus it follows that

$$
\begin{equation*}
\mathbf{P}\left\{\max _{z \in L_{p}}\left|Q_{p}(z)\right| \geqq \frac{7 d_{p}}{p^{2}}\right\} \leqq 8 p^{2} e^{-p^{2}} \tag{19b}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{p=1}^{\infty} \mathbf{P}\left\{\max _{z \in L_{p}}\left|Q_{p}(z)\right| \geqq \frac{7 d_{p}}{p^{2}}\right\} \tag{20}
\end{equation*}
$$

converges, and therefore, with probability 1 , only a finite number of the inequalities

$$
\max _{z \in L_{p}}\left|Q_{p}(z)\right| \geqslant \frac{7 d_{p}}{p^{2}}
$$

is satisfied.
This implies that the values of $y_{p j}$ can be chosen in such a way that

$$
\begin{equation*}
\max _{z \in L_{p}}\left|Q_{p}(z)\right|<\frac{7 d_{p}}{p^{2}} \tag{21}
\end{equation*}
$$

for all $p \geqslant p_{0}$,
Let us put now

$$
\begin{equation*}
f(z)=\sum_{p=1}^{\infty} \frac{1}{d_{p}} z^{n_{k_{p p}}} Q_{p}(z) \tag{22}
\end{equation*}
$$

where the polynomials $Q_{p}(z)$ are chosen in such a way that (21) is satisfied for all $p \geqslant p_{0}+$ Clearly $\mathrm{f}(z)$ is regular in $|z| \triangleleft 1$, and also unbounded, as all its coefficients are nonnegative and $Q_{p}(1) \mid=d_{p}$. On the other hand, for any $\varphi \not \equiv \equiv 0 \bmod 2 x$ and any $\varepsilon>0$ with $0 \triangleleft \varphi-\varepsilon \triangleleft \varphi+a<2 \pi t$ we have for all values of p_{1} for which $2 \pi / p \mid \triangleleft \varphi-a$ and $2 \pi(1-1|p|>\varphi+\mid a$, for $\varphi-a \leqq \arg a \leqq \varphi+\varepsilon,|z| \triangleleft 1$ (by the maximum principle)

$$
\frac{1}{d_{p}} \left\lvert\, Q_{p}(z) \leqq \frac{7}{p^{2}}\right.
$$

for $p \geq \mid p_{0}$. But this implies, that $\mathrm{f}(\mathrm{z})$ is bounded in the sector $|z|<1, q 1-\varepsilon \leq \leq$ $\leqq \arg z \leqq|\varphi|+\varepsilon$, or, by other words, R_{0} is the only singular radius of $\mathrm{f}(\mathrm{z})$. Taking into account that

$$
\nu_{p j} \leqq s_{p}=p^{4} \leqq \omega_{k z p}
$$

evidently $f(z)$ satisfies all requirements of Theorem 1., which is therewith proved.

It can be shown that the condition $n_{k}^{\prime}-n_{k}=O\left(\omega_{k}\right)$ with ω_{k} tending arbitrarily slowly to $+\infty$ can not be replaced in Theorem 1. by $\left.n_{k}^{\prime}\right]-n_{k}=0$ (1). We prove namely the following result :

Theorem 2. Let n_{k} be an increasing sequence of natural numbers, such that n_{k} is divisible by 2^{m} for all $k \geqq k_{m}(m=1,2, \ldots)$, Let

$$
\begin{equation*}
f(z)=\sum_{k=0}^{\infty} c_{k} z^{n_{k}+b_{k}} \tag{23}
\end{equation*}
$$

be regular and unbounded in the unit circle, where the sequence b_{k} of irtegrs is bounded. Then every radius $R_{q} \mid$ is singular with respect to $\mathrm{f}(z)$.

Proof of Theorem 2.4) ${ }^{4}$ It suffices tol show that $f(z)$ can not be bounded in a sector $|z| \triangleleft 1$, a $\triangleleft \arg z \triangleleft \beta$. This will be shown by proving that if $f(z)$ would be bounded in such a sector, it would be bounded in thel whole unit circle. As a matter of fact, let us suppose that. $f(z)$ is given by (23) and that $\left|b_{k}\right| \leqq B(k \mid=1,2, \cdots) \mid$ and put

$$
\begin{equation*}
f_{i}(z) \mid=\sum_{b_{k}=j} c_{k} z^{n_{k}} \quad(|j| \leqq B) \tag{24}
\end{equation*}
$$

Then we may write

$$
\begin{equation*}
f(z)=\sum_{j=-B}^{B} z^{j} f_{j}(z) \tag{23~b}
\end{equation*}
$$

Let us consider the values $z_{\|} \sqsupset \mathrm{e}^{2 \pi i \frac{l}{2^{m}}}$, where m is a fixed natural number, such that
(25)

$$
2^{m}>\frac{4 \pi(B+1)}{\beta-\alpha}
$$

and l takes on the values $\mathbf{0}, \mathbf{1}, \ldots, 2^{m}-\mathbf{1}$. Putting

$$
\begin{equation*}
F_{j+B}(r, \vartheta)=\left(\sum_{\substack{k \geq k_{m} \\ b_{k}=j}} c_{k} r^{n_{k}} e^{i n_{k} \vartheta}\right)\left(r e^{i \vartheta}\right)^{j} \quad(-B \leqq j \leqq+B) \tag{26}
\end{equation*}
$$

we have for $0 \leqq r<1,0 \leqq \vartheta<2 \pi$ and $l=0,1, \ldots 2^{m}-1$

$$
\begin{equation*}
f\left(r e^{i \theta} z_{l}\right)=z_{l}^{-B} \sum_{\pi=0}^{2 B} \mid F_{h}(r, \mid \mathbf{6}) z_{l}^{h}+\Delta \tag{23c}
\end{equation*}
$$

where A denotes a term which is bounded in the unit circle, the bound depending only on m .

As a matter of fact we have

$$
\begin{equation*}
|A| \leqq \sum_{k<k_{m}}\left|c_{k}\right|=A \tag{27}
\end{equation*}
$$

[^2]Now by (25) there are at least $2 \boldsymbol{B}+1$ terms of the sequence $z_{d}(l=$ $\left.=0 \mid 1, \ldots, 2^{m}-\ldots 1\right)$ lying on the $\operatorname{arc} a-6 \triangleleft \arg z<\beta|-6,|z|=1$.

Let us denote these numbers by $z_{l_{\|}}, z_{l_{1}+\mid 1+\ldots,} \ldots z_{l_{1}+2 B_{1},}$ let us fix the value of 6 and put

$$
\begin{equation*}
Q_{\vartheta}(r, \zeta)=\sum_{j=0}^{2 B} F_{j}(r, \vartheta) \zeta^{j} \tag{28a}
\end{equation*}
$$

We have by the interpolation formula of Lagrange

$$
\begin{equation*}
Q_{\vartheta}(r, \zeta)=\sum_{j=0}^{2 B} Q_{\vartheta}\left(r, z_{l_{1}+j}\right) \frac{\Omega(\zeta)}{\Omega^{\prime}\left(z_{l_{1}+j}\right)\left(\zeta-z_{l_{1}+j}\right)} \tag{28b}
\end{equation*}
$$

where

$$
\begin{equation*}
\Omega(\zeta)=\prod_{j=0}^{2 B}\left(\zeta-z_{l_{2}+j}\right) \tag{29}
\end{equation*}
$$

As by supposition there exists a constant. $K \mid$ such that $|f(z)| \leqq \boldsymbol{K}$ for $|z| \triangleleft 1$, a $\triangleleft \arg z<\beta \mid$ we have by (23c), (27) and (28a)

$$
\begin{equation*}
\left|Q_{\theta}\left(r \| z_{l_{1}+j}\right)\right| \leqq K+A \mid \quad(j=0,1, \ldots, \quad 2 B) \tag{30}
\end{equation*}
$$

Thus it follows, that for $|\zeta|=1$ we have

$$
\begin{equation*}
\left|Q_{\vartheta}(r, \zeta)\right| \leqq \frac{(K+A)(2 B+1)}{\left(\sin \frac{\pi}{2^{m}}\right)^{2 B}} \tag{31}
\end{equation*}
$$

It follows from $(23 \mathrm{c})$ for $l=0$ that

$$
\begin{equation*}
\left.\left|f\left(r e^{i \vartheta}\right)\right| \leqq \frac{(K+A)(2 B+\grave{\mathbf{l}})}{\left(\sin \frac{\pi}{2^{m}}\right)^{2 B}}+A \quad \text { for } 0 \leqq \leqq n<1 \text { and } 0 \leqq 6 \triangleleft 2 \pi\right\rfloor \tag{32}
\end{equation*}
$$

As the bound on the right hand side of (32) does not depend on n or 6 , it follows that $\mathrm{f}(\mathrm{z})$ is bounded in the whole unit circle, which contradicts our hypothesis. Thus Theorem 2. is proved.

It remains an open question, whether condition (2d) is best possible. In other words, the following problem is still unsolved :

Let

$$
f(z)=\sum_{k=1}^{\infty} c_{k} z^{n_{k}}
$$

be regular and unbounded in $|z| \longleftrightarrow 1$. Suppose that

$$
\left.\liminf _{(\mathrm{k}-\mathrm{j})-+\infty}\left(n_{k}-n_{j}\right)^{\frac{1}{k-j}} \right\rvert\,=q>1
$$

Is it true that all radii $R_{\varphi}(0 \leqq \varphi<2 \pi)$ are singular for $\mathrm{f}(\mathrm{z})$?

REFERENCES

[1] Gaier, $\$ D.-Meyer-Könic, W. : „Singuläred Radien beil Potenzreihen". Jahresberichte der Deutschen Mathematiker Vereinigung 59 (1856) 36-48.
[2] Erdős, P. : ,,U'ber eine Fragestellung von Gaier undl Meyer-König". Jahresberichtel der Deutschen Mathematiker Vereinigung 60 (1957) 89-92.
[3] ERDős], P.: ,On| the uniform but not absolute convergence of power series with gaps". Annalest de la Societe Polonaise de Mathématique 25 (1952) 162-168」
[4] ERDÔs, P.-RÉNYI, A]: ,Probabilistid approach to some problems of diophantine approximation"'. Illinois Journal of Mathematics 1 (1957) 303-315d

HATVÁNYSOROK SZINGULÁRIS SUGARAIRÓL

ERDŐS \mathbf{P}. éd RÉNyil A.

Kivonat

Legyen $f(z)$ az egységkörben| reguláris és nem korlátos függvény. A $a \sqsupset r e^{i \varphi} \mid$ ($0 \leqq n \triangleleft 1$) sugarat, melyet a rövidség kedvéért R_{q}-vel jelölünk, D. Gaier és W. Meyer-König nyomán (lásd [1], [2]) szingulárisnak nevezzük, ha $\mathrm{f}(\mathrm{z})$ nem korlátos a $|z|<1$, $\varphi-\mathrm{a} \triangleleft \arg z \triangleleft \nmid+$ a kbrcikkben, akármilyen kis pozitiv szám is $\varepsilon \Perp$ A nem-szinguláris sugarakat| reguláris| sugárnak| nevezzük. A jelen dolgozatban a következól tételeketl bizonyitjuk be :

1 . tételd Legyen n_{k} természetes számok e g y növekvő sorozata, amelyre

$$
\begin{equation*}
\left.\liminf _{(k-j) \rightarrow+1}\left(n_{k}-n_{j}\right)^{\frac{1}{k-j}} \right\rvert\,=\mathbf{1} . \tag{1}
\end{equation*}
$$

Legyen $\mid \omega_{k}$ egy tetszölegesen lassand végtelenhez tartol számsorozat. Akkor létezik| olyan

$$
\begin{equation*}
f(z)=\sum_{k=1}^{\infty} c_{\hbar} z^{n_{k}} \tag{2}
\end{equation*}
$$

alakúl hatványsorrad bird, aza egységkörben reguláris| e's nem korlátos| $f(z)$ függ vény, amelynek csak egyetlen szinguláris| sugara| van, és amelynek n_{k}^{\prime} kitevóz eleget teszneld a

$$
\begin{equation*}
0 \leqq n_{k}^{\prime}-n_{k} \leqq \omega_{k} \tag{3}
\end{equation*}
$$

feltételnek.

Az 1. tétell a dolgozatban valószínűségszámítási| módszerrel van bebizonyítva.
2. tétel. Legyen $\mathbf{A},(m \mid=\mathbf{1}, \mathbf{2}, \ldots$.$) e gy természetes számokbód álló$ tetszőleges növekvól soroxat e’s $n_{\text {k }}$ egy olyan természetesl számokból állól sorozat, amely| azzal a tulajdonsággal bír, hogy az $n_{\text {ね }}$ soroxat tagjail véges sok kivétellell osxthatdk $\Lambda_{m}-m e l(m \exists 1,2, \ldots)$ Legyen b_{b} tetszöleges egész számokból álló korlátos sorozat. Tegyük fel, hogy

$$
f(Z)=\sum_{n=1}^{\infty} c_{k} \mid z^{n_{k}+b_{k} \mid}
$$

az egységkörben reguláris és nemı korlátos függvény, Akkor $f(z)$-re vonatkozólag az egységkör minden 1 sugara 1 szinguláris.

0 СИНГУЛЯРНЫХ РАДИУСАХ СТЕПЕННЫХХ РЯДОВ

P. ERDŐS и A. RÉNYI

Резюме

Пусть функция $f(z)$ регулярна и неограниченна в единичном круге. Радиус $z=r e^{i \varphi}(0 \leqq n<1)$, обозначаемый для краткости через R_{φ}, следуя D. Gaier-y| и W. Meyer-Kónig-y (cm. [1], [2]), называетсяl сингуляр-1 ным, если $f(z)$ неограниченна в круговом секторе $|z| \triangleleft 1, \varphi \mid-a \triangleleft \arg z<$ $<\varphi H \varepsilon$ при любом положительном ε. Несингулярные радиусы называются регулярными. В настоящей работе доказываются следующия теоремы :

Теорета 1. Пусть $n_{f d}$ есты возрастаюџаяя последовательносты натуральных чисел, для которой

$$
\begin{equation*}
\liminf _{(k-j) \rightarrow \infty}\left(n_{k}-n_{j}\right)^{\frac{1}{k-j}}=1 \tag{1}
\end{equation*}
$$

Пусты ω_{k} есты как угодно медленно стремящаясяя к бесконечности числоваяя последовательность. Тогда суиествует такая регулярная и неограчиченная в единичном Круzе функция: $f(z)$, разлагаемая в степенной ряо вида

$$
\begin{equation*}
f(z)=\sum_{k=1}^{\infty} c_{k} z^{n_{k}^{\prime}} \tag{2}
\end{equation*}
$$

которая имеет лииы единственный сингулярный радиус и для которой выполненно условие

$$
\begin{equation*}
\alpha \leqq n_{\hat{h}}^{\prime}-7_{\text {H }} \leqq \omega_{k-1} . \tag{3}
\end{equation*}
$$

Теорема $\mathbb{\|}$ доказывается в работе теоретико-вероятностным методомө
Теорета 2. Пусть $\Lambda_{m}(m \mid=1,2, \ldots)$ любая возрастающая последовательность натуральньхх чисел, а п n_{k} последовтельность натуральных чисел, за исклучением конечнога числа деляцихся на $\Lambda_{m}\left(m|=1| 2,, .\right.$. .).| Пусть| $b_{k} \mid$ лобая ограниченная последовательносты цельх чисел. Предположим, чта функцияя

$$
f(z)=\sum_{k=1}^{\infty} c_{k} z^{n_{k}+b_{k}}
$$

регулярна а неограниченна 6 единичном круzе. Тогдд относительно $f(z)$ вся-я кий радиус единичногд кругф сингулярен.

[^0]: 1) $f(z)$ cam be chosen so that its power series has nonnegative coefficients. ${ }^{2}$ 2) Al similarl lemma has been used in as previous paper|[4] of the authors of the present| paper.
[^1]: ${ }^{3)}$ Here and in what follows $P\{1$. . $\}$ denotes the probability| of the event in the brackets and $M\{\xi\}$ the mean value of the random variable ξ

[^2]: ${ }^{\text {d }}$) It will be seen from the proof that the condition ,, n_{4} is divisible by 2^{44} for all $k \geq k_{m d}(\mathrm{~m}=1,2, \ldots .)^{\prime} 1$ could be replaced by the following more general condition : ,,therd exists a sequence A, $\mathrm{m}=1,2, \ldots$) of natural numbers, such that $\Lambda_{m} \rightarrow+$ +ol and $n_{k l}$ is divisible by Λ_{m} for $k \geq k_{m}(\boldsymbol{m}=1,2, \ldots.) \cdot ' 1$

