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In a previous paper [2] we proved that almost all Brownian paths in the plane have
points of arbitrary high finite multiplicity. In the present paper this result is streng-
thened by establishing the following :

THEOREM . Almost all Brownian paths in the plane have points of multiplicity C .

Here C is the power of the continuum and a path z(t ; (o), 0 < t < o; ;, is said to
have a point of multiplicity C if there exist a point ~ and a set T of positive numbers
having the power of the continuum such that z(t; (o) = S for all t e T.

This result, combined with those of the previous papers [1] and [3], completely
settles the question of points of highest multiplicity of Brownian paths in m-dimen- sional space. Thus the following holds with probability 1: For m > 4 the path

contains only simple points, for m = 3 it contains double but no triple points, while
for in = 2 (and also, of course, for m -- 1) it contains points of multiplicity C.

We shall not repeat here the definition of Brownian motion in the plane . Suffice it
to say that we are considering a probability space (n, E, P) such that with every
cv E 2 there is associated a function z(t ; co) _ [x(t ; co), y(t ; o)) ] from 0 < t < co into
the plane, where the components x and y represent ordinary independent one-
dimensional Brownian motions . A fuller description may be found in [2] . We recall,
however, that the process is assumed separable, i .e . z(t ; co) is, with probability 1,
continuous . Also the normalizations z(0 ; ( o) = 0 and or = 1 in E x2(t ; a)) = E y 2(t ; (,))
= alt are assumed ; these have, of course, no bearing on the validity of the The-
orem, but are used in the estimates leading to its proof .

We shall use vector notation in the plane, in particular 5 -- 5'~ denotes the
distance of the two points 5 and ~' . For 0 < a G b < oo we shall write L(a,b ; (9) for
the set of points z(t ; o_)), a < t < b . P { i stands for the probability of the event
in the braces, while cl, c2, c3 are absolute positive constants .

* This research was supported in part by the Office of Naval Research of the U . S. A . under
Contract Number Nonr- 266(59), Project Number 042-025 .
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The proof will be achieved in stages. We start with :
(A) . Let o > 0 and a, f i , f2 be points in the plane satisfying

Ial < 1/100, eo< I/f -f2I<1,eo< I13í - aI<I (i= 1,2) .

Denote by Ai (i = 1,2) the event : there exist t, t' with

0<t<I,

	

1/2<t'-t<1,

satisfy ing

Then we have

,for which

Then, if

we have

I a

	

z(t ; (o) - (3t I < 9 , I a + z(t' ; (o) - 13 íI < P •

P{Ai} > cl/log 2(1/e), (1)

P{A, n A2 )f< c2 [1 + log(1/I ~1 - 132 1) ] ;/log;(l/o) .

	

(2)

These estimates result immediately from the inequalities preceding (27) and (28)
in [2] with k = 2 (the c's in the present paper are not, of course, the same as in [2]) .

(B) . Let k be a positive integer and let o),, co-, , . . . , wk be chosen independently in S2 .
Let n be a sufficiently large positive integer .

Put
v=(v,-1)11+v2,

	

(v,=1,2, . . .,n ;i=1,2)

and let S,, denote the point .

_ [(115) + (vil2n), (115)

	

(í'212n) ], (v = 1, . . . , n-) .

	

(4)

Let ai, (j = 1, . . . , k) be points satisfying I ail < 1/100 and denote by B the event :
there exist, for all j = 1,2, . . . , k, numbers ti, t'i with

O-<- ti <1,

	

1/2<t'i-ri<1,

I aj + z(ti ; coi) - ~, I < e,

	

I al + z(t'i ; coi) - 5vl < o .

	

(6)

o = e H= (c2Jc1) 1 (20k)2 ,

	

(7)

P f U" By

	

> c3(k), where c3(k) _ (c31k);k
v=z

Indeed, due to the independence assumption, we have from (1) :

k

	

-2k
P {B.,} > c1 log

	

o

(3)

(5)

(8)

(9)
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while, since by (4)

	

< 2 1'2 , we have from (2) :

P {Bv n 8,, , } < ck (Slog

	

) 4klog 4k2,

	

(10)

Substituting (9) and (10) in

we obtain

2
1

P { v & } > E P { B,, } -
V-1

	

v-1

	

1<v<V ,G n

2

P

	

n
Bv > n cklo

-2k

	

5 c2 klo
4ko

	

E

	

lo 4k
{ v

	

}

	

g

	

Q - (

	

) g

	

g

	

Sv - ~~'~ • ( 11)
,)=1

	

1- v <v~< „2

Now by (4)

E

	

log
k

s,, - „'i < n E log
kl ,,- 51 < n

2 11

E (2v - 1) log4k
1 < v <v~< n2

	

v=2

= n
2
E (21, - 1) log 4k[2n/(v - 1)]

v--2

< 3n2 E (v - 1) log k [2n/(v - 1) ]

< 3n 3 max [u 1og 4k(2n/u)
I<u`n
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E

	

P { R, n B.,' } ,

= 6n4(4k/e) 4k

From this, (7), and (11) we have :

2

P { u B„ } > ci H
Zk- 6(5c2) k (4k/e) 1'H -4k

v=1

which, in view of (7), yields (8) and completes the proof of (B) .

Next we deduce

(C) . Let rot, . . . , cok be chosen independently and let the points at, (j = 1, . . . , k)

satisfy I aj I < 1/100, then there exist, with probability not less than c3, a points and
numbers tj, t'j (j = 1, . . . , k) satisfying (5) such that

aj -Fz(tj ;wj)=aj +z(tj ;(9j)= ~,

	

j= 1, . . .,k) .

1 7 7

- 11
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k
9(w1, . . . , Ok) = inf

	

[~ at + z(tp ; coj) -

	

+ I at + z(t'j ; coi) - 5 I ], (12)
~=1

the inf being taken over all tj, t' . satisfying (5) and all points s in the plane. Define
9n(o)1, . . . , wk) similarly, except that instead of letting the inf in (12) be taken over
all points, let it be taken only over 5 = 5 given by (4) ; clearly g < g,,, and it is
easily seen that g and g.„ are random variables . From (B) it follows that P{g. <
2k P j > c 3 (k) for sufficiently large n . Since, by (7), e - 0 as n - oo, it follows
that P{g = 0}, c 3(k) . This is precisely the required result .

From (C) we conclude that independent Brownian paths have a common double
point, or formulated more explicitly :

(D) . Let w 1 , . . . , cok be chosen independently. Then there exists, with probability 1,
a common double point for all the paths L(O,co ; w j ), (j = 1 , . . . , k) .

Indeed, due to the well-known ergodic character of Brownian paths in the plane
(e.g . see [4]), there exist with probability 1 sequences Tj ,,,i (j = 1, . . ., k ; m= 0,1,2 . . .),
satisfying T1,o = 0 and Tj,m.+, , Tj,,,, + 2 such that I z(T?, m ; w?)l < 1/100 .
Let C.(m = 0,1 . . . . ) denote the event : there exist for all j = 1, . . . , k numbers
tt, t;' satisfying (5) for which all 2k points z(Tj , n, + tj ; u1 j), z(T,,. + t', ; w j ) coincide .
By the Markovün character of the Brownian process the events C. are independent,
while, by (C), P{Cmj , c3 (k) for all m. An application of the Borel lemma gives
P{ U C,,,} = 1, thus proving (D) .

yn=1

From the homogeneity property of the Brownian process (invariance in respect to
simultaneous change of the space scale by a factor A and of the time scale by a factor
%2), it follows that the probability that the k paths L(0,72 ; w) have a common double
point is independent of / 2 . This permits strengthening (D) to :

(E) . Let co l , . . . , wk be chosen independently and let e > 0 be arbitrary. Then
there exists, with probability i, a common double point of the k paths L (0, e; wt) .

A straightforward application of Fubini's theorem yields the following result
about conditional probabilities

(F) . Let Q denote the event described in (E), then

P{Q I z(e ; wJ) = z?, (j = 1, . . . , k)j = i

for almost all points z1, . . . , zk .
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Here the bar denotes conditional probability and the "almost all" may be
understood in the usual Lebesque sense . Next we prove :

(G) . With probability 1 there exist numbers t n.Q), (n = 0,l . . . .

	

1, . . . 2 n
)

satisfying t o (1) - 0, and

t,,(.1.) < tra+1(2.1 - 1 ) <t.n,+1(2.1) < t„(j + 1)

t„j-1 (2J)- t„ (i)< 2 n

(with tn( j - 1) replaced by 1 for j = 2 n ),for which

z[t-n(1) ;
(o] =

z[t,,(2) ; co] _ . . . = z [tn(2n) ; w] .

	

(13)

Assume the existence of the sets tm.(j), (j= 1, . . ., 2n ) for m < n has already been
established . Let a,, denote the common point (13) and put

s = 2 -' min [tnU -i-- 1) - tn(j) ]1< p<2^

where again we understand tn(2n + 1) = 1 . Since the paths L [tn (j), tn.(j) + E ; w ],

(j=1, . ._2n ) are transformed, on substracting a„ from them, by a measure preserving
transformation into independent paths L(0, e ; awp), subject to the conditions z(e ; cop)
= z [tn(j) + e ; co ] - an, it follows from (F) that, with probability 1, there exists
a common double point of the 2n paths L(t,,(j), tn(j) + s ; co) . Thus we have established
the existence, with probability 1, of the set t nd_ 1 ( j), (j = 1,2, . . . , 2 n+ '), and (G)
follows by induction .

We are now in a position to complete the proof of our Theorem. Let c,) be such
that z(t ; co) is continuous and that there exist for it t .(j) as described in (G) . Let
ay,, again denote the 2" -tuple point (13) . Obviously a,, c- L(0,1 ; co), and since L(0,1 ; co)
is bounded, there exists a sub-sequence anp(p = 1,2, . . . ) converging to a limit a .

Let the set of non-negative numbers T be defined by

V {t .P(j),j = 1, . . . , 2"P} ,
P=q

(the bar denoting closure). Then T is a perfect set and for every t E T there exists a
sequence n(m) increasing to infinity and integers j. with 1 < j,n < 2ntmt, for
which tn(m)(jm)-> t as in -oo . From the continuity of the path it follows that z(t ; co)
= a for every t c T. Since T is of the power of the continuum, the required result
follows from (G) . Q .E.D .

From the homogeneity of the Brownian process we immediately deduce :

COROLLARY 1 . For every, 0 < a < b < oo the points of multiplicity C of L(a, b ; o
are, with probability 1, everywhere dense in L(a, b ; w) .
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Taking account of the ergodic character of Brownian paths in the plane, we have,
in particular :

COROLLARY 2 . For almost all Brownian paths the set of points of multiplicity c
is everywhere dense in the entire plane .
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