SOME REMARKS ON A PAPER OF McCARTHY ${ }^{1)}$

> P. Erdös
(received March 3, 1958)

As usual we denote the number of integers not exceeding n and relatively prime to n by Euler's ϕ function $\phi(n)$. Lehmer ${ }^{2}$) calls the $\phi(\mathrm{n})$ integers

$$
1=a_{1}<a_{2}<\ldots<a_{\phi(n)}=n-1
$$

the totatives of n.
Denote by $\phi(k, l, n)$ the number of a's satisfying

$$
\mathrm{n} l / \mathrm{k}<\mathrm{a}_{\mathrm{i}}<\mathrm{n}(\ell+1) / \mathrm{k} \quad \mathrm{n}>\mathrm{k} .
$$

If $n \ell \equiv 0(\bmod k)$ or $n(\ell+1) \equiv 0(\bmod k)$ then, since $n>k$, $(\mathrm{n} \ell / \mathrm{k}, \mathrm{n})>1$ and $(\mathrm{n}(\ell+1) / \mathrm{k}, \mathrm{n})>1$ respectively. Thus
$\phi(k, l, n)$ is the number of totatives of n satisfying

$$
n \ell / k \leq a_{i} \leq n(\ell+1) / k
$$

If
(1)

$$
\phi(\mathrm{k}, \ell, \mathrm{n})=\phi(\mathrm{n}) / \mathrm{k}, \quad \ell=0,1,2, \ldots, \mathrm{k}-1
$$ Lehmer ${ }^{2)}$ says that the totatives are uniformly distributed with respect to k. To shorten the notation we say that $T(n, k)$ holds in this case. Lehmer ${ }^{2)}$ further calls n exceptional with respect to k if either n is divisible by k^{2} or n has a prime factor of the form $k x+1$. He shows that for all exceptional $n, T(n, k)$ holds.

In a recent note McCarthy ${ }^{1)}$ proves that if k is a prime then $T(n, k)$ holds if and only if n is exceptional with respect to k. However, if k is not squarefree there is an integer $n>k$ which is not exceptional and for which $\mathrm{T}(\mathrm{n}, \mathrm{k})$ holds. He further asks if the second half of his theorem remains true if k is not a prime but is squarefree. We are going to prove this in this note.

Can. Math. Bull., vol. 1, no. 2, May 1958

It is clear that if $T(n, k)$ holds then $\phi(n) \equiv 0(\bmod k)$. We are going to show that if $\mathrm{k} \neq \mathrm{p}$ or $\mathrm{k} \neq 2 \mathrm{p}, \mathrm{p}$ odd, then this condition is not sufficient, ie. there exists an integer n for which $\phi(\mathrm{n}) \equiv 0(\bmod \mathrm{k})$ but $\mathrm{T}(\mathrm{n}, \mathrm{k})$ does not hold. Lehmer $\left.{ }^{2}\right)$ observes that $n=21, k=4$ show that $\phi(n) \equiv 0(\bmod k)$ is not sufficient that $T(n, k)$ holds.

It would be of interest to determine all the integers n for which $T(n, k)$ holds but this problem we can solve only for very special values of k.

THEOREM 1 . Let k be any integer which is not a prime. Then there are infinitely many n which are not exceptional and for which $T(n, k)$ holds.

First assume $k=p^{\alpha}, \alpha>1$. Then we can take $n=A p^{\alpha+1}$.
Assume next $k \neq p^{\alpha}$. Then $k=a b$ where $(a, b)=1, a>1$, $b>1$. By the well-known theorem of Dirichlet on primes in arithmetic progressions, there are infinitely many primes p and q such that
$\mathrm{p} \equiv 1(\bmod \mathrm{a}), \mathrm{p} \equiv-1(\bmod \mathrm{~b}) ; q \equiv-1(\bmod \mathrm{a}), \mathrm{q} \equiv 1(\bmod \mathrm{~b})$.
Clearly $\mathrm{n}=\mathrm{pq}$ is not exceptional. Now we show that (1) holds. It will be sufficient to show that for every l with $1 \leq l \leq k$ the number of integers $m<\frac{l_{n}}{k}$ satisfying $(m, n)=1$ equals
(2)

$$
\frac{l \phi(n)}{k}=\frac{l(p-1)(q-1)}{k} .
$$

The number of such integers clearly equals
(3)

$$
\left[\frac{\ell_{\mathrm{pq}}}{k}\right]-\left[\frac{\ell_{\mathrm{p}}}{\mathrm{k}}\right]-\left[\frac{l_{\mathrm{q}}}{\mathrm{k}}\right]+\left[\frac{\ell}{\mathrm{k}}\right]=\frac{\ell(\mathrm{p}-1)(\mathrm{q}-1)}{\mathrm{k}}-\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}-\varepsilon_{4}
$$ where

$$
\begin{aligned}
& \varepsilon_{1}=\frac{l_{\mathrm{pq}}}{\mathrm{k}}-\left[\frac{l_{\mathrm{pq}}}{\mathrm{k}}\right], \quad \varepsilon_{2}=\frac{l_{\mathrm{p}}}{\mathrm{k}}-\left[\frac{l_{\mathrm{p}}}{\mathrm{k}}\right], \\
& \varepsilon_{3}=\frac{l_{\mathrm{q}}}{\mathrm{k}}-\left[\frac{l_{\mathrm{q}}}{\mathrm{k}}\right], \quad \varepsilon_{4}=\frac{\ell}{\mathrm{k}}-\left[\frac{l}{\mathrm{k}}\right] .
\end{aligned}
$$

We must show

$$
\begin{equation*}
\varepsilon_{1}-\varepsilon_{2}-\varepsilon_{3}+\varepsilon_{4}=0 \tag{4}
\end{equation*}
$$

When $l=\mathrm{k}, \varepsilon_{1}=\varepsilon_{2}=\varepsilon_{3}=\varepsilon_{4}=0$ and we are done. Assume $\ell<k$. Since eq $\equiv-1(\bmod k)$, we have

$$
\varepsilon_{1}=\frac{\ell_{\mathrm{pq}}}{\mathrm{k}}-\left[\frac{\ell_{\mathrm{pq}}}{\mathrm{k}}\right]=\frac{\mathrm{k}-\ell}{\mathrm{k}}, \quad \varepsilon_{4}=\frac{\ell}{\mathrm{k}}
$$

or

$$
\varepsilon_{1}+\varepsilon_{4}=1
$$

Clearly $0<\varepsilon_{2}<1$ and $0<\varepsilon_{3}<1$. Hence $0<\varepsilon_{2}+\varepsilon_{3}<2$ and $-1<\varepsilon_{1}-\varepsilon_{2}-\varepsilon_{3}+\varepsilon_{4}<1$; but $\varepsilon_{1}-\varepsilon_{2}-\varepsilon_{3}+\varepsilon_{4}$ is the difference of two integers and therefore itself an integer. This proves (4) and completes the proof.

In McCarthy's paper the example $\mathrm{k}=6, \mathrm{n}=9$ is given. Here 9 is a power of a prime, it is not exceptional with respect to 6 , and $T(9,6)$ holds. We now show that this situation can occur if and only if

$$
\begin{equation*}
k=p^{\alpha} b, \quad p \equiv 1(\bmod b), n=p^{\alpha+i}, 1 \leq i<\infty \tag{5}
\end{equation*}
$$

$$
(\mathrm{i}<\alpha \quad \text { if } \mathrm{b}=1) .
$$

Clearly, if (5) is satisfied then n is not exceptional. Furthermore we have in this case that the number of integers $\mathrm{m} \leq \ell_{\mathrm{n}} / \mathrm{k}$ with $(\mathrm{m}, \mathrm{n})=1$ equals

$$
\left[\frac{\ell n}{k}\right]-\left[\frac{\ell n}{k p}\right]=\frac{\ell}{\mathrm{k}} \phi(\mathrm{n})-\varepsilon_{1}+\varepsilon_{2} \quad(1 \leqslant \ell \leqslant k) ;
$$

but $\phi_{\varepsilon}(\mathrm{n}) \equiv 0(\bmod \mathrm{k})$ implies $\varepsilon_{1}-\varepsilon_{2}$ is an integer with $0<\varepsilon_{1}<1,0<\varepsilon_{2}<1$ so that $\varepsilon_{1}-{ }^{2} \varepsilon_{2}=0$. Hence (5) also implies that $\mathrm{T}(\mathrm{n}, \mathrm{k})$ holds.

Suppose conversely that $n=p^{\beta}, T(n, k)$ holds and n is not exceptional with respect to k. Put $k=p^{\alpha} b,(p, b)=1$.

If $b=1$, clearly $\alpha>\beta / 2$ (since n is not exceptional). Thus we may assume $b>1$. Since $T(n, k)$ holds we must have

$$
\phi(n)=p^{\beta-1}(p-1) \equiv 0\left(\bmod p^{\alpha} b\right),
$$

or $\alpha<\beta \quad$ and $p \equiv 1(\bmod b)$ as stated.
Suppose that $\mathrm{k}=2 \mathrm{p}$ (p odd), n is not exceptional with respect to k, and $T(n, k)$ holds. First of all we must have $\phi(n) \equiv 0$ $(\bmod 2 \mathrm{p})$. Furthermore n can have no prime factor $\equiv 1(\bmod \mathrm{p})$; for such a factor would have to be $\equiv 1(\bmod 2 \mathrm{p})$ and n would be exceptional. Thus $n \equiv 0\left(\bmod p^{2}\right)$. Conversely, if $n \equiv 0(\bmod$ $\left.p^{2}\right)$ and $n \neq 0(\bmod 4)$ then $T(n, k)$ holds and n is not exceptional. Thus if $k=2 p, \phi(n) \equiv 0(\bmod k)$ is necessary and sufficient for $T(n, k)$ to hold. Now we prove

THEOREM 2. If $\mathrm{k} \neq \mathrm{p}$ and $\mathrm{k} \neq 2 \mathrm{p}$ (p odd), then there always exists an n for which $\phi(n) \equiv 0(\bmod k)$ and $T(n, k)$ does not hold.

If $\mathrm{k}=4$ we can take $\mathrm{n}=21$ (this is Lehmer's example). If $\mathrm{k}=8$ we can take $\mathrm{n}=35$. Every other k can be factored in the form

$$
k=a b, \quad a>2, \quad b>2 .
$$

It is not difficult to see that for such k there exist infinitely many primes p and q satisfying

$$
\begin{align*}
& p \equiv 1(\bmod a), \quad p \equiv 1(\bmod b), p q \equiv-1(\bmod k), \tag{6}\\
& \frac{p}{k}-\left[\frac{p}{k}\right]>\frac{1}{2}, \quad \frac{q}{k}-\left[\frac{q}{k}\right]>\frac{1}{2}
\end{align*}
$$

Put $\mathrm{n}=\mathrm{pq}$; clearly $\phi(\mathrm{n}) \equiv 0(\bmod \mathrm{k})$ and n is not exceptional. Now, as in (3),

$$
\phi(k, 2, n)=\frac{(p-1)(q-1)}{k}-\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}-\varepsilon_{4} .
$$

Since $\mathrm{pq} \equiv-1(\bmod k), \quad \varepsilon_{1}+\varepsilon_{4}<1$. But by the second line of (6), $\varepsilon_{2}+\varepsilon_{3}>1$; thus, since $\varepsilon_{1}-\varepsilon_{2}-\varepsilon_{3}+\varepsilon_{4}$ is an integer, it must be -1 and

$$
\phi(k, 1, n)=\frac{(p-1)(q-1)}{k}+1 .
$$

Hence (1) is not satisfied and the proof of Theorem 2 is complete.
Let k be an integer, $\mathrm{n}=\mathrm{pq}$ not exceptional with respect to k and $n \neq-1(\bmod k)$. I conjecture that $T(n, k)$ does not hold, but I have not been able to decide this question.

FOOTNOTES

1. Amer. Math. Monthly, 64 (1957), 585-586.
2. Canad. J. of Math. 7 (1955), 347-357.
