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MATHEMATICS

In the preceding paper Miss Jankowska puts the following two
problems : I. Whether there exist infinitely many pairs of integers a and b
satisfying (a, b) = 1, T(a) _ ~(b), a (a) = a (b), d(a) = d(b), w=here T(n)
is Euler's (p function, a (n) is the sum of divisors of and d(n) is the
number of divisors of n. II . Whether for every k there exists a sequence
of distinct integers al , 02, . . ., ak satisfying

(P (a 2 ) _ T (aá) ,

	

d(a,) = a(a;)

	

and

	

d(a 2 ) = d(a;)

for all I G i. < j ,< k .
Using the methods of one of my earlier papers [1] I am going to

solve these problems and also state a few further problems .
First we need three lemmas :

LEMMA 1 . The number of integers not exceeding x all whose prime
factors do not exceed logx is o (xa) for every e > 0 .

LEMMA 2 . The number o f squarefree integers not exceeding x com-
b x l +cYposed o e

1
	 g ) 	arbitrarily given primes not exceeding to

	

1+-~ is re-f

	

loglogx

	

(gx.)

	

9

ate)- than c,xr, where a is any constant satisfying 0 < a < 01
Lemmas 1 and 2 are proved in [1] on pp . 211 and 212 .

LEMMA 3 . We care find a constant ez so small that for a certain el > 0
(in fact we only have to assume c I < 1) there are more than c,(logx) 1 +c ,
primes p not exceeding (logx) ' +c= such that both p-1 and p I are composed
of primes not exceeding logx.

On p . 212-213 of [1] I proved an analogous lemma, where I requi-
red only that all prime factors of p -1 be less than logx, but it is clear
that the method used there (Brun's method) gives a proof of our Lemma 3 .

Now we are ready to solve the problems of Miss Jankowska . Denote
by "I < 1c2 < . . . < v, the squarefree integers composed of primes all whose
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prime factors p do not exceed (logx) 1 }Ca and such that all prime factors
of p + 1 and p -1 are less than logx . By Lemmas 2 and 3 we obtain that,
for sufficiently large x, l > XCEA . On the other hand, all prime factors
of T(u i ) and a(ui), 1 < i < 1 are smaller than logx. Thus, by Lemma 1,
there are only o(xe) different values of 99(uí.) and a(ui) 1 < i < l. The same
holds for d (ui) since it is well known that d (n) = o (ve) for every e > 0 .
Thus, there are o (xse) choices for the triplet

i9 ( 1ii), a(1ci), d(ui. }} ,

	

1 < i < Z,

or there exist r integers ?14 9 ui2 , . . ., 14, satisfying

l

	

CP-3e
1 i

	

> :X 4X

	

T (1iiJ = rOli2) _	( 1ü,}, e, ( 11, 1' ) _ . .. = a(ui,.)i

d(uil) _ . . . = d(1(ir ),
which completes the solution of the second problem of Jankowska .

It is clear that by the same method we can prove that for every r
there exist k squarefree integers al , a27 . . ., ak satisfying

d(a,) = d(a 2 ) _ . . . = d(a k )

	

and

a l 11(1+ i
J =a2 (1+~) = . . . =ak ~1+ L

vial

	

p

	

P~a2

	

p

	

plak

	

p

for every - r < j < r, j 0 . The only change in the proof is that in
Lemma 3 we have to require, that all prime factors of p +j, -r < j < r,

0 be smaller than logx .
To solve the first problem of Jankowska let ai , bi 1 < i < k satisfy

( 1 )

	

(ai, bi) = 1 ,

	

92 (aí) = T (bi) ,

	

a(ai) = a(bi) .

Our proof will be complete if we succeed in finding another solution
ak+1 , bk+1 of (1) . But this is, indeed, easy . Let vl < v2 < . . . < vk < x be
the squarefre.e integers composed of the primes p of Lemma 3, where

k
we further require that p -r- ÍI ai bi . Since the last condition disqualifies

i.=1

only a bounded number of primes we obtain, by Lemma 2, that k > xo~14

and we obtain, just as in the previous proof, two integers v i and vi sa-
tisfying

d(vi) = d(v7),

	

99 (vi ) =T(vi),

	

a(vi) = v(v,)

k
and no prime factor of vi v; divides

	

a i bi . Put (vi , v;) = t . Then
i=1

ak+1 = t2, bk+1 = t' clearly satisfies (1), and thus the first conjecture

of Jankowska is proved .
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I conjecture that, for every k, there exists a sequence xi , 1 < i < k
of distinct integers satisfying

(xi,xi) = 1, 1 < i. <j < k;

	

T(xJ

	

rp(xk)~ Q(xi) _ . . . = a(xk) ;
d(xl)= . ..=d(xk)a

but I have not yet been able to prove this .
Denote by A (n) the number of solutions of 9) (x) = n . Heilbronn

proved (in a letter to Davenport about 25 years ago) that
k

1 lim

	

A2( ) = co .
x X-00

n=1
k

I believe that

	

A(n)2 > x2- £ . I have conjectured for a long time
n=~

that for every e > 0 and infinitely many n, A(n) > nl- E, but in [1]
I could prove only that, for a certain c > 0 and infinitely many n,
A( ,ri) > n" .

It is easy to see that if

(2)

	

(xi,xi)=1,

	

1 < i < j < k

	

and T(xl)=(p(x2)= . . .=ip(xk)=n

then k < d(n) < nchog1ognr since all prime factors of the xi must be of
the form t+1, t 1n . On the other hand it can be deduced from results
of Prachar [2] and myself that for infinitely many n we can have in (2)

Another problem would be to try to estimate the number of solu-
tions in pairs of integers a and b of

(3)

	

(a, b) = 1 ,

	

a < b <n,

	

T (a) = 9~(b) .

It seems probable that the number of solutions is > n2- e for every
e > 0 if n > Ti ('(8) .

Perhaps I may be permitted to mention the following problem of
a different nature :

Can one find for every e > 0 a sequence of consecutive integers n + i,
1 < i < n1- 8 satisfying T (n + 21) 0 lp (n -}- 2 2 ) for all 0 < it < i2 < nl-8•

I have not succeeded in solving this problem, not even with e > 1- 6
for any 6 > 0 .
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