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Recently Schinzel [9] proved the following theorem :
Let a,, az , . . ., a l.. be any finite sequence of non-negative integers or infin-

ity. Then there exists an infinite sequece of integers n i < n, < . . . such that

( t )

	

lam		= a, for

	

1 < i < k .
,,-.T(n, 'i-1)

He also shows that the same result holds for 6(n), the sum of divisors
of n.

By combining the method of Brun with that of Schinzel I can prove
that (1) holds for all multiplicative functions n'/ (n) which satisfy

pn

~, 1 f (p k) -1 -

	

for a certain sequence

	

i k > .1
pk

where p runs through the sequence of primes .
T omit the proof, which is not difficult . One can now ask the question

whether the conditions (a) and (b) are necessary that (1-) should hold .
Clearly (b) cannot be dispensed with, since if (b) does not hold then
f (n• A)// (n) is bounded, but it is not clear to what extent (a) is essential,

I cannot decide whether (1) holds for d (v) (the number of divisors
of it) . In fact T cannot prove the existence of an infinite sequence n-k sa-
tisfying

d(n k ;-1),Id(nk) -* 1( t ) .

(') lit fact one can conjecture that the quotient d ~a 1) 141(n) (1 < n <; oo)
is evorywhere dense on the positive real axis. I can prove by Brim's method that
d(aa 1),rd(n} is dense in a certain interval . The idea of the proof is as follows : Denote
by ('(w) the number of divisors of nn composed entirely- of prime factors < nIA0 .
I!, easih follows by Brun's method that d'(7Rn l ;jd'(ra) is dense in (0 > oo), Clearly

d(n+1)

	

d (n f 1)
d (n.)

	

d'(-n)

can take only a. bounded number of possible values . 'Claus our assertion follow ., 1,y
;i, simple argument .

(a)

(b)

f (pa)

	

1

	

as
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Using Brun's method I can prove (1) for v(n), where r(n) denotes
the number of prime factors of n .

Let y denote Euler's constant, e° _ 1](1-l Jp) - ''P where p runs
P

through all primes. A simple computation shows that a < y ; 1Ogkn
denotes the logarithm iterated k-times. Now we prove

THEOREM 1 . Let, f (n) tend to infinity so that

Then
lim •( mag cf(n -,-i)/ min T(n

	

1 .
n->cn L,i<i(n)

	

1<j<t(n)

Next we show that Theorem 1 is the best possible . In fact we prove

THEOREM 2 . Put

f(n) = log3n/logbn+(e+a - Alo93n/(logen)2

	

(e > 0) .

Then
lim ( mag T(n4-i) f min T(n- } - j)) = e' .
n-->oo 1<1<f(n)

	

1`y<J(n•)

By similar methods I can prove
THEOREM 3( 2 ) . Let limg(n)/1093'4 = 0. Then there exists an infinite

sequence nk such that for all 1 < i < g(nk )

(2) 1- Fk < -
á(nk +-2)- < 1.+6k • where fk > 0 as

	

^ a oo .
9~(nk-1-i-1)

Theorem 3 is the best possible, since it can be shown that if
limg(n)/1093 '4 > 0 then (2) does not hold, and also if limg(n)/1093 '4 --
then

,f(n) < log3 ), . llogb n+(a-y+0(1»1093 '4/(logb n)26

(3)

	

lim max T(n+i)/cp(n--i-1) = o.-) and
n-soo 1<i-g(n)

lim min cp(n~ i)fq~(n-} i-1) = 0 . ,
naoo 1<i<g(n.)

We omit the proof of all these results . It would not be difficult to
formulate and prove the analogue of Theorem 2 . All these results hold
with minor modifications also for u(n) .

Denote by A (n) the number of solutions of T(1) = n . Several decades
ago Carmichael conjectured that there exist no integers with A (n) = 1 .
This conjecture is still unproved and seems very deep . I have corresponded
with Kanold and Sierpinski about finding infinitely many integers for
which A(n) = k . I prove the following

( Q ) 1 statcd Theorcm 3 incorrectIy in my paper (51 .
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THEOREM 4( 3 ) . I f there exists an integer 97 with A. (n) = k their, there
exist infinitely many such integers .
Sierpinski conjectures that for every k > .1 there are integers for
which A(it) = k, and that for every k > 0 there are such integers that
a (x,) = n has k solutions .

Pillai (see P. Erdös [1]) was the first to prove that limA(n) = cam,

and that for almost all integers A (n) = 0 . Heilbronn observed (in aa letter
to Davenport) that

1,1

1 Y A(k)2 = oo .
k=1

I have proved ([I]) that for a certain e > 0 there exists an infinite sequence
nk so that -4 (ilk) > n' and I have conjectured that the same holds for
every c < 1( ) .

One can conjecture that for n > n,(F)

~A(k)2 > n2-f .
k=1

but I cannot prove even that ~; A (k) 2 n"", though perhaps this is not
k_1

very difficult . All the results here stated hold also for a(n), and the same
unsolved problems remain.

It is not difficult to prove that the inequalities

(4)

	

;T(n+1)-q3(n.)' < it,

	

and

	

~ or(m+1)-a(?n)1 < m"

both have infinitely many solutions for a certain c < 1, but I cannot
prove that they have infinitely many solutions for every c < 1 .

The proof of Theorem 2 is similar to but slightly more complicated
than that of Theorem 1 ; thus for the sake of simplicity we prove only
'theorem 1 . Denote by 2 = P, < Ps, < . . . < P~- the primes not exceeding
f(n), by Q1 < Q, < . . . < Qr the primes of the interval (f (n), !_-logta>,

r
and by R, < R_ < . . . the primes greater than logti . Put A . r = ffYr,
define .

	

`-`

Ai - f (it) < Ai+ , .

(') Kanold and Sierpins ki proved that _1 (n) = 2 for infinitely many integer,
and sierpinski found integer, n satisfying A (a) - k for many valucs of k, he. did
the same for the equation -,Q?/)=v .Schinzel [to] proved that A(n)-3

	

-for infinite-
l many integer, ns

(a) 1 cant prove that the number of solutions of (t fx) _= n i-A less Luan
nexp(--clognlog~i log2 rc) where expz

	

ez (see [4]) .



Now we show that for every P. there exists an n o = no(s), such. that for
every n > it, there exist t (n) consecutive integers m • -1, . . ., m, AL f(n)
satisfying (1 < i' < f {ns))

(5)

Clearly (5) will prove Theorem l .
Define s11 sz , . . . , sf(, ) by

(7) clearly implies

(7')

sl
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n

< rn<

i')

	

~ x

)l]

	

Pi ~

	

»zTT

	

)11

III'

A

	

1

Pt
Te=1

h° si- 1+1

where the Í I' indicates that P runs through the primes P -' I' ;, P' i .
It may happen that s; _= s i_ 1 . This will in fact be the case if and only if

(7)
(i

--l~- -) 1-1 , (1 - ') .

MI-
(6)

	

S i" I_ 1

~1
-- -T

	

1

lfl, - P f ; í 1 (1- (,.}
P- p--i

,r, ( i)

	

%

	

1

	

1

	

1

pi)

But since

	

ijcp{i}

	

c lx, (7') and therefore ('7) is satisfied only for

o(f (n)) Vs .
First we have to show that the s; are all defined . Since (7) is satisfied

only for o(f (n)) its, we have from (6)
'f (n)

	

l
~~ ~1 --

Qhl

	

(1+o(1))t~n)'1
h__1

/(7+)
~ \i(n) u ( 1 _

P, )f

l'~G)
11 ~~2 )

'

	

i-1

	

+-1

Now by a theorem of Mertens (5)
i

[P1-- ~-~ _ {1 o(1))e - •' Jlogzf(n ) = j,l--o(1)le -''hog's nsP;,i=1

(") The theorcm of M ertien s in question sat that H (1- - -~ _ (1 ;-u(1))x
n~u

	

n
xe-'logy (e . g . i4~ ee (61, p .351) .
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and
tIn)

	

t

	

1 ~ - [ t(n)1Rl
~~ (1- -) = e(a+o(i))t(n),

i_1 9(i)

	

P~Pi,

	

P ,

Thus by a simple calculation

1

	

s t(n)

	

e~Y t (n)
1--, > ( l.+0(1)~t(n) 1+-1

	

eaf(7L)
Qh l

	

21

	

logs n )

E
(1-;--0(1)),(1)(1+-2)J(n) log, n .

Now, again by the theorem of Mertens(5) and the definition of the Q's,
a 1

	

E '1(n)
	 )

	

(1 -4 o(1)`log, n/log,n < (1 ro(1))f(n) 1

	

-~

	

log, v,
Tt=1

	

Qk 1

	

2 r

or Q3t(n) < ~ logn, whence the si , 1 < i < /(n), are all defined. Put

Si

	

Z

Bs i = 1 ! Qh f

	

B =

	

QTR

	

(if s i = ssL_ I then Bi . = 1) .
3i-1+2

	

st(s n}+Z

Let -m satisfy

(8)

	

nf2 < m < n, nn - 0(mod(-4A),

at +i - 0 (mod Bj), 1 < i < f(n) .

Such an in exists, since the moduli are relatively prime and by a well
known result on primes (e. g . see [6], p. 341 ; see also [12], p. 56) H p < 4' ;

17«

thus the product of the moduli is less than V1002 < oft.
Evidently ni+i can be divisible by at most 2lognflogz n R's (since

R > ?logn and m + i < 2n) . Thus

(9)

	

1-

	

'1-
2

	

- 1+0(1) .

Llogn?loggaz

( R) > llo
Rji

	

g n)

From (8) it follows that for P < Pk and 1 < i < /(n), P17n+i if and
only if Phi . Thus from (6), (8) and (9)

(p T
(1+i2)a2) - (1+0(1)~ 2) 1 1 (1 P)m

1

_ (,+o(,»(,
e)mi-i-l Pe

)
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Ih

if i does not satisfy (7) . If i- satisfies (7), then from (6), (7), (8) and (9)

~
1 -r o

	

1
< ft-(M---,-

2)

	

~

	

~
1	 < (1-{-- o (1)) (1

	

~ (1 -- .
(

	

( }~

	

p,,

	

rn• { i

	

}~

	

2,._n

	

.l 1 l

	

pi._n
1-

	

z-i

Thus in any case (5) is satisfied, which proves Theorem 1 . .
Now we have to show that Theorem 1 is the best possible . Let

log, it,

	

log, n
t(~n} >

tog6n
--{c-±-a-~~

(109~.6 n)~

for some c > 0 : we shall show that

(10)

	

lim( may T(a-!-i)j min (p (n-r j)) > 1 .
l ,i .<,t(~a)

	

7_áj<f(n)

At least one of the integers v + i-, 1 < i < Í (n) is divisible by _4 j . Thus
if (1.0) were false, there would exist for every F > 0 arbitrarily large
integers n such that for all 1. < i < /(s)?,)

m (rL-1, - i)

	

1
(11)

	

_	-i < (1+ s)

	

~I-p < (1 0(1)) (1~--8)cl'jlogs ,01 .
n+)P Pj

We have by (9)

m t z-i) - (1 0(1» M - P)

	

(1 1
	 , ) .

Clearly for each Q .j there can be at most one of the numbers 1L -1
1t-+-2, . . ., n - f (n) which are divisible by Q2 (QT > f (n)) . Thus by (11j
(12) and the theorem of  Mertens(5)

f(n1
f{n)

	

f(n) -sf(n) /(log, n)f(n) >
H

q)(n=2)
(1-ro(1)}

	

(1 !-E)

	

e
n+i

z
1 {foLUP+')

	

1> (1 0(1))í(n)
I 1--p

	

H(1-~QP<P7

	

h-t

	

h

= (1 -}-O(1))f(n) e _Rf(n) jl0g2'12,

which, as can be seen by a simple computation, is false for sufficiently
small e. This contradiction proves that Theorem 1 is the best possible .

Proof of Theorem 4. Let A(n) = k. We shall. prove that for all
but o(xjlogx) primes p < x A[(p-1)n] = k, and this will clearly prove
Theorem 4 . If p > n+1 and T(1) = n then T(pb) _ (p -1) it (since all
prime factors of b are < n-á-1) . Thus A[(p-1)n] > lc . The solutions
y = pb of cp (y) _ ( p -1) n• may appropriately be called trivial solutions .
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Thus our proof will be complete if we succeed in showing that for every r

and .x > x„(a), for all but sx/lonx primes p x, T(y) _ (p-1)ra has
only trivial solutions . First of all we can assume that for (t sufficiently
large)

(13)

	

k2 > t = Q( ),

	

p- .l

	

0 (mod k") .

To see this we observe that it is well known and follows easily front Brun's
method (see [11]) that the number of primes p x, p -- 1 (modl) is
less than c,x/(f,(l)log(x.11) . Thus the number of primes p < x not satisfying
(13) is less than

2ezx i, 1
logx

	

kcp(k)j
X

< 2 . logx

(we take first k'" < x l r`, secondly k`

	

x11` and use the fact that the
number of integers =- 1 (niodk')) and less than r; is

	

xlkp'+1 .
Now let: c 1 ''- < p < jand let p satisfy (,1.3) . 1,et y be a, non trivial

solution of (p-1)n . :If ,'y has r distinct prime factors, then clearly
qp(y) -- o (mod 2` --1 ), and thus p-1 is divisible by a square > 2''-- "/n .
Thus

2r- '- < ri

	

or

	

r <

	

n+2 .

Let ?f = qi1 . . . qYr, qxl < q " < . . . < q,

	

t .n-( l .

	

Since

	

r!

	

Ca
> x1'" we have qrr > x(1/")(t---n-") ; also a,s < 2 since otherwise p-1.
= (y) /n would be divisible by a square greater than (1 /n)x(1~1)(t+n'-°) > t
for sufficiently large x, which contradicts (1 .3) . Thus there must exist
a prime q > x', 6 = k (t -11 n, ' 2) satisfying

(14) x' y < p < x, q > X6,

	

(p-1) n = 0 (mod(q-1)), p zA q .

To complete the proof of Theorem 4 'tie must show that the number of
primes p satisfying (14) is < (e/2)(xflogx) . First we prove the following

LEMMA. The number of solutions of

(15)

	

(p-1)n = a(q --1),

	

p < x,

	

a < x1-n

	

a• *'?,

is less than

03 a(logx)2

	

1

	

p
p I a(a-n)

where c 3 = c3(n) depends only on n.
The proof follows easily from Brun's method (e . g . see [2], p. 540)

and we only outline it . Denote by r„ •r2 , . . . the primes of the interval



(n, xn1) where q, is sufficiently small . If q > n.xn 1 satisfies (15) we must
have

(16)

	

q -, 0 (mod r j ),

	

q = 1-n,'a (modr i ),

	

q < nx/a+l

((16) follows from the fact that both p and q are primes and x '11 < p < x) .
If r-.a(a- ii), then the two residues in (16) are different, and thus we ob-
tain the lemma by a simple application of Brun's method .

Now we split the number of solutions of (14) into three classes . In
the first class are the q's greater than xl-n2 where ?p 2 is sufficiently small .
Formula (14) then becomes

(p-1)n = a(q-1), p < x, 1 G a < -nxn2 .

Thus by our lemma the number of solutions of (1.4) of the first class is
(for sufficiently small ?2) less than

C3x

	

~- 1

	

x

	

E
(logx)2

/,
a
U

1 +
p

< C4~2 logx < 4' ' logx
1-<a-nxn2 pla(a-n)

ag,n

To prove (17) we observe that

Y

	

} < V

	

)2+~~11T 1

a=1 pla(a-n)

	

a=1

	

pia

	

pia-n
a#nn

	

a n

2
< 2

	

(1 ~-

	

+0(1) < 2 ~~
1 I `1+

- ) o(1)

d=1
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a=1 pia

	

a=1 pia
x

3v(d)
.Y

	

`Y
3v (d)

d - [-d] -f-0(1) < q L
`
~ d2

d=1
+0(1) < C,Y,

and (17) follows by partial summation .
The solutions of (14) of the second class are the q's for which

v(q-1) < 3log2 x (q < x'- '7 2) . It follows from Brun's method (see [11])
that the number of primes p < x satisfying

p < x, q < x'-", p - 1 (mod (q-1))
is less than

Cb x

	

0 7 xl092 x

logxq) (q-1)

	

glogx

since by a well known result of Landau ([7], p.218)

,P (Y) >
c8 y

1092 Y
Acta Arithmetica IV .

	

.,
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Thus by (18) the number of solutions of the second class is less than

(19)

	

C7xlog1x \,I 1 < s Cg xl09L X: _ o

	

x
logx

	

q

	

(log x) ,+a

	

logx

where the indicates that q > xa , v(q-1) < slog2 q . Formula (19)
follows from the fact (see [1]) that if q, < q2 < . . . is the sequence of
primes satisfying v(q,,-1) < 5 log2 q,,, then q,, > n(logit) 1-`r .

For the solutions of the third class we have

(20) n(p-1) = a(q-1), p < x, x s < q < x"12 , v(q-1) > 31092x .

We split the solutions of (20) into two subclasses. In the first sub-
class are those for which v(a) > 2 log, x. Here we have

v(p-1) = v(a)+v(q-1)-v(n) > 3log.2 x-v(n) > 91092 x.

It is known (see [1]) that the number of primes p < x satisfying
v(p-1) > ( 1-;--e)log2 x is o(x/logx) ; consequently the number of solutions
of the first subclass is o(xjlogx). The number of solutions of the second
subclass is, by our lemma and the theorem of Mertens, less than

x

	

x(log2x)2
f

1
(21) C3	(logx)2

	

11

	

p
)

	

< Cl° (logx)2

	

a - 0 logx
x

p;a(a-n)

(the

	

indicates that as < x and v(a) < 2 log2 x), since
1(2/3)1092x)

	

b

	

((2/3)1092x]
~ 1-

	

`-.

	

-~ 1
--

	

` k! <

	

V

	

(log2x+C11)k'k,
<

( 109X)911( 0 'a

	

p

	

%r
k=1

	

Pc.x

	

k=1

Thus from (17), (19) and (21.) we finally find that the number of solutions
of (14) is less than exflogx, and thus Theorem 4 is proved .

By similar but more complicated arguments I can prove that if
there exists an integer n with A(rt) = k, then the number of integers
ii < x satisfying A (n) = k is greater than cxflogx for every c if x > x °(c) .

By more complicated arguments I can prove that for every e there
exists an A = A (8) such that the number of primes p < x satisfying

p< x, p- I (mod (q-1)), q> A

is less than exJlogx. mother theorem in this direction is the followi g :
Denote by v(k, n) the number of prime factors of it not exceedingnk ;
then for every e there exists an A = A (e) such that the number of in-
tegers n < x for which

(1-s)log,k < v(k, n) < j+s)log2 k

does not hold for some k > A is less than ex . This result is known (see [3]) .
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Similarly the number of primes p < x for which

(1- e) log, k < v(k, p-1) < (1+e)log, k

does not hold for some k > A is less than exJlogx .
Finally I can prove that for every e there exists an A = A (8) such

that the number of integers n < x for which n - 0 (mod(p-1)) holds
for some p > A is less than ex. From this it is easy to deduce that the
density of the integers which can be written as the least common multiple
of integers of the form p'(p-1), 0 < a is 0 .
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