ON THE STRUCTURE OF SET-MAPPINGS

By
P. ERDŐS (Budapest), corresponding member of the Academy, and A. HAJNAL (Budapest)

1. Introduction. Let S be a set and $f(x)$ a function which makes correspond to every $x \in S$ a subset $f(x)$ of S so that $x \notin f(x)$. Such a function $f(x)$ we shall call a set-mapping defined on S.

A subset $S^{\prime} \subseteq S$ is called free (or independent) with respect to the set-mapping $f(x)$, if for every $x \in S^{\prime}$ and $y \in S^{\prime}, x \notin f(y)$ and $y \notin f(x)$.

Let $\bar{S}=m \geqq \aleph_{0}$ and $n<m$. Assume that $\overline{f(x)}<n$ for every $x \in S$. Ruziewicz raised the problem if there always exists a free set of power m. Assuming the generalized hypothesis of the continuum the answer to the problem of RUZIEwICZ is positive. ${ }^{1}$

In our present paper we are going to define more general set-mappings and raise analogous questions to those of Ruziewicz. Let there be given the set S and a set of its subsets I. Assume that the function $f(X)$ makes correspond to every set X of I a subset $f(X)$ of S so that the intersection of $f(X)$ and X is empty. $f(X)$ will be defined as a set-mapping of S of type I. This is clearly a generalization of the original concept of the set-mapping. (There I consisted of all the subsets of S having one element.) The subset $S^{\prime} \subseteq S$ is called free (with respect to this set-mapping, or briefly a free set of the set-mapping) if for every $X \subseteq S^{\prime}(X \in I)$ the intersection of $f(X)$ and S^{\prime} is empty.

Our aim is the investigation of those set-mappings where I consists either of all subsets of S of a given cardinal t or of all subsets of less than a given cardinal t. In these cases we shall briefly say that the set-mapping is of type t or of type $<t$, respectively. If $\overline{\overline{f(X)}}<n$ for all X of I we shall say that the set-mapping is of order n. Our problems will be of the following kind: Let $\bar{S}=m$, further let $f(X)$ be a set-mapping of S of order n and type t. Does there then always exist an independent set of power p ?
2. Definitions and notations. In what follows capital letters will denote sets; x, y, z, \ldots are the elements of the sets; greek letters denote ordinals; a, b, c, m, n, t, p denote cardinals and k, l, s, \ldots denote integers.

[^0]Union of sets will be denoted by + and Σ, intersection of sets by and Π. + will also be used to denote addition of ordinals, - will be used to define taking relative complements. $x \in A$ denotes that x is an element of $A, A \subseteq B$ denotes that the set A is contained in $B(A \subset B$ denotes that A is a proper subset of $B) . \omega_{a}$ will denote the initial number of $\aleph_{a}\left(\omega_{0}=\omega\right)$. a^{+}will denote the cardinal $\boldsymbol{\aleph}_{\alpha+1}$ where $a=\boldsymbol{N}_{\alpha}$. If Ω is the initial number of a, then Ω^{+}is the initial number of a^{+}.

The cardinal numbers $b_{a, k}$ are defined by induction as follows:

$$
b_{a, 0}=a, \quad b_{a, k+1}=2^{b_{a, k}} .
$$

The initial number of $b_{a, k}$ will be denoted by $\Omega_{a, k}$.
The proof of some of our theorems makes use of the generalized continuum hypothesis. These theorems will be denoted by (*).

In the proof of some of our theorems, wich will be denoted by (**), we make use of the following hypothesis: ${ }^{2}$

Let m be a strongly inaccessible cardinal number, $\overline{\bar{S}}=m$. Then one can define a two-valued measure $\mu(X)$ on all subsets of S for which $\mu(S)=1 ; \mu(\{x\})=0$ for all $x \in S$ and the measure is additive for less than m summands. In the present paper we do not investigate the problem, if these theorems are equivalent to the above hypothesis.

Let $\varphi(x)$ be an arbitrary property of the elements of the set H. The set of all $x \in H$ which satisfy $\varphi(x)$ will be denoted by $\{x: \varphi(x)\}$. The notation \{ \} will alṣo be used to denote sets whose elements are those which are contained in the brackets $\}$. The set $\{X: X \subseteq S ; \overline{\bar{X}}=t\}$ will be denoted by $[S]^{t}$ and the set $\{X: X \subseteq S ; \overline{\mathcal{S}}<t\}$ by $[S]{ }^{<t}$.

For the study of the set-mappings we introduce the notations $(m, n, t) \rightarrow p$ and ($m, n,<t$) $\rightarrow p$ to denote that every set-mapping, defined on $S(\bar{S}=m)$, of order n and type t (or $<t$, respectively) has a free set of power p. In the opposite case we write $(m, n, t) \longleftrightarrow p$ and $(m, n,<t) \longrightarrow p$, respectively.
3. A short summary of the principal results and problems. As a first step we show that if the type t of the set-mapping is infinite, one can never assure the existence of a (non-trivial) free set, even if the order of the set-mapping is 2 , in other words we shall show that for every m and $t \geqq \mathbf{N}_{0}$, $(m, 2, t) \longrightarrow t$. (From this it is easy to deduce that $(m, 2,<t) \longrightarrow \mathbf{N}_{0}$ for $t>\boldsymbol{\aleph}_{0}$ (see Theorem 1).)

Thus we can expect positive results only for $(m, n, k) \rightarrow p$ and $\left(m, n,<\boldsymbol{\aleph}_{0}\right) \rightarrow p$, for simplicity we write $(m, n, \omega) \rightarrow p$ instead of $\left(m, n,<\boldsymbol{\aleph}_{0}\right) \rightarrow p$.

For the symbol $(m, n, \omega) \rightarrow p$ we obtain the following negative result: Let $m<\boldsymbol{N}_{\omega}$, then $(m, 2, \omega) \longrightarrow \mathbf{N}_{0}$ (see Theorem 2).

[^1]Then we prove the following surprising result: (**) Let m be strongly inaccessible and $n<m$, then $(m, n, \omega) \rightarrow m$ (see Theorem 7).

The simplest unsolved problem here is the following:
Problem 1. $\left(\boldsymbol{N}_{\omega}, 2, \omega\right) \rightarrow \boldsymbol{\aleph}_{0}$?
(It is easy to see that $\left(\boldsymbol{N}_{\omega}, 2, \omega\right) \longrightarrow \mathbf{N}_{1}$, this easily follows from $(m, 2, \omega) \longrightarrow \boldsymbol{N}_{0}$ for $\left.m<\boldsymbol{N}_{\omega}\right)$.

The problem of the set-mappings of type ω is closely connected with a problem considered by ErDős-Rado:

Can one split for each $k\left(1 \leqq k<\mathbf{N}_{0}\right)$ the subsets of k elements of S into two classes so that if $S_{1} \subseteq S\left(\bar{S}_{1} \geqq \boldsymbol{N}_{0}\right)$ is an arbitrary infinite subset of S, then there always exists a k such that S_{1} has a subset of k elements in both classes ? ${ }^{3}$

By the methods used in this paper we prove that if m is less than the first strongly inaccessible cardinal $m_{0}, m_{0}>\boldsymbol{\aleph}_{0}$, such a splitting is possible, but if m is strongly inaccessible, $m>\boldsymbol{N}_{0}$, then there always exists an $S_{1} \subseteq S, \bar{S}_{1}=m$, such that for every $k\left(1 \leqq k<\boldsymbol{N}_{0}\right)$ all subsets of S_{1} having k elements are in the same class (here we have to use (**)). (See Theorem 9.) By the symbolism introduced in [6] these results can be expressed in the form :
$m \longrightarrow\left(\mathbf{N}_{0}\right)^{<\mathbf{N}_{0}}$ if m is less than the first strongly inaccessible cardinal $m_{0}>\boldsymbol{N}_{0}$ and
$m \rightarrow(m)^{<\Sigma_{0}}$ if m is a strongly inaccessible cardinal, $m>\boldsymbol{\aleph}_{0}$.
For the set-mappings of finite type our results are more complete.
For the set-mappings of type 1 we already stated that $(*)(m, n, 1) \rightarrow m$ for $n<m$ and $m \geqq \mathbf{N}_{0}$.

For strongly inaccessible cardinals m we have $(m, n, \omega) \rightarrow m(* *)$ and consequently (m, n, k) $\rightarrow m(n<m)$ for every k too.

If $m=\mathbf{N}_{\alpha}$, where α is a limit number (but we assume that $\boldsymbol{\aleph}_{\alpha}$ is not inaccessible), we can prove, using (*), that (m, n, k) $\rightarrow m(n<m)$ (see Theorem 8).

Thus in these cases the exact analogue of the results of Ruziewicz for $k=1$ holds.

If $m=\boldsymbol{N}_{\alpha+1}$, the analogue of the conjecture of Ruziewicz fails already for $k \geqq 2$, i. e. we shall show that $\left(\boldsymbol{\aleph}_{\alpha+k-1}, \boldsymbol{\aleph}_{\alpha}, k\right) \longrightarrow k+1$ for $k=1,2, \ldots$ (see Lemma 2).

On the other hand, we can prove that (*) $\left(\mathbf{N}_{\alpha+k}, \mathbf{N}_{\alpha}, k\right) \rightarrow \mathbf{N}_{\alpha+1}$ (see Theorem 3).

[^2]Thus we know that the smallest m, for which the symbols $\left(m, \boldsymbol{N}_{\alpha}, k\right) \rightarrow$ $\rightarrow \boldsymbol{\aleph}_{0}, \ldots,\left(m, \boldsymbol{\aleph}_{\alpha}, k\right) \rightarrow \boldsymbol{\aleph}_{a+1}$ are true, is $\boldsymbol{\aleph}_{a+k}$, but, on the other hand, we do not know the greatest p for which $\left(\boldsymbol{N}_{a+k}, \mathbf{N}_{a}, k\right) \rightarrow p$ is true. We can prove only the following negative result: (*) $\left(\boldsymbol{N}_{\alpha+k}, \boldsymbol{\aleph}_{\alpha}, k\right) \xrightarrow{\longrightarrow} \mathbf{N}_{\alpha+k}$ if $k \geqq 2$ (see Theorem 5).

So the simplest unsolved problem here is the following:
Problem 2. $\left(\boldsymbol{N}_{3}, \mathbf{N}_{0}, 3\right) \rightarrow \boldsymbol{N}_{2}$?
$\left(\left(\boldsymbol{N}_{3}, \mathbf{N}_{0}, 3\right) \rightarrow \mathbf{N}_{1}\right.$ is true and $\left(\mathbf{N}_{3}, \boldsymbol{N}_{0}, 3\right) \rightarrow \boldsymbol{N}_{3}$ is false.)
For the set-mappings of finite order we have the following results:
If m is infinite, then $(m, l+1, k) \rightarrow \mathbf{N}_{0}$ (see Theorem 10) and (*) $\left(\boldsymbol{N}_{\alpha+k-1}, l+1, k\right) \rightarrow \boldsymbol{\aleph}_{a}$ for $k=1,2, \ldots ; l=1,2, \ldots$ (see Theorem 11).

We have no negative results corresponding to the result of Lemma 2 , but we know that (*) $\left(\boldsymbol{N}_{\alpha+1}, 2,2\right) \longrightarrow \boldsymbol{N}_{a+1}$ (see Theorem 5).

The simplest unsolved problem here is the following:
Problem 3. $\left(\boldsymbol{N}_{2}, 2,3\right) \rightarrow \boldsymbol{\aleph}_{1}$?
$\left(\left(\boldsymbol{N}_{2}, 2,3\right) \rightarrow \boldsymbol{\aleph}_{0}\right.$ is true, $\left(\boldsymbol{\aleph}_{2}, 2,3\right) \rightarrow \boldsymbol{N}_{2}$ is false.)
We investigate separately the set-mappings defined on a finite set S. We have the following result: If p, m, l and k are integers and $p(m, l, k)$ denotes the greatest integer p for which $(m, l+1, k) \rightarrow p$ is true, then

$$
c_{1} \sqrt[k+1]{m}<p(m, l, k)<c_{2} \sqrt[k]{m \log m}
$$

where the positive real numbers c_{1} and c_{2} depend on k and l.
The following problem arises:
Problem 4. What is the exact order of magnitude of $p(m, l, k)$?
4. Proof of the results. We enumerate some simple properties of our symbols:

If $m<m^{\prime} \quad$ and $\quad(m, n, t) \rightarrow p$, then $\quad\left(m^{\prime}, n, t\right) \rightarrow p$.
If $n<n^{\prime} \quad$ and $\quad\left(m, n^{\prime}, t\right) \rightarrow p$, then $(m, n, t) \rightarrow p$.
If $p<p^{\prime}$ and $(m, n, t) \rightarrow p^{\prime}$, then $(m, n, t) \rightarrow p$.
Similar theorems are true for the symbol $(m, n,<t) \rightarrow p$ and we also have
$(m, n, t) \rightarrow p \quad$ and $\quad(m, n,<t) \rightarrow p \quad$ if $\quad t<t^{\prime} \quad$ and $\quad\left(m, n,<t^{\prime}\right) \rightarrow p$.
In what follows we shall use these theorems without references.
Lemma 1. Let S be a set, $\overline{\mathcal{S}} \geqq t \geqq \mathbf{N}_{0}$. There exists a function $g(X)$ defined on the set $[S]^{t}$ which satisfies the following conditions:
(1) $g(X) \subset X$,
(2) $g(X)=t$,
(3) $g(X) \neq g(Y)$
if $X \neq Y .{ }^{4}$
${ }^{4}$ This construction is due to J. Novak.

Proof. First we prove the existence of such a function in the case $\bar{S}=t$.
Then $\overline{[S]^{t}}=2^{t}$. Let Ω denote briefly the initial number of 2^{t}, and let $\left\{X_{\nu}\right\}_{\nu<\Omega}$ be a well-ordering of $[S]^{t}$ of type Ω. We define the function $g\left(X_{\nu}\right)$ by transfinite induction as follows: Let $g\left(X_{0}\right)$ be an arbitrary proper subset of power t of X_{0}. Suppose that $g\left(X_{\mu}\right)$ is already defined for all $\mu<v$ where $\nu<\Omega$. Then $\left.\overline{\left\{g\left(X_{\mu}\right)\right.}\right\}_{\mu<\nu} \leqq \bar{v}<2^{t}$ and, on the other hand, $\overline{\left.X_{\nu}\right]^{t}}=2^{t}$. Thus there exist proper subsets of power t of X_{ν} different from all $g\left(X_{\mu}\right)$ for all $\mu<\nu$. Let $g\left(X_{\nu}\right)$ be such a subset of X_{v} with the smallest subscript. Thus $g\left(X_{\nu}\right)$ is defined for all $\nu<\Omega$ and it is obvious that conditions (1), (2) and (3) hold.

Now let us consider the case $\bar{S}>t$. Let M be a maximal subset of $[S]^{t}$ such that $\bar{X}=t$ for every $X \in M$ and $\overline{X \cdot Y}<t$ if X, Y are two distinct elements of M. (The existence of such an M is assured by Zorn's lemma.) Let $\left\{Y_{a}\right\}_{a<t}$ be a wellordering of M. Since $\bar{Y}_{\alpha}=t$ for every $\boldsymbol{\alpha}<\boldsymbol{\tau}$, we already know that there exist functions $g_{\alpha}(X)$ defined on the set $\left[Y_{a}\right]^{t}$ satisfying the conditions (1), (2) and (3). By the definition of M there exists an $\alpha(\alpha<\tau)$, for every $X \in[S]^{t}$, for which $\overline{X \cdot Y_{\alpha}}=t$. Let $\alpha(X)$ denote the smallest a for which $X \cdot Y_{\alpha}=t$.

We define $g(X)$ as follows:

$$
g(X)=g_{\alpha(X)}\left(X \cdot Y_{\alpha(X)}\right)+\left(X-Y_{\alpha(X)}\right)
$$

From the properties of the functions $g_{a}(X)$ it follows immediately that $g(X)$ satisfies the conditions (1) and (2).

We have only to prove $g\left(X_{1}\right) \neq g\left(X_{2}\right)$ for $X_{1} \neq X_{2}$ where $X_{1}, X_{2} \in[S]^{t}$. We distinguish two cases: (i) $\boldsymbol{a}\left(X_{1}\right)=\boldsymbol{a}\left(X_{2}\right)=\boldsymbol{c}$, (ii) $\boldsymbol{a}\left(X_{1}\right) \neq \boldsymbol{a}\left(X_{2}\right)$.
(i) Then either $X_{1} \cdot Y_{\alpha} \neq X_{2} \cdot Y_{\alpha}$ or $X_{1}-Y_{\alpha} \neq X_{2}-Y_{\alpha}$ and therefore either $g_{\alpha}\left(X_{1} \cdot Y_{\alpha}\right) \neq g_{a}\left(X_{2} \cdot Y_{a}\right)$ or $X_{1}-Y_{\alpha} \neq X_{2}-Y_{a}$, hence $g\left(X_{1}\right) \neq g\left(X_{2}\right)$.
(ii) We may suppose $a\left(X_{1}\right)<\boldsymbol{\alpha}\left(X_{2}\right)$. Then, by the definition of $\alpha(X)$,

$$
\overline{\bar{g}\left(X_{1}\right) \cdot Y_{\alpha\left(X_{1}\right)}}=t \quad \text { and } \quad \overline{\bar{g}\left(X_{2}\right) \cdot Y_{\alpha\left(X_{1}\right)}}<t
$$

hence $g\left(Y_{1}\right) \neq g\left(X_{2}\right)$. Q. e. d.
Remark. In case $\bar{S}>t$, we can prove with a slight modification of the construction the existence of a function $g_{1}(X)$ defined on the set $[S]^{t}$ satisfying the conditions (1), (2), (3) and the following condition too:
(4) For every $Y \in[S]^{t}$ there is an $X \in[S]^{t}$ for which $Y=g_{1}(X)$. ${ }^{5}$

We can not solve the following problem:
Problem 5. Let S be a set, $\overline{\mathcal{S}}>t \geqq \mathbf{N}_{0}$. Does there exist a function $g_{2}(X)$ defined on the set $[S]^{t}$ satisfying the conditions (2), (3), (4) and the following stronger condition (1^{\prime}) instead of (1):

[^3](1) For all $X \in[\mathrm{~S}]^{+} g(X) \subseteq X$ and $\overline{X-g(X)}=t$?

Theorem 1. $(m, 2, t) \rightarrow t$ if $t \geqq \mathbf{N}_{0} ;(m, 2,<t) \dashv \mathbf{N}_{0}$ if $t>\mathbf{N}_{0}$.
We shall only prove the first statement; the second is a consequence of it.
Proof. Let S be a set, $\overline{\bar{S}}=m \geqq t$. We define a set-mapping $f(X)$ of S of type t and order 2, having no free sets of power t. Let $g(X)$ be a function defined on the set $[S]^{t}$ satisfying the conditions (1), (2), (3) of Lemma 1. We define the set-mapping $f(X)$ as follows: Let X be an arbitrary element of $[S]^{t}$. If there is a $Y \in[S]^{t}$ for which $X=g(Y)$, then by condition (3) this Y is uniquely determined and by (1) the set $Y-X$ is not empty. In this case we choose an element x of $Y-X$ and we put $f(X)=\{x\}$. In the other case we put $f(X)=0$. It is obvious that $f(X)$ is a set-mapping of S of type t and order 2 .

If X_{0} is an arbitrary element of $[S]^{t}$, then by (1) and (2) we have $g\left(X_{0}\right) \subset X_{0}, g\left(X_{0}\right) \in[S]^{t}$.

By the definition of $f(X), f\left(g\left(X_{0}\right)\right) \cdot X_{0}=\left\{x_{0}\right\} \neq 0$. It follows that X_{0} is not free. Q.e.d.

We need the following lemma:
Lemma 2. $\left(\mathbf{N}_{a+k-1}, \mathbf{N}_{a}, k\right) \rightarrow k+1 ; \quad\left(\mathbf{N}_{\alpha+k}, \mathbf{N}_{\alpha}, k\right) \rightarrow k+1(k=1,2, \ldots)$.
Lemma 2 is another form of a theorem of KURATOWSKI-Sierpinski proved in [7]. Therefore we omit the proof of it. ${ }^{6}$

The proof of Kuratowski shows that the first part of Lemma 2 is true in the following stronger form too:

Let S be a set of power $\mathbf{\aleph}_{a+k-1}$ and $\left\{x_{\nu}\right\}_{v<\omega_{a+k-1}}$ a well-ordering of S of type ω_{a+k-1}. One can define a set-mapping $f(X)$ of S of type k and order \mathbf{N}_{a}, having no free sets of power $k+1$ and satisfying the following condifion: (1) For every $\left\{x_{v_{1}}, \ldots, x_{v_{k}}\right\} \in[S\}^{k}, x_{\gamma} \in f\left(\left\{x_{v_{1}}, \ldots, x_{v_{k}}\right\}\right)$ implies that $\gamma<\operatorname{Max}\left(\nu_{1}, \ldots, \nu_{k}\right)$.

Theorem 2. $(m, 2, \omega) \rightarrow \mathbf{N}_{0}$ if $m<\mathbf{N}_{\omega}$.
Proof. ${ }^{7}$ Let S be a set of power $\left.\mathbf{N}_{k}(k=1,2, \ldots) ;\left\{x_{v}\right\}\right\}_{\sim \omega_{k}}$ a wellordering of S and $f(X)$ a set-mapping of S of type k and order \mathbf{N}_{1} satisfying the first part of Lemma 2.
${ }^{6}$ The equivalence of Lemma 2 and of Kuratovski's paper [7] may be seen by using the following idea. The splitting of Z^{n+1} in [7] induces a set-mapping $f\left(x_{1}, \ldots, x_{n}\right)$ as follows : $f\left(x_{1}, \ldots, x_{n}\right)=\sum_{\left(i_{1}, \ldots, i_{n}\right)} \sum_{k=1}^{n+1}\left\{x:\left(x_{i_{1}}, \ldots, x_{i_{k-1}}, x, x_{i_{k+1}}, \ldots, x_{i_{n}}\right) \in A_{k}\right\}$, where $\left(i_{1}, \ldots, i_{n}\right)$ runs over all permutations of the numbers $1, \ldots, n$.
${ }^{\text { }}$ The idea of this proof for the case $k=0$ is due to J. Suranyl.

We define a set-mapping $g(X)$ of S of type ω and order 2 as follows:
Let X be an arbitrary element of $[S]^{\mathbf{N}_{0}}$ and $\left\{f_{l}(X)\right\}_{l<\omega}$ a well-ordering of type ω of the set $f(X)$. We have two cases: a) X has at most k elements. Then we put $g(X)=0$. b) X has more than k elements. Then X has the form $\left\{x_{v_{1}}, \ldots, x_{v_{k}}, x_{v_{k+1}}, \ldots, x_{v_{k+i}}\right\}\left(v_{i}<v_{j}\right.$ for $\left.i<j\right)$.

Let $g(X)=\left\{f_{i}\left(\left\{x_{\nu_{1}}, \ldots, x_{v_{k}}\right\}\right)\right\}$.
Since $g(X) \cdot X=0$, by condition (1) of Lemma $2, g(X)$ is a set-mapping. It is obvious that $g(X)$ is of type ω and order 2 . We have only toprove that $g(X)$ has no infinite free sets.

Let Y be an arbitrary infinite subset of S. Then there is a subset $\left\{x_{\nu_{s}}\right\}_{s<\omega}$ of Y such that $\nu_{s_{1}}<\nu_{s_{g}}$ for $s_{1}<s_{2}$. The set-mapping $f(X)$ has no free sets of $k+1$ elements. Therefore there is an $i(0 \leqq i \leqq k)$ and an $l<\omega$ such that

$$
x_{v_{i}}=f_{l}\left(\left\{x_{v_{0}}, \ldots, x_{v_{i-1}}, x_{v_{i+1}}, \ldots, x_{v_{k}}\right\}\right) .
$$

Let X_{0} denote the set $\left\{x_{v_{0}}, \ldots, x_{v_{i-1}}, x_{v_{i+1}}, \ldots, x_{v_{k+l}}\right\}$. Then $X_{0} \in[S]^{\mathbf{v}_{0}}, X_{0} \subset Y$ and by b) $g\left(X_{0}\right)=\left\{x_{v_{i}}\right\}$. Thus $g\left(X_{0}\right) \cdot Y=\left\{x_{v_{i}}\right\} \neq 0$; hence Y is not free. Q.e.d.

Lemma 3. If $[S]^{k+1}=\sum_{p \omega_{a}} I_{v}$, and $\bar{S}>b_{\mathbf{N}_{\alpha}, k}$, then there exists a subset S_{0} of S and a $v_{0}<\omega_{a}$ such that $\left[S_{0}\right]^{k+1} \subseteq I_{v_{0}}$ and $\bar{S}_{0} \geqq \mathbf{N}_{a+1}(k=0,1,2, \ldots){ }^{8}$

Proof. Without loss of generality we may assume that the sets I_{v} are mutually exclusive.

We prove the theorem by induction on k. In the case $k=0$ the theorem is obviously true. Suppose now that it is true for a certain k and let S be a set satisfying the following conditions:

$$
\text { (') } \bar{S}>b_{\mathbb{N}_{\alpha, k+1}}, \quad\left({ }^{\prime \prime}\right)[S]^{k+2}=\sum_{\nu<\omega_{\alpha}} I_{v}, \quad\left({ }^{\prime \prime \prime}\right) I_{\nu_{1}} \cdot I_{v_{2}}=0 \quad \text { for } \quad v_{1} \neq v_{2}
$$

Let x_{0}, \ldots, x_{k} be $k+1$ arbitrary elements of S. We split the set $S-\left\{x_{0}, \ldots, x_{k}\right\}$ into classes. The elements x and y belong to the same class if and only if there is a $v<\omega_{a}$ such that $\left\{x, x_{n}, \ldots, x_{k}\right\} \in I_{v}$ and $\left\{y, x_{0}, \ldots, x_{k}\right\} \in I_{v}$. It follows from the conditions (") and ("') that this really defines a splitting of the set $S-\left\{x_{0}, \ldots, x_{k}\right\}$ into classes. Let $Q_{p_{1}}$ denote these different classes where β_{1} runs through the ordinals less than ω_{a}. We select an element $x_{\beta_{1}}$ from each of the non-empty classes.

Suppose that we have already defined the classes $Q_{\beta_{1} \ldots \beta_{\mu}}$ and the elements $x_{\beta_{1} \ldots \beta_{\mu}}$ for $\mu<\lambda$. Let $\left\{\beta_{\mu}\right\}_{\mu<\lambda}$ be a sequence of type λ of these ordi-

[^4]nals. Let us consider the classes
$$
\prod_{\mu<\lambda} Q_{\beta_{1} \ldots \beta_{\mu}}-\left\{x_{0}, \ldots, x_{k}, x_{\beta_{1}} \ldots x_{\beta_{\mu}}\right\}_{\mu<\lambda}=Q_{\left\{\beta_{\mu}\right\}_{\mu<\lambda}}^{\prime}
$$

We split these classes into subclasses as follows: The elements x, y of $Q_{\left\{\beta_{\mu}\right\} \mu-\lambda}^{\prime}$ are in the same class if and only if for an arbitrary $A \in\left[\left\{x_{0}, \ldots, x_{k}, x_{\beta_{1} \ldots \beta_{\mu}}\right\}_{\mu \lambda}\right]^{k+1}$ there exists a $\boldsymbol{\nu}<\omega_{\alpha}$ such that the sets $\{x\}+A,\{y\}+A$ belong to the same class I_{ν}. It follows from the conditions (") and ("') that this really defines a splitting of the class $Q_{\left\{\beta_{\mu}\right\} \mu<\lambda}^{\prime}$ into subclasses. Let $Q_{\beta_{1} \ldots \beta_{\mu} \ldots \beta_{\lambda}}$ denote the classes thus obtained where β_{λ} runs over the ordinals less than a certain initial number. We select an element $x_{\beta_{1} \ldots \beta_{\lambda}}$ from the non-empty classes $G_{\beta_{1} \ldots \beta_{\lambda}}$.

We shall prove that there is a sequence $\left\{\beta_{\lambda}\right\}_{\lambda<} \Omega_{\alpha_{\alpha, k}}^{+}$for which the elements $x_{\beta_{1} \ldots \beta_{\lambda}}$ are really defined. First of all we prove that $\beta_{\lambda}<\Omega_{\mathrm{s}_{\alpha}, k+1}$ for every $\lambda<\Omega_{\mathrm{N}_{\alpha}, k}^{+}$and for every sequence $\left\{\beta_{\mu}\right\}_{\mu<\lambda}$, i. e. at every step in our process the power of the set of all non-empty subclasses of the class $Q_{\left\{\beta_{1} \ldots \beta_{\mu} \cdots\right\}_{\mu<\lambda}^{\prime}}$ is at most $b_{\boldsymbol{s}_{\alpha}, k+1}$. Namely, we can obtain these classes as follows: First we split the set $Q_{\left\{\beta_{1} \ldots \beta_{\mu} \cdots\right\} \mu<\lambda}^{\prime}$ corresponding to an element A of $\left[\left\{x_{0}, \ldots, x_{k}, x_{\beta_{1} \ldots \beta_{\mu}}\right\}_{\mu<\lambda}\right]^{k+1}$ into \aleph_{a} classes and then we say that x and y belong to the same class if they belong to the same class for all A. On the other hand, $\bar{\lambda} \leqq b_{\aleph_{\alpha}, k}$ and so $\left[\left\{x_{0}, \ldots, x_{k}, x_{\beta_{1} \ldots \beta_{\mu}}\right\}_{\mu<\lambda}\right]^{k+1} \leqq b_{\aleph_{\alpha}, k}$. Thus the power of the set of all non-empty subclasses of $Q_{\left\{\beta_{\mu}\right\}_{\mu-\lambda}}^{\prime}$ is at most $\mathbf{\aleph}_{a}^{b_{\mathbf{N}_{a}}, k}=2^{b_{\boldsymbol{v}_{\alpha}, k}}=b_{\mathbf{N k}_{\alpha}, k+1}$.

Let A_{λ} denote the set of all sequences $\left\{\beta_{\mu}\right\}_{\mu \lambda \lambda}$. By the result just proved we have

$$
\bar{A}_{\lambda} \leqq b_{\mathbf{N}_{\alpha}, k+1}^{\bar{\lambda}} \leqq b_{\mathbf{N}_{\alpha}, k+1}^{b_{\mathbf{N}_{a}, k}}=2^{b_{\mathbf{N}_{\alpha, k}}}{ }^{.}{ }^{\mathbf{N}_{\alpha}}, k=b_{\mathbf{N}_{\alpha}, k+1} \text { if } \lambda<\Omega_{\mathbf{\aleph}_{\alpha}, k}^{+}
$$

Let S_{λ} denote the set $\sum_{\left\{\beta_{\mu}\right\} \mu<\lambda \in A_{\lambda}}\left\{x_{0}, \ldots, x_{k}, x_{\left.\beta_{1} \ldots \beta_{\mu}\right\}_{\mu<\lambda}}\right.$. If $\lambda<\Omega_{\mathbb{N}_{\alpha}, k}^{+}$, then $\bar{S}_{\lambda}=\overline{\bar{A}}_{\lambda} \cdot \bar{\lambda} \leqq b_{\mathbf{N}_{\alpha}, k+1}$.

It is obvious from the construction that $S=S_{\Omega_{\mathbf{N}_{\alpha}, k}^{+}}+$

$$
+\sum_{\left\{\beta_{\lambda}\right\}_{\lambda<\Omega_{\mathbf{N}_{\alpha}}^{+}, k}^{+} \in A_{Q_{\mathbf{N}_{\alpha}, k}^{+}}}\left(\prod_{\Omega_{\hat{\sigma}_{\alpha}, k}^{+}} Q_{\beta_{1} \ldots \beta_{\lambda}}\right) \quad \text { and } \quad S_{\Omega_{\mathbf{N}_{\alpha}}^{+}, k}=\sum_{\lambda<\Omega_{\mathbf{N}_{\alpha}, k}^{+}} S_{\lambda}
$$

Therefore $\overline{\bar{J}}_{\Omega_{\boldsymbol{\vartheta}_{\alpha, k}}^{+}} \leqq \overline{\Omega_{\mathbb{N}_{\alpha, k}}^{+}} \cdot b_{\boldsymbol{N}_{\alpha}, k+1} \leqq b_{\boldsymbol{\alpha}_{\alpha, k+1}}$. It follows by condition (') that there is a sequence $\left\{\beta_{\lambda}\right\}_{\lambda} \Omega_{\vartheta_{\alpha}, k}^{+}$for which $\prod_{\lambda<\Omega_{\xi_{k}, k}^{+}} Q_{\beta_{1} \ldots \beta_{\lambda}}$ is non-empty. Thus $Q_{\beta_{1} \ldots \beta_{\lambda}}$ is non-empty and therefore $x_{\beta_{1} \ldots \beta_{\lambda}}$ is reaily defined. It is obvious from the construction that if $\lambda_{1} \neq \lambda_{2}$, then $x_{\beta_{1} \ldots \beta_{\lambda_{1}}} \neq x_{\beta_{1} \ldots \beta_{\lambda_{2}}}$.

For the sake of brevity let $x_{k+\lambda}$ denote $x_{\beta_{1} \ldots \beta_{\lambda}}$. Then for the set $S_{1}=\left\{x_{k}\right\}_{\lambda<o_{\mathbf{N}_{\alpha}, k}^{+}}^{+}$we get $\overline{\bar{S}}_{1}>b_{\mathbf{x}_{\alpha}, k}$. If $\left\{x_{\lambda_{0}}, \ldots, x_{\lambda_{k}}\right\}$ is an arbitrary subset of $k+1$ elements of the set S_{1}, then by the construction there is exactly one $\boldsymbol{v}<\omega_{a}$ such that $\left\{x_{\lambda_{0}}, \ldots, \lambda_{\lambda_{k}}, x_{2}\right\} \in I_{v}$ for every $\lambda>\operatorname{Max}\left(\lambda_{0}, \ldots, \lambda_{k}\right)$. In this case we say that $\left\{x_{\lambda_{0}}, \ldots, x_{\lambda_{k}}\right\}$ is an element of I_{ν}^{\prime}. It is obvious that $\left[S_{1}\right]^{k+1}=\sum_{\nu<\omega_{\alpha}} I_{v}^{\prime}$ and $I_{v_{1}}^{v_{1}} \cdot I_{v_{2}}^{\prime}=0$ for $\nu_{1} \neq \boldsymbol{\nu}_{2}$. Thus by the induction hypothesis there is a set $S_{0} \subseteq S_{1}$ and a $v_{0}<\omega_{a}$ such that $\left[S_{0}\right]^{k+1} \subseteq I_{v_{0}}^{\prime}$ and $\bar{S}_{0} \geqq \boldsymbol{\aleph}_{\alpha+1}$.

But if $\left\{x_{\lambda_{0}}, \ldots, x_{\lambda_{k+1}}\right\}\left(\lambda_{0}<\cdots<\lambda_{k+1}\right)$ is an arbitrary subset of $k+2$ elements of the set S_{0}, then $\left\{x_{\lambda_{0}}, \ldots, x_{\lambda_{k}}\right\} \in I_{\nu_{0}}^{\prime}$ and therefore $\left\{x_{\lambda_{0}}, \ldots, x_{\lambda_{k+1}}\right\} \in I_{v}$, i. e. $\left[S_{0}\right]^{k+2} \subseteq I_{r_{0}}$. Thus we have finished the induction, and Lemma 3 is proved. Q.e.d.

Lemma 4. Let S be a set, $\overline{\mathcal{S}}=m \geqq \boldsymbol{N}_{0}(n<m)$ and $f(X)$ a set-mapping of S of type 1 and order n. The set S is the sum of at most n free sets.

Lemma 4 is a theorem of G. Fodor. ${ }^{9}$
(*) Theorem 3. $\left(\mathbf{N}_{a+k}, \mathbf{N}_{\alpha}, k\right) \rightarrow \mathbf{N}_{a+1}(k=1,2, \ldots)$.
Proof. Let S be a set, $\bar{S}=\mathbf{N}_{a+k}$ and $f(X)$ a set-mapping of S of type k and order $\mathbf{\aleph}_{a}$. We have to prove the existence of a free set of power \boldsymbol{N}_{a+1}. For $k=1$ the theorem is well known. We shall suppose $k>1$.
$f\left(\left\{x_{1}, \ldots, x_{k}\right\}\right)$ will be denoted briefly by $f\left(x_{1}, \ldots, x_{k}\right)$. Let $\left\{x_{1}, \ldots, x_{k-1}\right\}$ be an arbitrary element of $[S]^{k-1}$. We define the set-mapping $g_{x_{1}}, \ldots, r_{k-1}(X)$ of the set $S-\left\{x_{1}, \ldots, x_{k-1}\right\}$ of type 1 and order \boldsymbol{N}_{α} as follows:

For every $x \in S-\left\{x_{1}, \ldots, x_{k-1}\right\}$ let $g_{x_{1} \ldots x_{k-1}}(\{x\})=f\left(x_{1}, \ldots, x_{k-1}, x\right)$. By Lemma $4 S-\left\{x_{1}, \ldots, x_{k-1}\right\}=\sum_{\nu<\omega_{a}} S_{x_{1} \ldots x_{k-1}}^{v}$ for every x_{1}, \ldots, x_{k-1}, where the sets $S_{x_{1} \ldots x_{k-1}}^{v}$ are free sets of the set-mapping $g_{x_{1} \ldots x_{k-1}}(X)$ for every $\boldsymbol{v}<\omega_{\alpha}$. We may suppose that $S_{x_{1} \ldots x_{k-1}}^{v_{1}} S_{x_{1} \ldots \ldots x_{k-1}}^{v_{z}}=0$ for $\boldsymbol{\nu}_{1} \neq \boldsymbol{\nu}_{2}$. Let $\left\{x_{\mu}\right\}_{\mu<\omega_{a+k}}$ be a well-ordering of S of type ω_{a+k}. Let $\left\{x_{\mu_{1}}, \ldots, x_{\mu_{k}}\right\}\left(\mu_{1}<\cdots<\mu_{k}\right)$ be an arbitrary subset of k elements of the set S. We split the set $[S]^{k}$ into subsets $I_{\left(v_{1} \ldots v_{k}\right)}$ where the symbol ($v_{1} \ldots v_{k}$) used as subscript consists of k ordinals less than $\omega_{a} .\left\{x_{\mu_{1}}, \ldots, x_{\mu_{k}}\right\} \in I_{\left(v_{1} \ldots \nu_{k}\right)}$ if and only if $x_{\mu_{i}} \in$ $\in S_{x_{\mu_{1}} \cdots x_{\mu_{i-1}} \tau_{i} \mu_{i+1} \cdots x_{\mu_{k}}}$ for every $i(1 \leqq i \leqq k)$. Obviously

$$
[S]^{k}={ }_{\left(v_{1} \ldots v_{k}\right)} \sum_{\left(v_{i}<\omega_{a} ; i=1, \ldots, k\right)} I_{\left(v_{1} \ldots v_{k}\right) .}
$$

The set of the symbols $\left(v_{1} \ldots v_{k}\right)$ is of power $\boldsymbol{\aleph}_{a}$ and by $(*) \overline{\bar{S}}>b_{\mathbf{N}_{a}, k-1}$, thus by Lemma 3 there is a subset S_{0} and a symbol $\left(\nu_{1}^{0} \ldots \nu_{k}^{0}\right)$ such that $\left[S_{0^{k}} \subseteq I_{\left(v_{1} \ldots\right.} \ldots v_{k}^{\circ}\right)$ and $\bar{S}_{0} \geqq \boldsymbol{N}_{\alpha+1}$.
${ }^{0}$ See [8], Theorem 1.

The set S_{0} is free. It is sufficient to prove that if $\left\{x_{\mu_{0}}, \ldots, x_{\mu_{k}}\right\}$ $\left(\mu_{0}<\cdots<\mu_{k}\right)$ is an arbitrary subset of $k+1$ elements of the set S_{0}, then $x_{\mu_{i}} \notin f\left(x_{\mu_{n}}, \ldots, x_{\mu_{i-1}}, x_{\mu_{i+1}}, \ldots, x_{\mu_{k}}\right)$ for $i=0, \ldots, k$.

In fact, for example, in the cases $i \neq 0$ we have $\left\{x_{\mu_{0}}, \ldots, x_{\mu_{i-1}}, x_{\mu_{i+1}}, \ldots, x_{\mu_{k}}\right\} \in$ $\in I_{\left(\nu_{1}^{0} \ldots v_{k}^{0}\right)}$ and $\left\{x_{\mu_{0}}, \ldots, x_{\mu_{i-2}}, x_{\mu_{i}}, \ldots, x_{\mu_{k}}\right\} \in I_{\left(\nu_{1}^{0} \ldots k_{k}^{0}\right)}$ and therefore $x_{\mu_{i-1}}, x_{\mu_{i}} \in S_{\mu_{\mu_{0}} \ldots x_{\mu_{i-2}} x_{\mu_{i+1}}^{\nu_{i-1}^{0}} \ldots x_{\mu_{k}}}$, consequently $x_{\mu_{i}} \notin g_{x_{\mu_{0}} \cdots x_{\mu_{i-2}} x_{\mu_{i+1}} \ldots x_{\mu_{k}}} \quad\left(\left\{x_{\mu_{i-1}}\right\}\right)=$ $=f\left(x_{\mu_{0}}, \ldots, x_{\mu_{i-1}}, x_{\mu_{i+1}}, \ldots, x_{\mu_{k}}\right)$.

We have similarly in the case $i=0$ that $x_{\mu_{0}} \notin g_{x_{\mu_{2}} \ldots x_{\mu_{k}}}\left(\left\{x_{\mu_{1}}\right\}\right)=$ $=f\left(x_{\mu_{1}}, \ldots, x_{\mu_{k}}\right)$. Thus we have proved that there is a free set S_{0} of power $\boldsymbol{N}_{\alpha+1}$. Q.e.d.
(*) Theorem 4. The smallest m for which the symbols $\left(m, \boldsymbol{N}_{a}, k\right) \rightarrow \boldsymbol{N}_{\beta}$ $(0 \leqq \rho \leqq \alpha+1)$ are true is $\boldsymbol{\aleph}_{\alpha+k}$.

Theorem 4 is an immediate consequence of Theorem 3 and Lemma 2.
(*) Theorem 5. $\left(\boldsymbol{\aleph}_{a+k}, \boldsymbol{\aleph}_{a}, k\right) \rightarrow \boldsymbol{N}_{\alpha+k}$ if $k \geqq 2$; $\left(\boldsymbol{N}_{\alpha+1}, 2,2\right) \longrightarrow \boldsymbol{N}_{a+1}$.
We shall only prove the second statement, the first is a consequence of it. We have stated the first one explicitly, to make Problem 2 clear.

Proof. Let S be a set, $\bar{S}=\boldsymbol{\aleph}_{\alpha+1}$. We define a set-mapping of S of type and order 2 which has no free set of power $\boldsymbol{\aleph}_{\alpha+1}$. Using (*), we have $\overline{[S]}{ }^{\aleph_{\alpha}}=\boldsymbol{N}_{\alpha+1}^{\mathbf{N}_{\alpha}}=\boldsymbol{\aleph}_{\alpha+1}$. Let $\left\{x_{\nu}\right\}_{\nu<\omega_{a+1}}$ and $\left\{X_{\nu}\right\}_{\nu<\omega_{\alpha+1}}$ be well-orderings of type ω_{a+1} of the sets S and $[S]^{\mathbf{N}_{\alpha}}$, respectively. We define the sets $S_{v}=$ $=\left\{x_{\mu}\right\}_{\mu<\nu}$ and $[S]_{\nu}^{\mathbf{v}^{\prime \mu}}=\left\{X_{\mu}: X_{\mu} \subseteq S_{\nu} ; \mu<\nu.\right\}$ Then $\bar{S}_{\nu} \leqq \boldsymbol{N}_{a}$ and $\left.\overline{[S}\right]_{\nu}^{{ }_{\nu}^{\alpha}} \leqq \boldsymbol{\aleph}_{a}$ for every $\nu \ll \omega_{a+1}$. Let $\left\{x_{t}^{v}\right\}_{\kappa<\omega_{a}}$ and $\left\{X_{z}^{\nu}\right\}_{\ll \omega_{\alpha}}$ be well-orderings of type ω_{a} of the sets S_{ν} and $[S]_{\nu}{ }^{\alpha}$, respectively. We can choose a sequence $\left\{\boldsymbol{\tau}_{\sigma}\right\}_{\sigma<\omega_{a}}$ ($\tau_{\sigma_{1}}<\boldsymbol{\tau}_{\sigma_{2}}$ if $\sigma_{1}<\sigma_{2}$) in such a manner that $x_{\tau_{\sigma}}^{v} \in X_{\sigma}^{v}$. This sequence may be defined by induction. Suppose that we have already defined $x_{I_{\sigma}}^{\nu}$, for every $\sigma^{\prime}<\sigma$, then the set $\left\{x_{\sigma_{\sigma^{\prime}}}^{\nu}\right\}_{\sigma^{\prime}<\sigma}$ has a power less than $\boldsymbol{\aleph}_{a}$ and the set X_{σ}^{v}, being an element of $[S]^{*} \alpha$, has an element x_{τ}^{ν} different from all $x_{\tau_{\sigma^{\prime}}}^{\nu}\left(\sigma^{\prime}<\sigma\right)$. Let $\boldsymbol{\tau}_{\sigma}$ be the smallest τ for which $x_{t}^{\nu} \in X_{\sigma}^{\nu}$ and $x_{\tau}^{\nu} \notin\left\{x_{\tau_{\sigma}}^{\nu}\right\}_{\sigma^{<}<\sigma}$.

We define the function $g\left(x_{\mu}, x_{\nu}\right)$ for $\mu<\nu<\omega_{\alpha+1}$ as follows: We define $g\left(x_{v}^{\nu}, x_{v}\right)$ for every fixed $\nu<\omega_{\alpha+1}$ and for all $\tau<\omega_{\alpha}$. If τ is an element of the set $\left\{\tau_{\sigma}\right\}_{\sigma<\omega_{a}}$, we put $g\left(x_{t}^{v}, x_{\nu}\right)=x_{\mu_{0}}$ where μ_{0} denotes the smallest ordinal number μ for which $x_{\mu} \in X_{\sigma}^{\nu}\left(\tau=\tau_{\sigma}, x_{\mu} \neq x_{\nu}, x_{\mu} \neq x_{\tau_{\sigma}}^{v}\right)$ and put $g\left(x_{t}^{\nu}, x_{\nu}\right)=x_{0}$ in the other cases.

Thus we have defined $g\left(x_{\mu}, x_{\nu}\right)$ for every $\mu<\nu<\omega_{a+1}$. We define the set-mapping $f(X)$ of the set S of type and order 2 as follows:

If $\left\{x_{\mu}, x_{\nu}\right\}(\mu<\nu)$ is an arbitrary element of $[S]^{2}$, we put $f\left(\left\{x_{\mu}, x_{\nu}\right\}\right)=$ $=\left\{g\left(x_{\mu}, x_{\nu}\right)\right\}$.

We have to prove that there is no free set of power $\boldsymbol{\aleph}_{\alpha+1}$. Let S_{0} be an arbitrary subset of power $\boldsymbol{\aleph}_{\alpha+1}$ of S and S_{0}^{\prime} a subset of S_{0} such that $\bar{S}_{0}^{\prime}=\boldsymbol{\aleph}_{a}$. Then there is a $\nu<\omega_{\alpha+1}$ for which $S_{0}^{\prime}=X_{v}$ and a $\nu_{0}>v$ such that $X_{\nu} \in[S]_{r_{0}}^{v_{0}}$ and $x_{\nu_{0}} \in S_{0}$. Then, by the construction of the function $g\left(x_{\mu}, x_{\nu}\right)$, there exists a $\mu_{0}<\nu_{0}$ for which $x_{\mu_{0}} \in X_{\nu}$ and $g\left(x_{\mu_{0}}, x_{\nu_{0}}\right) \in X_{\nu}$. This means that $\left\{x_{\mu_{0}}, x_{v_{0}}\right\} \subset S_{0}$ and $f\left(\left\{x_{\mu_{0}}, x_{v_{0}}\right\}\right) \cdot S_{0}=\left\{g\left(\left\{x_{\mu_{0}}, x_{v_{0}}\right\}\right)\right\} \neq 0$, consequently the set S_{0} is not free. Q.e.d.
(*) Theorem 6. If $\boldsymbol{\alpha}$ is an ordinal number of the second kind and \boldsymbol{N}_{α} is not inaccessible, then $\left(\boldsymbol{\aleph}_{\alpha}, \boldsymbol{\aleph}_{\beta}, k\right) \rightarrow \boldsymbol{\aleph}_{a}$ for every $\beta<\boldsymbol{a}(k=1,2, \ldots)$.

Proof. We prove the theorem by induction on k. For $k=1$ the theorem is well known. ${ }^{10}$

We shall now prove the theorem for $k=2$. Our proof shows clearly how induction works in the general case.

Let S be a set of power $\mathbb{\aleph}_{a}, f(X)$ a set-mapping of S of type 2 and order $\mathfrak{\aleph}_{\beta}$. Let $\boldsymbol{\tau}$ be the smallest ordinal number for which $\boldsymbol{\aleph}_{\alpha}=\sum_{\nu<t} \mathbb{\aleph}_{\beta_{\nu}}$ $\left(\beta_{\mu}<\beta_{\nu}<\alpha\right.$ if $\left.\mu<\boldsymbol{\nu}\right)$. By the assumption of the theorem $\overline{\boldsymbol{\tau}}<\boldsymbol{\aleph}_{\alpha}$. Since $\boldsymbol{\beta}<\boldsymbol{\alpha}$, we may suppose that $\beta+2<\beta_{\nu}$ for every $\nu<\tau$.

We define $\aleph_{\gamma_{\nu}}$ as the sum $\sum_{\mu<\nu} \aleph_{\beta_{\mu}}$. We may also suppose that $\boldsymbol{\aleph}_{\beta_{\nu}} \geqq \boldsymbol{\aleph}_{\gamma_{\nu}}+3$ and that every β_{ν} is of the form $\gamma+s$ where $s \geqq 3$.

By Theorem 3 every subset of power $\boldsymbol{\aleph}_{a}$ of the set S contains a free subset of power $\aleph_{\beta_{\gamma}}$. So we may select a sequence $\left\{S_{\nu}\right\}_{\nu<\tau}$ of the subsets of S which satisfies the following conditions:
(1) $\bar{S}_{v}=\mathbf{N}_{\beta_{v}}$;
(2) S_{y} is a free set;
(3) $S_{\nu_{1}} \cdot S_{\nu_{2}}=0$ if $\nu_{1} \neq \nu_{2}$.

Put $F_{\nu}=\sum_{\mu<\nu} S_{\mu}$. By (1) and (3) $\bar{F}_{\nu}=\boldsymbol{\aleph}_{\gamma_{\nu}}$. Thus $\overline{\left[\bar{F}_{\nu}\right]^{2}}=\boldsymbol{N}_{\gamma_{\nu}}$, consequently $\left.\sum_{x \in\left[F_{v}\right]^{\mathrm{T}}} \overline{\bar{f}}\right) \leqq \boldsymbol{\aleph}_{\gamma_{\nu}} \cdot \aleph_{\beta}=\boldsymbol{\aleph}_{\gamma_{\nu}}<\boldsymbol{\aleph}_{\beta_{\nu}}$. Therefore we may suppose that

$$
\begin{equation*}
f(X) \cdot S_{v}=0 \quad \text { if } \quad X \in\left[F_{v}\right]^{2} . \tag{4}
\end{equation*}
$$

Let S^{0} denote the set $\sum_{v<\tau} S_{v}$. If $X \in\left[S^{0}\right]^{2}$, then $X=\{x, y\}$. In what follows $f(X) \cdot S^{0}$ will be denoted by $f_{1}(x, y)$. Suppose now that $x, y \in S_{y}$. Then $f_{1}(x, y) \cdot S_{\mu}=0$ for $\mu>\nu$ by (4) and for $\mu=\nu$ by (2). Thus $f_{1}(x, y) \subseteq F_{v}$ and since $\overline{f_{1}(x, y)}<\aleph_{\beta}, f_{1}(x, y) \in\left[F_{\nu}\right]^{<\aleph_{\beta}}$.

We split the set $\left[S_{\nu}\right]^{2}$ into classes. The sets $\left\{x_{1}, y_{1}\right\}$ and $\left\{x_{2}, y_{2}\right\}$ belong to the same class if and only if $f_{1}\left(x_{1}, y_{1}\right)=f_{1}\left(x_{2}, y_{2}\right)$. Using (*), we have $\overline{\left[F_{\nu}\right]}{ }^{<} \mathbf{N}_{\beta} \leqq \boldsymbol{N}_{\gamma_{v}}^{\beta} \leqq \boldsymbol{N}_{\gamma_{\nu}+1} \leqq \boldsymbol{\aleph}_{\beta_{\gamma^{-2}}}$. Thus, by Lemma 3, there is an $S_{\nu}^{\prime} \subseteq S_{v}$

[^5]($\overline{S_{v}^{\prime}} \geqq \boldsymbol{\aleph}_{\beta_{v^{-1}}}$) such that for every $x, y \in S_{v}^{\prime} f_{1}(x, y)$ is the same subset of F_{ν}. We define S_{v}^{1} as follows: $S_{\nu}^{1}=S_{v}^{\prime}-\sum_{\mu>v,\{x, y\}<s_{\mu}^{\prime}} f_{1}(x, y)$. It is obvious that
$$
\overline{\sum_{\mu>v,\{x, y\} \subset s_{\mu}} f_{1}(x, y)} \leqq \overline{\boldsymbol{\tau}} \cdot \mathbf{\aleph}_{\beta} \leqq \boldsymbol{\aleph}_{\beta_{\nu}-2}<\boldsymbol{\aleph}_{\beta_{\nu}-1}
$$
and therefore we have
\[

$$
\begin{equation*}
\overline{\mathcal{S}}_{v}^{1} \geqq \mathbf{\aleph}_{\beta_{v^{-1}}} . \tag{5}
\end{equation*}
$$

\]

Let S^{1} be the set $\sum_{\nu \geq t} S_{v}^{1}$. By the construction of S_{v}^{1} we have

$$
\begin{equation*}
f_{1}(x, y) \cdot S^{1}=0 \quad \text { if } \quad x, y \in S_{v}^{1} \text { for every } \quad v<\boldsymbol{\tau} . \tag{6}
\end{equation*}
$$

Let F_{ν}^{1} be the set $\sum_{\mu<r} S_{\mu}^{1}$. We define the set-mapping $g_{\nu}(\{y\})$ of the set S_{v}^{1} of type 1 as follows: For every element y of S_{v}^{1} let $g_{\nu}(\{y\})=$ $=\sum_{x \in F_{v}^{1}} f_{1}(x, y) \cdot S_{r}^{1}$.

We have

$$
\sum_{x \in F_{v}^{1}} f_{1}(x, y) \leqq \bar{F}_{\nu}^{1} \cdot \boldsymbol{\aleph}_{\beta} \leqq \boldsymbol{\aleph}_{\gamma_{\nu}} \cdot \boldsymbol{N}_{\beta}=\boldsymbol{\aleph}_{\gamma_{\nu}}
$$

Thus the order of the set-mapping $g_{\nu}(\{y\})$ is less than $\aleph_{\beta_{\nu^{-1}}}$. By the case $k=1$ of Theorem 3 there is an $S_{v}^{2} \subseteq S_{v}^{1}\left(\bar{S}_{v}^{2}=\boldsymbol{N}_{\rho_{v^{-1}}}\right)$ such that S_{v}^{2} is a free set of $g_{v}(\{y\})$.

Let S^{2} be the set $\sum_{\nu<\tau} S_{v}^{2}$ and F_{v}^{2} the set $\sum_{\mu<\nu} S_{\mu}^{2}$. We have by the construction of S_{v}^{2}

$$
\begin{equation*}
\overline{\bar{S}}_{v}^{2}=\boldsymbol{\aleph}_{\beta_{\nu}-1} . \tag{7}
\end{equation*}
$$

From (6) we have

$$
\begin{equation*}
f_{1}(x, y) \cdot S^{2}=0 \quad \text { if } \quad x, y \in S_{v}^{2} \quad \text { for every } \quad \boldsymbol{v}<\boldsymbol{\tau} \tag{8}
\end{equation*}
$$

and from (4), by the construction of S_{v}^{2}, we get

$$
\begin{equation*}
f_{1}(x, y) \cdot \sum_{\mu \geqq \nu} S_{\mu}^{2}=0 \quad \text { if } \quad x \in F_{r}^{2} \text { and } y \in F_{v}^{2} \quad \text { or } \quad y \in S_{v}^{2} \tag{9}
\end{equation*}
$$

Put $f_{2}(x, y)=f_{1}(x, y) \cdot S^{2}$.
If $x \in F_{v}^{2}$ and $y \in S_{v}^{2}$, then, by (9), $f_{2}(x, y) \subseteq F_{v}^{2}$. We split the set S_{v}^{2} into classes as follows: y and z belong to the same class if and only if $f_{2}(x, y)=f_{2}(x, z)$ for every $x \in F_{v}^{2}$.

We can obtain these classes as follows: First we split S_{v}^{2} into classes, corresponding to every $x_{0} \in F_{r}^{2}$, so that y and z belong to the same class if $f_{2}\left(x_{0}, y\right)=f_{2}\left(x_{0}, z\right)$ for this x_{0} and thus we obtain at most $\overline{{\left[F_{\gamma}^{2}\right.}^{2}}{ }^{<\boldsymbol{N}_{\beta}} \leqq$ $\leqq \boldsymbol{N}_{\gamma_{v}}^{\boldsymbol{\beta}_{\beta}} \leqq \boldsymbol{\aleph}_{\gamma_{\nu}+1}$ classes, since $f_{2}(x, y) \in\left[F_{\nu}^{2}\right]^{<\boldsymbol{Y}_{\beta}} . \quad y$ and z belong to the same
class if they belong to the same class for all x_{0}. Therefore we have split the set S_{ν}^{2} into at most $\boldsymbol{\aleph}_{\gamma_{\nu}+1}^{*}=\boldsymbol{\aleph}_{\gamma_{\nu}+1}$ classes, consequently, by (7), there is a subset S_{v}^{3} of power $\boldsymbol{\aleph}_{\beta_{\nu}-1}$ of S_{v}^{2} whose all elements belong to the same class. It follows that

$$
\begin{equation*}
\bar{S}_{r}^{3}=\boldsymbol{\aleph}_{\beta_{\gamma}-1} . \tag{10}
\end{equation*}
$$

Let S^{3} be the set $\sum_{\nu<\tau} S_{\nu}^{3}$ and F_{ν}^{3} the set $\sum_{\mu<\nu} S_{\mu}^{3}$. If

$$
\begin{equation*}
x \in F_{v}^{3}, \quad y, z \in S_{v}^{3} \tag{11}
\end{equation*}
$$

then, by the construction of $S_{y}^{3}, f_{2}(x, y)=f_{2}(x, z)$. Further, by (8),

$$
\begin{equation*}
f_{2}(x, y) \cdot S^{3}=0 \quad \text { for } \quad x, y \in S_{r}^{3} . \tag{12}
\end{equation*}
$$

We define the set-mapping $g_{0}(\{x\})$ of the set S^{3} of type 1 as follows:
For every $x \in S^{b}$ there is exactly one $v<\boldsymbol{v}$ for which $x \in S_{v}^{3}$. Put $g_{0}(\{x\})=\sum_{\mu>v, y \in S_{\mu}^{3}} f_{2}(x, y) \cdot S^{3}$ for all $x \in S^{3}$ where v is the ordinal number for which $x \in S_{v}^{3}$. It follows from (11) that $\overline{g_{0}(\{x\})} \leqq \overline{\boldsymbol{\tau}} \cdot \boldsymbol{N}_{\beta}<\boldsymbol{N}_{a}$.

The set S^{3} has the power \boldsymbol{N}_{a}. This is true because by (3) the sets S_{v}^{3} are mutually exclusive and by (10) $\bar{S}_{v}^{3}=\boldsymbol{\aleph}_{\beta_{y^{-1}}}$. Thus, by the induction hypothesis, i. e. by the case $k=1$ of our theorem which is already proved, there is a free set S^{4} of $g_{0}(\{x\})$ such that $S^{4} \subseteq S^{3}$ and $\bar{S}^{4}=\boldsymbol{\aleph}_{\alpha}$. Let S_{v}^{4} be the set $S^{4} \cdot S_{v}^{3}$. Then $S^{4}=\sum_{v<t} S_{v}^{4}$. If $x, y \in S^{4}$, then there is a μ and v such that $x \in S_{\mu}^{4}$ and $y \in S_{\nu}^{4}$. We may suppose that $\mu \leqq \nu$. Obviously, $f(\{x, y\}) \cdot S^{4}=f_{2}(x, y) \cdot S^{4}$ and, by (12), $f_{2}(x, y) \cdot S^{4}=0$ if $\mu=\nu$. Further $f_{2}(x, y) \subseteq g_{0}(\{x\})$ if $\mu<\boldsymbol{\nu}$. Therefore $f_{2}(x, y) \cdot S^{4}=0$ in this case too, since S^{4} is a free set of $g_{0}(\{x\})$. Thus S^{4} is a free set of power $\boldsymbol{\aleph}_{a}$ of the set-mapping $f(x)$. Q.e.d.

In the proof of Theorem 6 we have made use of the assumption that \boldsymbol{N}_{α} is not inaccessible. In the case when \boldsymbol{N}_{a} is inaccessible, we can prove $\left(\boldsymbol{\aleph}_{a}, \boldsymbol{\aleph}_{\beta}, k\right) \rightarrow \boldsymbol{\aleph}_{\alpha}(\beta<\alpha)$ only if we use (**). But using (**), we can prove the following much stronger result:
(**) Theorem 7. If the cardinal number $\boldsymbol{N}_{a}>\boldsymbol{N}_{0}$ is strongly inaccessible, then $\left(\boldsymbol{\aleph}_{\alpha}, \boldsymbol{\aleph}_{\beta}, \omega\right) \rightarrow \boldsymbol{N}_{\alpha}$ for every $\beta<\boldsymbol{\alpha}$.

Proof. Let S be a set, $\overline{\bar{S}}=\boldsymbol{\aleph}_{\alpha}$ and $f(X)$ a set-mapping of S of type ω and order $\boldsymbol{\aleph}_{\beta}$. We have to prove the existence of a free set of power \aleph_{α}.

Let $f\left(x_{1}, \ldots, x_{k}\right)$ denote briefly $f\left(\left\{x_{1}, \ldots, x_{k}\right\}\right)$. Let $\mu(X)$ be the twovalued measure defined on all subsets of S the existence of which is assured by the hypothesis (**).

Let $\left\{x_{1}, \ldots, x_{k}\right\}$ be an arbitrary element of $[S]^{k}$ and $y \in S$. We define the set $S_{x_{1} \ldots x_{k}}^{y}$ as follows: Let

$$
\begin{equation*}
S_{x_{1} \ldots x_{k}}^{y}=\left\{x: y \in f\left(x_{1}, \ldots, x_{k}, x\right) ; x \neq x_{1}, \ldots, x \neq x_{k}\right\} . \tag{1}
\end{equation*}
$$

We define the set-mapping $f^{\prime}\left(x_{1}, \ldots, x_{k}\right)$ of the set S of type ω as follows: Let
(2) $f^{\prime}\left(x_{1}, \ldots, x_{k}\right)=\left\{y: \mu\left(S_{x_{1} \ldots x_{k}}^{y}\right)=1\right\} \quad$ for every $\left\{x_{1}, \ldots, x_{k}\right\} \in[S]^{k}$.

We call f^{\prime} the derived set-mapping of f. First we prove the following lemma:
(3) If f is an arbitrary set-mapping of S of type ω and order $\mathbf{\aleph}_{\beta}(\beta<\alpha)$, then the derived set-mapping f^{\prime} is of order $\boldsymbol{\aleph}_{\beta}$ too.

To see this assume $\overline{f^{\prime}\left(x_{1}, \ldots, x_{k}\right)} \geqq \boldsymbol{\aleph}_{\beta}$ for a certain $\left\{x_{1}, \ldots, x_{k}\right\} \in[S]^{k}$. Then there is a set $Y\left(\bar{Y}=\boldsymbol{N}_{j}\right)$ such that $Y \subseteq f^{\prime}\left(x_{1}, \ldots, x_{k}\right)$. Let $\left\{y_{v}\right\}_{v<\omega_{\beta}}$ be a well-ordering of Y of type ω_{β}. For every $\nu<\omega_{\beta}$, by (2), $\mu\left(S_{x_{1} \ldots x_{k}}^{y_{j}}\right)=1$ and therefore $\mu\left(\prod_{\nu<\omega_{\beta}} S_{x_{1} \ldots r_{k}}^{y_{k}}\right)=1$, since $\beta<\alpha$ and the measure μ is additive for less than $\boldsymbol{\aleph}_{a}$ summands. Thus the set $\prod_{\nu \in \beta} \mathcal{S}_{x_{1} \ldots r_{k}}^{y_{k}}$ is non-empty; let x_{0} be an element of it. Then $y_{\nu} \in f\left(x_{1}, \ldots, x_{k}, x_{n}\right)$ for every $\boldsymbol{v}<\omega_{\beta}$, therefore $Y \subseteq f\left(x_{1}, \ldots, x_{k}, x_{0}\right)$, consequently $f\left(x_{1}, \ldots, x_{k}, x_{n}\right) \geqq \boldsymbol{N}_{\beta}$. This is a contradiction, because f is of order $\boldsymbol{\aleph}_{\beta}$. Therefore $f^{\prime}\left(x_{1}, \ldots, x_{k}\right)<\boldsymbol{\aleph}_{\beta}$ for every $\left\{x_{1}, \ldots, x_{k}\right\} \in[S]^{k}$.

Now we define the set-mappings $f_{l}(X)$ of S by induction on l.
Put $f_{0}(x)=f(x)$ and $f_{i+1}(x)=f_{i}^{\prime}(x)$. We define $S_{x_{1} \ldots x_{k}}^{y, 2}$ writing $f_{i}(X)$ instead of $f(X)$ in (1).
(4) The set-mappings $f_{i}(X)$ of type ω are, by (3), of order $\boldsymbol{\aleph}_{\beta}$.

Now we define a sequence $\left\{x_{y}\right\}_{\gamma \sim \omega_{\alpha}}$ by induction as follows: Let x_{0} be an arbitrary element of S. Suppose that we have already defined the elements x_{μ} for all $\mu<\nu$, where $\nu<\omega_{\alpha}$ is a given ordinai number, such that $x_{\mu} \in S$.

Let S^{v} be the set $\left\{x_{\mu}\right\}_{\mu} v$, and S_{1}^{v} the set $\sum_{x \in\left[S^{v}\right]} \sum_{\mathrm{S}_{0} ; i=0,1,2, \ldots} f_{i}(X)$. We define the sets $\bar{S}_{x_{1} \ldots \sigma_{k}}^{y, z}$ as follows: Let

$$
\bar{S}_{x_{1} \ldots x_{k}}^{y, 2}=\left\{\begin{array}{ccc}
S_{x_{1} \ldots x_{k}}^{y, 2} & \text { if } & \mu\left(S_{x_{1}}^{y, L}, x_{k}\right)=0, \tag{5}\\
0 & \text { if } & \mu\left(S_{r_{1} \ldots x_{k}}^{y, L}\right)=1 .
\end{array}\right.
$$

Let further S_{2}^{ν} be the set $\sum_{y, x_{1}, \ldots, x_{k} \in \in^{s v} ; l=0,1,2, \ldots} \bar{S}_{x_{1} \ldots x_{k}}^{y, 2}$. It follows that $\bar{S}^{\nu} \leqq \overline{\boldsymbol{v}}<\boldsymbol{\aleph}_{a}$ and $\bar{S}_{1}^{\nu} \leqq \bar{v} \cdot \mathbf{N}_{0} \cdot \mathbf{N}_{\beta}<\boldsymbol{\aleph}_{\alpha}$. From (5) it follows by the additivity of the measure that $\mu\left(S_{2}^{\nu}\right)=0$. Thus the set $S-\left(S^{\nu}+S_{1}^{\nu}+S_{2}^{\nu}\right)$ is of measure 1 and therefore it is non-empty. Let x_{v} be an arbitrary element of it.

Thus we have defined x_{v} for all $v<\omega_{\alpha}$ and it is obvious from the construction that $x_{\nu} \neq x_{\mu}$ for $\nu \neq \mu$. Therefore the set $S_{1}=\left\{x_{\nu}\right\}_{\nu<\omega_{\alpha}}$ is of power $\boldsymbol{\aleph}_{\alpha}$.

We define the set-mapping $g(\{x\})$ of S_{1} of type 1. Let $g(\{x\})=$ $=\sum_{l=0}^{\infty} f_{l}(x) \cdot S_{1}$ for every $x \in S_{1}$. We have by (4) that $\left.\overline{\overline{g(\{x\}}}\right) \leqq \aleph_{\beta} \cdot \boldsymbol{N}_{0}$, i. e. $g(\{x\})$ is of order $\mathbf{N}_{\beta+1}<\boldsymbol{\aleph}_{a}$. Then, by a theorem of ERDős already cited, ${ }^{11}$ there is a free set $S_{2} \subseteq S_{1}$ of power \boldsymbol{N}_{α} of the set-mapping $g(\{x\})$.

We shall prove that S_{2} is a free set of the set-mapping $f(x)$ too. Since $S_{2} \subseteq S_{1}, S_{2}$ has the form $\left\{x_{\nu_{\mu}}\right\}_{\mu<\omega_{\alpha}}$. If S_{2} is not a free set of $f(X)$, then there is a subset $\left\{x_{\nu_{\mu_{0}}}, \ldots, x_{\nu_{\mu_{k}}}\right\}\left(\mu_{0}<\cdots<\mu_{k}\right)$ of S_{2} for which $x_{\nu_{\mu_{i}}} \in$ $\in f\left(x_{\nu_{\mu_{0}}}, \ldots, x_{v_{\mu_{i-1}}}, x_{v_{\mu_{i+1}}}, \ldots, x_{\nu_{\mu_{k}}}\right)$ for an $i(0 \leqq i \leqq k)$. If $i=k$, then $x_{\nu_{\mu_{k}}} \in S_{1}^{\nu_{\mu_{k}}}$, in contradiction to the construction. Therefore we may suppose that $i<k$. But if
 i. e., by (2),

$$
x_{v_{\mu_{i}}} \in f_{1}\left(x_{v_{\mu_{0}}}, \ldots, x_{v_{\mu_{i-1}}}, x_{v_{\mu_{i+1}}}, \ldots, x_{v_{\mu_{k-1}}}\right) .
$$

Repeating these considerations for f_{1}, f_{2}, \ldots instead of f_{c}, we obtain that $i=0$ and

$$
x_{v_{\mu_{0}}} \in f_{k-1}\left(x_{\nu_{\mu_{1}}}\right) .
$$

But this is a contradiction, because S_{2} is a free set of the set-mapping $g(\{x\})$ and $f_{k-1}\left(x_{\nu_{\mu_{1}}}\right) \subseteq g\left(\left\{x_{\nu_{\mu_{1}}}\right\}\right)$. Thus S_{2} must be a free set of $f(x)$ and $\bar{亏}_{2}=\aleph_{\alpha}$. Q.e.d.
(**) Theorem 8. If α is an ordinal number of the second kind and $\beta<\boldsymbol{\alpha}$, then $\left(\boldsymbol{N}_{a}, \mathbf{N}_{\beta}, k\right) \rightarrow \mathbf{N}_{a}$ for $k=1,2, \ldots$

Theorem 8 is a consequence of Theorems 6 and 7.
Theorem 9. ${ }^{12}$
9a) Let m_{0} be a strongly inaccessible cardinal number, $m_{0}>\boldsymbol{N}_{0}, \bar{S}=m_{0}$ and $[S]^{k}=I_{1}^{k}+l_{2}^{k}$ for $k=1,2, \ldots$. Then there exists a subset $S_{0} \subseteq S$ and a series $\left\{n_{k}\right\}_{k=1,2, \ldots}$, where $n_{k}=1,2$, such that $\bar{S}_{0}=m_{0}$ and $[S]^{k} \subseteq I_{n_{k}}^{k} \quad$ for every k.

9b) Let m_{0} be the first strongly inaccessible cardinal number greater than $\mathfrak{\aleph}_{0}$ and $m<m_{0}$. Let S be a set, $\overline{\bar{S}}=m$. One can define the classes I_{1}^{k}, I_{2}^{k} for every k so that the following conditions hold:

[^6](1) $I_{1}^{k} \cdot I_{2}^{k}=0$ for $k=1,2, \ldots$; $[S]^{k}=I_{1}^{k}+I_{2}^{k} \quad$ for $\quad k=1,2, \ldots ;$
(3) for every infinite subset S_{0} of S there is a k such that neither $\left[S_{0}\right]^{k} \subseteq I_{1}^{k}$ nor $\left[S_{0}\right]^{k} \subseteq I_{2}^{k}$.

Proof. The idea of the proof of 9 a) is the same as the one we have used to prove Theorem 8 . Therefore we shall only sketch this proof.

We define the classes $I_{1}^{k, l}, I_{2}^{k, l}$ for every $l<\omega$ by induction on l.
Put $I_{1}^{k, 0}=I_{1}^{k}, I_{2}^{k, 0}=I_{2}^{k}$. Suppose that $I_{1}^{k, l}, I_{2}^{k, i}$ are already defined and let $\left\{x_{1}, \ldots, x_{k}\right\}$ be an arbitrary element of $[S]^{k}$. Put $S_{x_{1} \ldots x_{k}}^{1, l}=$ $=\left\{x:\left\{x_{1}, \ldots, x_{k}, x\right\} \in I_{1}^{k+1, l}\right\}$ and $S_{x_{1}, x_{k}}^{2, l}=\left\{x:\left\{x_{1}, \ldots, x_{k}, x\right\} \in I_{2}^{k+1, l}\right\}$. We shall say that $\left\{x_{1}, \ldots, x_{k}\right\} \in I_{1}^{k, l+1}$ if $\mu\left(S_{x_{1} \ldots x_{k}}^{1, l}\right)=1$ and $\left\{x_{1}, \ldots, x_{k}\right\} \in I_{2}^{k, l+1}$ if $\mu\left(S_{x_{1} \ldots x_{k}}^{2, l}\right)=1$. Let ω_{a} be the initial number of m_{0}. We define the sequence $\left\{x_{\nu}\right\}_{\nu<\omega_{a}}$ by induction. Let x_{0} be an arbitrary element of S. Suppose that x_{μ} is already defined for all $\mu<\nu$. For every l and $X\left(X \in\left[\left\{x_{\mu}\right\}_{\mu<\nu}\right]^{<N_{0}}\right)$ there is an $n(X, l)(n(X, l)=1$ or $n(X, l)=2)$ such that $\mu\left(S_{X}^{n(X, l), l}\right)=1$. The set $\Pi \quad S_{x}^{n(X, l), l}$ is non-empty and we define x_{v} as an arbitrary $x \in\left[\left\{x_{\mu}\right\}_{\mu<\nu}\right]{ }^{<Y_{0}} ; l=0,1,2, \ldots$
element of it.
Put $S_{1}=\left\{x_{v}\right\}_{x \sim \omega_{a}}$. We split the set S_{1} into classes, x and y belong to the same class if and only if for every $l<\omega\{x\} \in I_{1}^{1, l}$ holds if and only if $\{y\} \in I_{1}^{1, t}$ holds. Thus we obtain at most $2^{x_{o}}$ classes, and therefore there is a class $S_{0} \subseteq S_{1}$ of power m_{0} which satisfies the requirements of 9a). Indeed, S_{0} has the form $\left\{x_{\nu_{\mu}}\right\}_{\mu<\omega_{\alpha}}$. Suppose that for a k neither $\left[S_{0}\right] \subseteq I_{1}^{k}$ nor $\left[S_{0}\right]^{k} \subseteq I_{2}^{k}$. Then there is a set $\left\{x_{\nu_{\mu_{1}}}, \ldots, x_{\nu_{\mu_{k}}}\right\} \quad\left(\mu_{1}<\cdots<\mu_{k}\right)$ and a set $\left\{x_{\nu_{\mu_{1}^{\prime}}}, \ldots, x_{v_{\mu_{k}^{\prime}}}\right\} \quad\left(\mu_{1}^{\prime}<\cdots<\mu_{k}^{\prime}\right)$ for which $\left\{x_{\nu_{\mu_{1}}}, \ldots, x_{\nu_{\mu_{k}}}\right\} \in I_{1}^{k, 0}$ and $\left\{x_{\nu_{\mu_{1}}}, \ldots, x_{\nu_{\mu_{k}}}\right\} \in I_{2}^{k, 0}$. Then, by the construction, $\left\{x_{\nu_{\mu_{1}}}, \ldots, x_{\nu_{\mu_{k-1}}}\right\} \in I_{1}^{k-1,1}$ and $\left\{x_{v_{\mu_{1}^{\prime}}}, \ldots, x_{v_{\mu_{k-1}^{\prime}}}\right\} \in I_{2}^{k-1,1}, \ldots$, and finally $\left\{x_{\nu_{\mu_{1}}}\right\} \in I_{1}^{1, k-1},\left\{x_{\nu_{\mu_{1}}}\right\} \in I_{2}^{1, k-1}$, but this contradicts the fact that $x_{\nu_{\nu_{1}}}, x_{\nu_{\mu_{1}^{\prime}}}$ belong to the same class S_{0}.

To prove 9 b) we shall first prove the following:
(i) If the statement is true for $m=\boldsymbol{N}_{a}$, then it is true for $m=2^{\mathbf{N}_{a}}$.

Let S_{1} be the set $\{\nu\}_{\nu \sim \omega_{a}}$. Then $\bar{S}_{1}=\boldsymbol{\aleph}_{a}$ and by the assumption of (i) one can define the classes I_{1}^{k}, I_{2}^{k} satisfying the conditions (1), (2), (3) of 9 b) (with S_{1} instead of S). To prove (i) it is sufficient to define a set S of power $2^{\aleph_{\alpha}}$ and the classes $I_{1}^{k}, I_{I I}^{k}$ satisfying the conditions (1), (2) and (3).

Let S be the set of all sequences $\left\{\varepsilon_{\nu}\right\}_{\nu<\omega_{\alpha}}$ where $\varepsilon_{\nu}=0$ or $\varepsilon_{\nu}=1$. Then $\overline{\bar{S}}=2^{\mho_{\alpha}}$. Let x_{1}, x_{2} be two arbitrary elements of $S, x_{1} \neq x_{2}, x_{1}=\left\{\varepsilon_{\nu}^{1}\right\}_{\nu<\omega_{\alpha}}$
and $x_{2}=\left\{\varepsilon_{v}^{2}\right\}_{v<\omega_{\alpha}}$. Let $\nu\left(x_{1}, x_{2}\right)$ denote the smallest ordinal number ν for which $\varepsilon_{\nu}^{1} \neq \varepsilon_{\nu}^{2}$.

We define the usual lexicografical ordering of S, we say that $x_{1}<x_{2}$ if and only if $\varepsilon_{\nu\left(x_{1}, x_{2}\right)}^{1}=0$.

Now let $\left\{x_{1}, \ldots, x_{k}\right\}$ be an arbitrary subset of k elements of S. We may suppose that $x_{1}<\cdots<x_{k}$. We write $\nu_{1}, \ldots, \nu_{k-1}$ instead of $\boldsymbol{v}\left(x_{1}, x_{2}\right), \ldots, v\left(x_{k-1}, x_{k}\right)$.

We define the classes $I_{\mathrm{I}}^{k}, I_{\mathrm{I}}^{k}$ for $k \geqq 2$ as follows:
(a) if $\nu_{1}<\cdots<\nu_{k-1}$ or $\nu_{1}>\cdots>\nu_{k-1}$, then we say that

$$
\left\{x_{1}, \ldots, x_{k}\right\} \in\left\{\begin{array}{lll}
I_{1}^{k} & \text { if } & \left\{v_{1}, \ldots, v_{k-1}\right\} \in I_{1}^{k-1}, \\
I_{\mathrm{II}}^{k} & \text { if } & \left\{v_{1}, \ldots, v_{k-1}\right\} \in I_{2}^{k-1}
\end{array}\right.
$$

(b) in the other cases let $\left\{x_{1}, \ldots, x_{k}\right\} \in I_{I}^{k}$.

Obviously, conditions (1) and (2) hold for S, I_{I}^{k} and I_{II}^{k}. We have to prove that condition (3) holds too.

Let S_{0} be an infinite subset of S. It is well known that there exists a sequence $\left\{x_{l}\right\}_{l<\omega} \subseteq S_{0}$ for which either $x_{1}<\cdots<x_{l}<\cdots$ or $x_{1}>\cdots>x_{l}>\cdots$.

We shall define a subsequence $\left\{x_{l_{s}}\right\}_{s<\omega}$ for which $\mu_{l_{1}}<\cdots<\mu_{l_{s}}<\cdots$, where $\mu_{l_{s}}=\nu\left(x_{l_{s}}, x_{l_{s+1}}\right)$. Without loss of generality we may assume that $x_{1}<\cdots<x_{l}<\cdots$. Let ν^{\prime} denote the smallest ordinal number which occurs among the ordinals $\nu\left(x_{l}, x_{l^{\prime}}\right)\left(l<\omega, l^{\prime}<\omega, l \neq l^{\prime}\right)$. Let l^{\prime} be the smallest integer for which $\varepsilon_{v^{\prime}}^{l^{\prime}}=1$ and let l be the greatest integer less than l^{\prime} for which $\varepsilon_{\nu^{\prime}}^{l}=0$. Put $x_{l_{1}}=x_{i}$. It is obvious that $\nu\left(x_{l_{1}}, x_{i^{\prime \prime}}\right)=\nu^{\prime}$ for every $l^{\prime \prime} \geqq l^{\prime}$ and $\boldsymbol{\nu}\left(x_{l^{\prime \prime}}, x_{l^{\prime \prime \prime}}\right)>\nu^{\prime}$ for $l^{\prime \prime}, l^{\prime \prime} \geqq l^{\prime}$. If we repeat this for the sequence $x_{l^{\prime}}, x_{i^{\prime}+1}, \ldots$ we obtain an element $x_{l_{2}}$ and so on. The sequence $\left\{x_{l_{s}}\right\}_{s<\omega}$ satisfies our requirement.

In what follows we write x_{s} instead of $x_{l_{s}}$ and μ_{s} instead of $\mu_{l_{s}}$. Let S^{\prime} denote the a set $\left\{x_{s}\right\}_{s<\omega}$ and S_{1}^{\prime} the set $\left\{\mu_{s}\right\}_{s<\omega}$.

If $\left\{\mu_{s_{1}}, \ldots, \mu_{s_{k-1}}\right\}\left(\mu_{s_{1}}<\cdots<\mu_{s_{k-1}}\right)$ is an arbitrary finite subset of S_{1}^{\prime}, then $\left\{x_{s_{1}}, \ldots, x_{s_{k-1}}, x_{s_{k}}\right\}$ with $s_{k}=s_{k-1}+1$ is a subset of k elements of S^{\prime} such that $\nu\left(x_{s_{1}}, x_{s_{2}}\right)=\mu_{s_{1}}, \ldots, \nu\left(x_{s_{k-1}}, x_{s_{k}}\right)=\mu_{s_{k-1}}$. This means by (a) that to every finite subset of $k-1$ elements of S_{i}^{\prime} there is a subset of k elements of S^{\prime} such that the second belongs to I_{1}^{k} or to I_{II}^{k} if and only if the first belongs to I_{1}^{k} or to I_{2}^{k}, respectively. But there is a k for which neither $\left[S_{1}^{\prime}\right]^{k} \subseteq I_{1}^{k}$ nor $\left[S_{1}^{\prime}\right]^{k} \subseteq I_{2}^{k}$ and for this k neither $\left[S^{\prime}\right]^{k+1} \subseteq I_{1}^{k+1}$ nor $\left[S^{\prime}\right]^{k+1} \subseteq I_{11}^{k+1}$. Thus the sets $S, I_{\mathrm{I}}^{k}, I_{\mathrm{II}}^{k}$ satisfy condition (3) too, and so (i) is proved.

Let $\omega_{a_{0}}$ denote the initial number of m_{0}.
(ii) If α is an ordinal number of the second kind, $\alpha<\alpha_{0}$ and if the statement of 9 b) is true for every $m=\boldsymbol{\aleph}_{\beta}(\beta<\alpha)$, then it is true for $m=\boldsymbol{\aleph}_{\alpha}$.

Proof of (ii). If $\boldsymbol{\aleph}_{a}$ is inaccessible, then it can not be strongly inaccessible, because $0<\boldsymbol{\alpha}<\boldsymbol{\alpha}_{0}$. Thus if $\boldsymbol{\aleph}_{\boldsymbol{\alpha}}$ is inaccessible, then there is a $\beta<\alpha$ for which $\mathfrak{\aleph}_{\alpha} \leqq 2^{\mathbb{X}_{\beta}}$, but then, by (i), 9b) is true for $\boldsymbol{\aleph}_{\alpha}$. Thus we may suppose that $\boldsymbol{\aleph}_{a}$ is not inaccessible.

Let S be a set, $S=\boldsymbol{\aleph}_{\alpha}$ and $\boldsymbol{\tau}$ the smallest ordinal number for which $\boldsymbol{\aleph}_{\alpha}=\sum_{\nu<t} \boldsymbol{\aleph}_{\beta_{v}}, \beta_{\nu_{1}}<\boldsymbol{\beta}_{\nu_{2}}<\boldsymbol{\alpha}$ for $\boldsymbol{\nu}_{1}<\boldsymbol{\nu}_{2}<\boldsymbol{\tau}$. In this case we have $\overline{\boldsymbol{\tau}}<\boldsymbol{\aleph}_{a}$. There is a sequence $\left\{S_{\nu}\right\}_{v<t}$ for which $S=\sum_{\nu<t} S_{\nu}, S_{\nu_{1}} \cdot S_{\nu_{2}}=0$ if $\boldsymbol{\nu}_{1} \neq \boldsymbol{\nu}_{2}$ and $\overline{\bar{S}}_{\boldsymbol{\nu}}=\boldsymbol{\aleph}_{\beta_{\nu}}$. By the assumption corresponding to every set $S_{\boldsymbol{\nu}}(\boldsymbol{\nu}<\boldsymbol{\tau})$, we can define the sets $I_{1}^{k, v}, I_{2}^{k, v}$ so that (1), (2) and (3) hold for $S_{v}, I_{1}^{k, v}, I_{2}^{k, v}$ instead of S, I_{1}^{k}, I_{2}^{k}, respectively. Put $S^{*}=\{\nu\}_{\nu}$. Then $\bar{S}^{*}<\boldsymbol{N}_{a}$ and we can define the sets $I_{1}^{k, *}, I_{-}^{k, *}$ satisfying the conditions (1), (2) and (3).

Now we define the sets I_{1}^{k}, I_{2}^{k} for $k=1,2, \ldots$ as follows: Let $\left\{x_{1}, \ldots, x_{k}\right\}$ be an arbitrary element of $[S]^{k}$.
a) If for every $i(1 \leqq i \leqq k) x_{i} \in S_{v_{i}}$ and $\nu_{i} \neq \nu_{j}$ for every $i \neq j$, then let

$$
\left\{x_{1}, \ldots, x_{k}\right\} \in\left\{\begin{array}{lll}
I_{1}^{k} & \text { if } & \left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}\right\} \in I_{1}^{k, *}, \\
I_{2}^{k} & \text { if } & \left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}\right\} \in I_{2}^{k, *} .
\end{array}\right.
$$

b) If there is a v for which $\left\{x_{1}, \ldots, x_{k}\right\} \subseteq S_{v}$, then let

$$
\left\{x_{1}, \ldots, x_{k}\right\} \in\left\{\begin{array}{lll}
I_{1}^{k} & \text { if } & \left\{x_{1}, \ldots, x_{k}\right\} \in I_{1}^{k, v}, \\
I_{2}^{k} & \text { if } & \left\{x_{1}, \ldots, x_{k}\right\} \in I_{2}^{k, \nu} .
\end{array}\right.
$$

c) Let $\left\{x_{1}, \ldots, x_{k}\right\} \in I_{1}^{k}$ in the other cases.

It is obvious that conditions (1) and (2) hold for I_{1}^{k}, I_{2}^{k}.
Let S^{\prime} be an arbitrary infinite subset of S. Then either (o) $S^{\prime} \cdot S_{v} \neq 0$ for infinitely many ν or (oo) there is a ν such that $S_{\nu} \cdot S^{\prime} \geqq \mathbf{N}_{0}$.

If (o) holds, then there is a subset $S^{\prime \prime}$ of S^{\prime} such that $S^{\prime \prime}$ is infinite and $\overline{S^{\prime \prime} \cdot S_{\nu}}=1$ for every ν. Then, by the case a), there is a k for which neither $\left[S^{\prime \prime}\right]^{k} \subseteq I_{1}^{k}$ nor $\left[S^{\prime \prime}\right]^{k} \subseteq I_{2}^{k}$.

If (oo) holds, then there is a ν and a subset $S^{\prime \prime \prime}$ of S^{\prime} such that $S^{\prime \prime \prime} \subseteq S_{v}$ and $\bar{S}^{\prime \prime \prime} \geqq \aleph_{0}$. Then, by the case b), there is a k such that neither $\left[S^{\prime \prime \prime}\right]^{k} \subseteq I_{1}^{k}$ nor $\left[S^{\prime \prime \prime}\right]^{k} \subseteq I_{2}^{k}$.

It follows that condition (3) holds, consequently (ii) is proved.
The statement of 9 b) is true for $m=\boldsymbol{\aleph}_{0} .{ }^{13}$
It follows from (i) and (ii) by transfinite induction that 9 b) is true for every $m=\mathbf{N}_{\alpha}$ where $\alpha<\boldsymbol{\alpha}_{0}$.

Remark. In the proof of 9 b) neither (**) nor (*) are used.

[^7]Lemma 5. Let S be a set, $\bar{S} \geqq \boldsymbol{N}_{0}$ and $[S]^{k+1}=I_{0}+\cdots+I_{l}$. Then there is an $i(0 \leqq i \leqq l)$ and a subset $S_{0} \subseteq S$ such that $\bar{S}_{0} \geqq \aleph_{0}$ and $\left[S_{\mathrm{C}}\right]^{k+1} \subseteq I_{i}$ for $k=0,1,2, \ldots ; l=0,1,2, \ldots$.

Lemma 5 is a theorem of Ramsey. ${ }^{14}$
Theorem 10. $(m, l+1, k) \rightarrow \mathbf{N}_{0}$ if $m \geqq \mathbf{N}_{0}$ for $l=1,2, \ldots ; k=1,2, \ldots$.
Proof. Let S be a set, $\bar{S} \geqq \mathbb{N}_{0}$ and $f(X)$ a set-mapping of S of type k and order $l+1$. We shall prove the existence of a free set of power \aleph_{0}.

For every $X \in[S]^{k}$ the set $f[X]$ has at most l elements. Let $f_{1}(X), \ldots, f_{l}(X)$ denote the elements of the set $f(X)$. (If $f(X)$ has less than l elements, then one element may occur more than once.)

Let us split the set $[S]^{k+1}$ into the sum of the sets I_{0}, \ldots, I_{l} as follows: If $\left\{x_{0}, \ldots, x_{k}\right\}$ is an arbitrary element of $[S]^{k+1}$, then it is an element of I_{i} (for $i=1, \ldots, l$) if and only if there is a $j(0 \leqq j \leqq k)$ for which $x_{j}=f_{i}\left(\left\{x_{0}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{k}\right\}\right)$. If such a j does not exist, then $\left\{x_{0}, \ldots, x_{k}\right\}$ belongs to I_{0}.

Obviously $[S]^{k+1}=I_{0}+\cdots+I_{k}$.
Let now $S^{\prime \prime}$ be a finite subset of S and suppose that it has s elements. If $\left[S^{\prime \prime}\right]^{k+1} \subseteq I_{i}$ for some $i\left(1 \leqq i \leqq l\right.$, then the set of subsets of $S^{\prime \prime}$ taken $k+1$ at a time has at most as many elements as the set of subsets of $S^{\prime \prime}$ taken k at a time. It follows that $\binom{s}{k+1} \leqq\binom{ s}{k}$, i. e. $s \leqq 2 k+1$. Therefore, for every infinite subset S^{\prime} of $S,\left[S^{\prime}\right]^{k+1} \subseteq \equiv I_{i}$ for $i=1, \ldots, k$. Then, by Lemma 5, there is an infinite subset S_{0} of S for which $\left[S_{0}\right]^{k+1} \subseteq I_{0}$, but then S_{0} is obviously free. Q.e.d.
(**) Theorem 11. $\left(\mathbf{\aleph}_{a+k-1}, l+1, k\right) \rightarrow \mathbf{\aleph}_{\alpha}$ if a is of the first kind; $\left(\boldsymbol{\aleph}_{\alpha}, l+1, k\right) \rightarrow \boldsymbol{\aleph}_{\alpha}$ if α is of the second kind $(l=1,2, \ldots ; k=1,2, \ldots)$.

The first part of the theorem is a consequence of Theorem 3. The second one follows for $\alpha>0$ from Theorem 8, and for $\alpha=0$ from Theorem 10. The hypothesis $(* *)$ is used only in the case when \boldsymbol{N}_{α} is inaccessible.

We have stated Theorem 11 explicitly only to make Problem 3 clear.
In what follows let p, m, l and k denote integers.
Theorem 12. Let $p(m, l, k)$ denote the greatest integer p for which $(m, l+1, k) \rightarrow p$ is true. Then

$$
c_{1} \sqrt[k+1]{m}<p(m, l, k)<c_{2} \sqrt[k]{m \log m}
$$

where the numbers c_{1} and c_{2} depend on k and l but they does not depend on m, and $c_{1}>0$.

[^8]Proof. First we prove (i) $c_{1} \sqrt[k+1]{m}<p(m, l, k)$.
Let S be a set, $\bar{S}=m$ and $f(X)$ a set-mapping of S of type k and order $l+1$.

If p is an integer for which there is no free subset of power $\geqq p$, then every $X \in[S]^{p}$ has a subset $Y \in[S]^{k+1}$ such that Y is not free. But if $Y \in[S]^{k+1}$, then there exist in $[S]^{p}$ at most $\binom{m-k-1}{p-k-1}$ sets X such that $Y \subseteq X$. Therefore there are at least $\binom{m}{p} /\binom{m-k-1}{p-k-1}$ sets Y in $[S]^{k+1}$ which are not free. On the other hand, we know that there are at most $\binom{m}{k} l$ such Y 's and therefore we have

$$
\frac{\binom{m}{p}}{\binom{m-k-p}{p-k-1}}<l\binom{m}{k}
$$

It follows that for such a p

$$
c \sqrt[k+1]{m} \leqq p
$$

for some $c>0$ which proves (i).
Now we outline the proof of (ii) $p(m, l, k)<c_{2} \sqrt[k]{m \log m}$. Let S be a set, $\overline{\bar{S}}=m$ and M the set of all set-mappings of S of type k and order $l+1$. We define on M a probability field such that every element f of M has the same probability. Let A be the following event: The set-mapping $f(X)$ of S of type k and order $l+1$ has a free set of p elements. For the proof of (ii) it is obviously sufficient to show that the probability of the event A is less than 1 if $p \geqq c_{2} \sqrt[k]{m \log m}$.

The probability of the event that a given subset of p elements of S is a free set, is

$$
\left[\frac{\binom{m-p}{l}}{\binom{m-k}{l}}\right]^{\binom{p}{k}}
$$

Thus the probability of A is less than 1 if

$$
\binom{m}{p}\left(\frac{\binom{m-p}{l}}{\binom{m-k}{l}}\right)^{\binom{p}{k}}<1
$$

It follows that there is a $c_{2}\left(c_{2}=c_{2}(k, l)\right)$ for which the probability of A is less than 1 , if $p \geqq c_{2} \sqrt[k]{m \log m}$.

Consequently, $p(m, l, k)<c_{2} \sqrt{m \log m}$. Q. e.d.
(Received 18 December 1957)

References

[1] P. Erdős, Some remarks on set theory, Proc. Amer. Math. Soc., 1 (1950), pp. 127-141.
[2] P. Erdős and G. Fodor, Some remarks on set theory. VI, Acta Sci. Math. Szeged, 18 (1957), pp. 243-260.
[3] A. Tarski, Drei Überdeckungssätze der allgemeinen Mengenlehre, Fundamenta Math., 30 (1938), pp. 132-155.
[4] P. Erdoss and A. Tarski, On families of mutually exclusive sets, Annals of Math., 44 (1943), pp. 315-329.
[5] P. Erdős and R. Rado, Combinatorial theorems on classification of subsets of a given set, Proc. London Math. Soc. (3), 2 (1952), pp. 417-439.
[6] P. Erdõs and R. Rado, A partition calculus in set theory, Bull. Amer. Math. Soc., 62 (1956), pp. 427-489.
[7] K. Kuratowski, Sur une caractérisation des alephs, Fundamenta Math., 38 (1951), pp. 14-17.
[8] G. Fodor, Proof of a conjecture of P. Erdős, Acta Sci. Math. Szeged, 14 (1951-1952), pp. 219-227.
[9] F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc., 30 (1930), pp. 264-286.

[^0]: ${ }^{1}$ For the history and older results on this problem see [1], for the more recent results and ramifications see [2].

[^1]: ${ }^{2}$ See [3] and [4].

[^2]: ${ }^{3}$ See [5].

[^3]: ${ }^{5}$ See Erdös-Fodor-Hajnal's forthcoming paper.

[^4]: 8 This theorem is proved in [6]. By the symbolism introduced there the theorem can be expressed in the form: If $m>b_{\hat{q}_{\alpha}, k}$, then $m \rightarrow\left(\mathbf{\aleph}_{\alpha+1}\right)_{\mathbf{s}_{\alpha}}^{k+1}$.

[^5]: ${ }^{10}$ See e. g. [1].

[^6]: ${ }^{11}$ See [1].
 ${ }^{12}$ Theorem 9 gives the solution of the problem of P. Erdõs and R. Rado mentioned on p. 113. The statement 9 b) was first proved by G. Fodor.

[^7]: ${ }^{13}$ See e.g. [5].

[^8]: ${ }^{14}$ See [9].

