MATHEMATICS

Solution of Two Problems of Jankowska

by

P. ERDÖS (Budapest)

Presented by W. SIERPIŃSKI on June 6, 1958

In the preceding paper Miss Jankowska puts the following two problems: I. Whether there exist infinitely many pairs of integers a and b satisfying $(a, b)=1, \varphi(a)=\varphi(b), \sigma(a)=\sigma(b), \quad d(a)=d(b)$, where $\varphi(n)$ is Euler's φ function, $\sigma(n)$ is the sum of divisors of n and $d(n)$ is the number of divisors of n. II. Whether for every k there exists a sequence of distinct integers $a_{1}, a_{2}, \ldots, a_{k}$ satisfying

$$
\varphi\left(a_{i}\right)=\varphi\left(a_{j}\right), \quad \sigma\left(a_{i}\right)=\sigma\left(a_{j}\right) \quad \text { and } \quad d\left(a_{i}\right)=d\left(a_{j}\right)
$$

for all $1 \leqslant i<j \leqslant k$.
Using the methods of one of my earlier papers [1] I am going to solve these problems and also state a few further problems.

First we need three lemmas:
Lemma 1. The number of integers not exceeding x all whose prime factors do not exceed $\log x$ is $o\left(x^{\varepsilon}\right)$ for every $\varepsilon>0$.

Lemma 2. The number of squarefree integers not exceeding x composed of $c_{1} \frac{(\log x)^{1+c_{\mathrm{n}}}}{\log \log x}$ arbitrarily given primes not exceeding $(\log x)^{1+c_{\mathrm{a}}}$ is greater than $c_{3} x^{\alpha}$, where α is any constant satisfying $0<\alpha<\frac{c_{2}}{2}$.

Lemmas 1 and 2 are proved in [1] on pp. 211 and 212.
Lemma 3. We can find a constant c_{2} so small that for a certain $c_{1}>0$ (in fact we only have to assume $c_{1}<1$) there are more than $c_{1}(\log x)^{1+c_{3}}$ primes p not exceeding $(\log x)^{1+c_{2}}$ such that both $p-1$ and $p+1$ are composed of primes not exceeding $\log x$.

On p. 212-213 of [1] I proved an analogous lemma, where I required only that all prime factors of $p-1$ be less than $\log x$, but it is clear that the method used there (Brun's method) gives a proof of our Lemma 3.

Now we are ready to solve the problems of Miss Jankowska. Denote by $u_{1}<u_{2}<\ldots<u_{l}$ the squarefree integers composed of primes all whose
prime factors p do not exceed $(\log x)^{1+e_{2}}$ and such that all prime factors of $p+1$ and $p-1$ are less than $\log x$. By Lemmas 2 and 3 we obtain that, for sufficiently large $x, l>x^{c_{2}{ }^{4}}$. On the other hand, all prime factors of $\varphi\left(u_{i}\right)$ and $\sigma\left(u_{i}\right), 1 \leqslant i \leqslant l$ are smaller than $\log x$. Thus, by Lemma 1 , there are only $o\left(x^{\varepsilon}\right)$ different values of $\varphi\left(u_{i}\right)$ and $\sigma\left(u_{i}\right) 1 \leqslant i \leqslant l$. The same holds for $d\left(u_{i}\right)$ since it is well known that $d(n)=o\left(n^{\varepsilon}\right)$ for every $\varepsilon>0$. Thus, there are $o\left(x^{3 \varepsilon}\right)$ choices for the triplet

$$
\left\{\varphi\left(u_{i}\right), \sigma\left(u_{i}\right), d\left(u_{i}\right)\right\}, \quad 1 \leqslant i \leqslant l,
$$

or there exist r integers $u_{i_{1}}, u_{i_{2}}, \ldots, u_{i_{r}}$ satisfying

$$
\begin{array}{r}
r \geqslant \frac{l}{x^{3 \varepsilon}}>x^{\frac{c_{2}}{4}-3 e} ; \quad \varphi\left(u_{i_{1}}\right)=\varphi\left(u_{i_{2}}\right)=\ldots=\varphi\left(u_{i_{r}}\right), \sigma\left(u_{i_{1}}\right)=\ldots=\sigma\left(u_{i_{r}}\right) \\
d\left(u_{i_{1}}\right)=\ldots=d\left(u_{i_{r}}\right),
\end{array}
$$

which completes the solution of the second problem of Jankowska.
It is clear that by the same method we can prove that for every r there exist k squarefree integers $a_{1}, a_{2}, \ldots, a_{k}$ satisfying

$$
\begin{aligned}
& d\left(a_{1}\right)=d\left(a_{2}\right)=\ldots=d\left(a_{k}\right) \text { and } \\
& \qquad a_{1} \prod_{p \mid a_{1}}\left(1+\frac{j}{p}\right)=a_{2} \prod_{p \mid a_{2}}\left(1+\frac{j}{p}\right)=\ldots=a_{k} \prod_{p \mid a_{k}}\left(1+\frac{j}{p}\right)
\end{aligned}
$$

for every $-r \leqslant j \leqslant r, j \neq 0$. The only change in the proof is that in Lemma 3 we have to require that all prime factors of $p+j,-r \leqslant j \leqslant r$, $j \neq 0$ be smaller than $\log x$.

To solve the first problem of Jankowska let $a_{i}, b_{i} 1 \leqslant i \leqslant k$ satisfy

$$
\begin{equation*}
\left(a_{i}, b_{i}\right)=1, \quad \varphi\left(a_{i}\right)=\varphi\left(b_{i}\right), \quad \sigma\left(a_{i}\right)=\sigma\left(b_{i}\right) . \tag{1}
\end{equation*}
$$

Our proof will be complete if we succeed in finding another solution a_{k+1}, b_{k+1} of (1). But this is, indeed, easy. Let $v_{1}<v_{2}<\ldots<v_{k} \leqslant x$ be the squarefree integers composed of the primes p of Lemma 3, where we further require that $p+\prod_{i=1}^{k} a_{i} b_{i}$. Since the last condition disqualifies only a bounded number of primes we obtain, by Lemma 2 , that $k>x^{c_{2} / 4}$ and we obtain, just as in the previous proof, two integers v_{j} and v_{j} satisfying

$$
d\left(v_{i}\right)=d\left(v_{j}\right), \quad \varphi\left(v_{i}\right)=\varphi\left(v_{j}\right), \quad \sigma\left(v_{i}\right)=\sigma\left(v_{j}\right)
$$

and no prime factor of $v_{i} v_{j}$ divides $\prod_{i=1}^{k} a_{i} b_{i}$. Put $\left(v_{i}, v_{j}\right)=t$. Then $a_{k+1}=\frac{v_{i}}{t}, b_{k+1}=\frac{v_{j}}{t}$ clearly satisfies (1), and thus the first conjecture of Jankowska is proved.

I conjecture that, for every k, there exists a sequence $x_{i}, 1 \leqslant i \leqslant k$ of distinct integers satisfying

$$
\begin{gathered}
\left(x_{i}, x_{j}\right)=1,1 \leqslant i<j \leqslant k ; \quad \varphi\left(x_{1}\right)=\ldots=\varphi\left(x_{k}\right), \sigma\left(x_{1}\right)=\ldots=\sigma\left(x_{k}\right) ; \\
d\left(x_{1}\right)=\ldots=d\left(x_{k}\right),
\end{gathered}
$$

but I have not yet been able to prove this.
Denote by $A(n)$ the number of solutions of $\varphi(x)=n$. Heilbronn proved (in a letter to Davenport about 25 years ago) that

$$
\frac{1}{x} \lim _{x \rightarrow \infty} \sum_{n=1}^{k} A^{2}(n)=\infty
$$

I believe that $\sum_{n=1}^{k} A(n)^{2}>x^{2-\varepsilon}$. I have conjectured for a long time that for every $\varepsilon>0$ and infinitely many $n, A(n)>n^{1-\varepsilon}$, but in [1] I could prove only that, for a certain $c>0$ and infinitely many n, $A(n)>n^{c}$.

It is easy to see that if
(2) $\quad\left(x_{i}, x_{j}\right)=1, \quad 1 \leqslant i<j \leqslant k \quad$ and $\quad \varphi\left(x_{1}\right)=\varphi\left(x_{2}\right)=\ldots=\varphi\left(x_{k}\right)=n$ then $k \leqslant d(n)<n^{e / \log \log n}$, since all prime factors of the x_{i} must be of the form $t+1, t \mid n$. On the other hand it can be deduced from results of Prachar [2] and myself that for infinitely many n we can have in (2) $k>n^{e l(\log \log n)^{3}}$.

Another problem would be to try to estimate the number of solutions in pairs of integers a and b of

$$
\begin{equation*}
(a, b)=1, \quad a<b<n, \quad \varphi(a)=\varphi(b) . \tag{3}
\end{equation*}
$$

It seems probable that the number of solutions is $>n^{2-\varepsilon}$ for every $\varepsilon>0$ if $n>n_{0}(\varepsilon)$.

Perhaps I may be permitted to mention the following problem of a different nature:

Can one find for every $\varepsilon>0$ a sequence of consecutive integers $n+i$, $1 \leqslant i<n^{1-\varepsilon}$ satisfying $\varphi\left(n+i_{1}\right) \neq \varphi\left(n+i_{2}\right)$ for all $0 \leqslant i_{1}<i_{2}<n^{1-s}$. I have not succeeded in solving this problem, not even with $\varepsilon>1-\delta$ for any $\delta>0$.

REFERENCES

[1] P. Erdös, Quarterly Journal of Math. 6 (1935), 205-213.
[2] K. Prachar, Monatshefte für Math. 59 (1955), 91-103.
[3] P. Erdös, Quarterly Journal of Math. 7 (1936), 227-229, see also S. Chowla, Proc. Indian Acad. Sci. Section A 5 (1937), 37-39.

