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The problems of the theory of diophantine approximation concern
in general the solvability and non-solvability of systems of inequalities
in rational integers (or integers of an algebraic extension R(O) of the ra-
tional field) . However, in the case of solvability, not very much is known
about the localization of the solutions . The significance of this point of
view concerning the classical theorems of Dirichlet and Kronecker was
shown recently in a book [2], by the third of the present authors . In
this note we shall discuss the localization-problem concerning the in-
equality

(1)

	

Ja-xJyJ < AJy2 ,

where A is a positive constant,

(2)

	

0 < a < I

and x, y are integers subjected to

(3)

	

(x, ?/) = 1 .

	

y > 1 .

At a given A, as we know, even in the case of solvability, no inter-
val I on the half-line y > 1 can bee preassigned in such a way that the
system (1) - (3) has certainly a solution with y in I for all a's in 0 < a < 1 .
However, if we drop the requirement (x, y) = 1, the situation changes .
As the second of us proved (see [1]), there is a constant Na > 1 such that
the inequality la-xiyl <_ y -2 has a solution with ~1T < y < lY2 for all
a's in 0 < a < 1 if only 11r > Na and this is the best-possible in the sense
that N2 cannot be replaced by o(N2 ) . Here we shall make the first step
towards the solution of the

Problem I (P 241) . For fixed A > 0 and, c > 1 zve denote by S(N, A, e)
the set of those a's for which with an, integer N > 2 the system . (1)-(3) is
solvable ?with an integer

N<y<cN .
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If IS(N, A, e)l stands for the measure of S(X, A' e), does

(5)

	

lim 18 (N, A, e)! = f(A, c)v--,`„

THEOREM III . For 0 < A < c ,/(1+C2) the limes exist and

12A
f (A, c) =	 loge .

THEOREM IV. For A > 10, c > 10 say, we have for all sufficiently
large N

< 1-
1
4 q

	

,40A e

exist awl, if it exists, what is its explicit for ill ,)
If we take into account the previous remarks, the localization (4)

seems to be very strong and one might guess that /(A, c) - 0. It is some-
what surprising that this is not the case . We shall. prove

THEOREM 1. We have for A>0' C>1

lim IS(N, A, c)I > z (1- 1 ) min (l, 2A) .

THEOREM II_ For A >, 1 and c	2 we hare the stronger estimation

lim IS(N, A, c}~ > 3- ~~ - 2

i . e . if the, limIS(N, A, c)! exists, it is < 1 .
j-ro

A proof that f (A, c) exists for A > 0, c > 1, seems to be rather
difficult. Theorem I for A = 1l2 gives the first: step towards the solution
of the following problem of the metrical theory of continued fractions
which was the starting point of the present investigations :

Problem 11 (P 212). Denoting the set of those a's in 0 < a < l, for
which with an integer X > 2 and c > 1 the interval X17 < y < cNcantains
at least one denominator qv of the regular continued fraction of a, by
R(N, e), does

(6)

	

lim !R(-N7 , c)! _ 0(c)

exist awl, if it exists, what is its explicit form
-Namely, since any fraction xfy with (x, y ) = 1 and

Ia-xfyl < 1f2y2

is a convergent of a, theorem I gives immediately the following



(7)

and h an integer with

DIOPHANTINEAPPROXIMATION

COROLLARY . For the above defined R(V, c)-set we have

lim IR(Ar, C)I > 3

N<g<[CT]-1

(11)

	

lim 1

	

T(n) = 3

X-00 X-
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Nest we pass to the proofs of the above theorems . In order to prove
theorem I let g be an integer with

(8)

	

1 < h < g-1,

	

(h, g) = 1

First we assert that for two different pairs of such integers we have

hl

	

h"

	

1
(9)

	

- = > - - .
9 1

	

92 '

	

[e Y] 2
For if not and we had

(10)

	

V9 1 < 7,1917

then we had

'higa -1i29iI --9192/[CN]2 < 1

which contradicts to (10) . Then we construct open intervals I (h.1g) around
each of our fractions h.1g as centres of the length

min (1, 2A)
[c A

T]2

It follows from (9) that no two of these intervals have common
points ; further for all a's in each I(h1g) we have

ja-h1gI < A1[cfi] < A1g 2 ,

i. e . (1)-(3)-(4) are satisfied as well . Hence

min (1, 2A)
IS(N, A, e)I >

	

- V T(tl),[e,, ]_

where T(g) stands for the usual Euler number-theoretical function . Since,
as we know,
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1"M 	3
N2

	

92 (9) _ ~2 (62- ,
[c Vj -1

and theorem I follows .
In order to prove theorem II we start from the following remark .

Let h, . . .. Ik be finitely many intervals, which might have common
parts, J the union of all I y's and V) the subset of J, which is covered by
the I„'s at least d times . Then we have l < k and

k

(12)

	

J1 =

	

I"

i-
1 11(l)I .

We again consider the points h 1g with (i) and (8) and construct
around each h/g as centre the open interval I*(hfg) with the length
2f [cNj 2 . For the a's of I* (h Jg) we have

ja-h/gj < 1 J[cN]2 < Afg2

owing to (7) and A > 1 ; from (8) it follows that

(13)

	

I`(h.g) C S(N, A, e) .

The intervals I* (h,g) may now have common parts ; we assert,
however, that no three of them have a common point . Indeed, if h,Í91
< h2/92 < h3 Jg3 are any three consecutives of our fractions (7)-(8), then
we have from (9)

h3

	

hl

	

2

93

	

91 , [cN]'

i . e . I * (h l /g,) and 1'(h'3/93) cannot have common points . Hence (12)
and (13) give

(14)

	

IS(N, A, c)! >

	

II`(hJ9)! - 11 (2) 1 .
h,g

In order to estimate the right-hand side of (14) from below let our
fractions be

	 ~
0<h,lg,<h2 jg2 < . . .<1 and

	

hro ,
-

h,
-=6'.

.

	

9v+1

	

9v

Obviously, the intervals I ` ( h, Jgv ) and 1'(h,-.,I9,+,) have a common
part if and only if S, < 2f [CN]2 and their contribution to I (2) is
2 f [eN] 2 -S, . Thus from (14) it follows that



18(N, A, «

From (9) we have S,, > 1 J[CN]'

1

	

[CN] -

	

1
(15)

	

1:8(xx,7 , A, c)I >

	

T 2

	

9)(g)~

	

2

	

1 .
[C-~V ]

	

[cN] v
8v>2/[cN] 2

As to the second sum in (15) we may observe that for all fractions
h,fg, with

the condition S, > 2 f [cN]2 is fulfilled. Indeed, owing to

we have the inequality

2

	

2
[cN]2

-

	

[eN] 2
őv<2/[cN] 2

Thus the second sum in (15) is
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g=N

and therefore

-r ,~ g,. -
[2N]

-1

(c [OX]-1 [CN]
L2 N -1 <-~~	

2
,

h,+i

	

h,

	

1

	

1

	

2

g,+

	

gro

	

grogro+i

	

1[9 NI
-

ll[c~Tl

	

[c~']2
f

greater than

1
[cN]2

	

9 (g)
Ncg-<[cNf2]-i

2
[cN]2 ~,- ~ S, .

v

	

ro
V] 2

	

-5,<2/[CN]2

Using this and (11) theorem II follows from (15) .
Next we turn to the proof of theorem III . Around each of our h: dg's

with (7) and (8), as centres, we construct an interval of the length 2A /g2 .
If we can prove that no two of these intervals have a common point,
then we obviously have

(16)

	

IS (11', A, c) = 2A

	

9, (
2

N~g~ [cA'1- i g
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In order to show that no two intervals of the above type have
a common point, let h, Jg,, < h +I f g,,+I be two consecutive ones of our
fractions ; then there is no overlapping indeed if we can prove t :_at

h,,

	

A

	

l1
'l

	

2

	

r

	

% o .
`9v -I

	

w 1 -- 9v

	

91

i

But this is true indeed, since the difference on the left is not smaller than

1

	

A	A

	

1 j	 g ~21

9,9v+1 9 9 +I 9v l 9v+1

	

1, 1-1 1'
further g,lgv+I is certainly between c and 1fc and the quadratic function
y-A-Ay 2 is non-negative for 1/e < y < c . Since partial Summation from
(11) gives at once

62~ ~,2~}

	

, logx
722

	

n2
7e-_X

for x --* cc, theorem III follows from (1G) .
Finally we prove theorem I`7 . We shall prove it in a twofold sharper

form ; denoting by S`(N, A, c) the set of a's with the property that

(11 )

	

la-x/yi < A/N2 ,

is solvable with integer x and y satisfying

(18)

	

IV <y<CN

(i, e. dropping the restriction (x, y) = 1) we obviously have S(N, A, c)
C S* (N, A, e) and we assert that thee inequality

(19)

	

18 * (N, A, c)I < 1-- 1
10zA`'c

holds for all sufficiently large N's . To prove (19) we consider the inter-
vals

(20)

where
(21)

and

a

	

A 2 C2

	

a

	

A 2 C2

b + 20N 2 < a
<

b + 10N2 '

N12A'e' < b < N/AY

(22)

	

1 G a < b,

	

(a, b) = 1 .



If a /b < a' Jb' are two consecutive ones of our fractions, tide have
from (21)

a

	

Az c2

	

a'

	

a,
b + IoN2

	

b' + b

DIOPHANTINE APPROXIMATION

a'

	

A 6e 6<v- 3r2

a' _ Á2c2

	

Of

	

1

	

Á 2 c 2
b'

	

1
10^ 2

	

b'

	

bb'

	

10 N,

A2 c2

	

a'

	

A2 c2
101172

	

b'

	

20N2 '

i . e. the intervals (20) do not overlap . Their total length is for sufficiently
large N's

-A2e
7,~(b)

>

	

1
-0 2 LJ

	

40nA4c4 '

using (21) and (11) . Hence, if we succeed in proving that for the a's in
(20) the inequalities (17)-(18) are not solvable, the proof of theorem IV
will be finished .

In order to prove this assertion we show first that fixing a in (20)
the solution x/y of (17) cannot be chosen as alb . The assumption
xly = afb would yield owing to (20) and (17)

S(N, A, c) > 1-s .

125

which is again false owing to A > 10, c > 10 .
Added in proof. We can prove the following theorem : Let A

aiid e be arbitrary posittve members . Then there exist e, = c o (A, s) and
Yo = X, (A, F) so that for e > co and N > No

As a corollary we obtain : for each - > 0 there is a c o and an No

such that the set of those numbers in (0, 1) to which there is a con-

Á2C2

	

a

	

x

	

x
-<-a--

A

which is false

-

	

= a-- _ a - -20 2

	

b

	

y

	

y

owing to A > 10, e > 10 . If finally

<

x f y

N, 2 ,

alb, then owing
to (18), (21) and (17) we have

A 3 o2 1

	

1

	

(x

	

aj
< < -

-
-v,2

(e ' ) ( tiT JA3c 3 )

	

yb

	

y

	

b

a ~ A

	

A2 02X
--a

+
a- -

y

	

b N2 10N2
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vergent with denominator qk satisfying

N<qk<eN (c<co ,N<NO )

has a measure great-r th n 1-e.
We shall return to this subject elsewhere .
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