A REMARK ON THE ITERATION OF ENTIRE FUNCTIONS*
Paul Erdös

Let $f(z)$ be an entire function. Denote

$$
\mathbb{M}(F(z), r)=\max _{|z|=r}|F(z)| .
$$

In a recent interesting paper on the iteration of entire functions I. N. Baker ${ }^{1)}$ proved (among many others) the following result: Let $u(r)$ be a real function satisfying $u(r) \rightarrow \infty$ as $r \rightarrow \infty$. Then to every $0<\alpha<1,0<\beta<1$ there exist two entire functions $f(z)$ and $g(z)$ of orders ${ }^{2)} \alpha$ and β respectively so that for all sufficiently large r

$$
\begin{equation*}
\mathbb{M}(f(g(z)), r)<\exp \left(r^{u(r)}\right),\left(\exp z=e^{z}\right) . \tag{1}
\end{equation*}
$$

An old result of Pólya ${ }^{3)}$ stated that there exist a constant $c>0$ so that

$$
\begin{equation*}
\operatorname{Mi}(f(g(z)), r)>M(f(z), R) \text { where } R=\operatorname{cin}\left(g(z), \frac{r}{2}\right) . \tag{2}
\end{equation*}
$$

It is easy to see that (2) implies that if $g(z)$ is not a polynomial and the order of $f(z)$ is positive then the order of $f(g(z))$ must be infinite and Bakers result shows that at least if the orders of $f(z)$ and $g(z)$ are less than 1 Pólyas result can not be strengthened, since $u(r)$ can tend to infinity as slowly as we please. In the oresent note we are going to strengthen the result of Baker, in fact we shall prove the following:

THEOREM. Let $u(r) \rightarrow \infty$ be an increasing function satisfying $u\left(r^{2}\right)<c_{1} u(r)$ for some constant $c_{1}>1$ and let $v(r)$ be an increasing function satisfying $v(r) \rightarrow \infty, v(r) / u(r) \rightarrow 0$. Then there exists an entire function $f(z)$ for which

$$
\begin{equation*}
\mathbb{M}\left(f(z), r_{n}\right) \geq \exp \left(r_{n}\left(r_{r}\right)\right. \tag{3}
\end{equation*}
$$

holds for an infinite sequence $r_{n} \rightarrow \infty$ (i. e. $f(z)$ is certainly of infinite order) and for which

[^0]\[

$$
\begin{equation*}
\mathbb{M}\left(f_{t}(z) ; r\right)<\exp \left(r^{u(r)}\right) \tag{4}
\end{equation*}
$$

\]

for all $r>r_{t}$. Here $f_{t}(z)=f\left(f_{t-1}(z)\right)$ denotes the t-th iterate of $f(z)$.

If $u(r) \rightarrow \infty$ and $u(r)$ does not satisfy $u\left(r^{2}\right)<c_{1} u(r)$, it clearly
is possible to construct a function $u_{1}(r)$ satisfying $u_{1}\left(r^{2}\right)<c_{1} u_{1}(r)$ and $u_{1}(r) / u(r) \rightarrow 0$ (thus our condition $u\left(r^{2}\right)<c_{1} u(r)$ permits $u(r)$ to tend to infinity as slowly as we please).

Let r_{k} tend to infinity very fast. $\underset{v}{ }\left(r_{k}\right)$ Put

$$
\begin{equation*}
f(z)=\sum_{k=1}^{\infty} a_{k} z^{n_{k}} \text { where } a_{k}=r_{k}^{-r_{k}^{v\left(r_{k}\right)}}, n_{k}=2\left[r_{k}^{v\left(r_{k}\right)}\right]+1 \tag{5}
\end{equation*}
$$

Clearly

$$
f\left(r_{k}\right)>a_{k} r_{k}^{n_{k}}>r_{k}^{r_{k}\left(r_{k}\right)}>\exp \left(r_{k}^{v\left(r_{k}\right)}\right)
$$

thus (3) is satisfied.
We shall only prove (4) for $t=2$, it will be clear from our proof that it holds for all t. Since the coefficients of $f(z)$ are all non negative it will suffice to show that for all sufficiently large r
(6)

$$
f(f(r))<\exp \left(r^{u(r)}\right)
$$

To prove (6) we can assume $r_{k-1} \leqslant r<r_{k}$. First we assume

$$
\begin{equation*}
r_{k}^{1 / n_{k-1}^{2}} \leqslant r<r_{k} \tag{7}
\end{equation*}
$$

A simple computation shows that if the r_{k} tend to infinity fast enough then for

$$
\begin{equation*}
r_{k}^{1 / n_{k-1}^{2}} \leqslant r \leqslant r_{k}^{n_{k}} \tag{8}
\end{equation*}
$$

We have

$$
\begin{equation*}
f(r)<r^{n_{k}} \tag{9}
\end{equation*}
$$

(the r_{k} will of course depend on the function $v(r)$). (9) is easy, see since if tho r_{k} tend to infinity fast enough we have for all

$$
\left.|z| \leqslant r{ }^{n_{k}}\left|\sum_{1=k+1}^{\infty} a_{1} z^{n_{l}}\right|<1\right)
$$

Thus from (8) and (7) we have that for the r^{\prime} s satisfying (7)

$$
f(r)<r^{n_{k}} \text { and } f(f(r))<r^{n_{k}^{2}}
$$

Thus to prove (6) for the r^{\prime} s satisfying (7) we only have to show that

$$
\exp \left(r^{u(r)}\right)>r^{n_{k}^{2}}
$$

or by taking logarithms twice we have to show that

Now by (5)

$$
u(r) \log r>2 \log n_{k}+\log \log r
$$

$$
\log n_{k}<2 v\left(r_{k}\right) \log r_{k}
$$

thus it will suffice to prove (since $\log \log r<\log r<\log r_{k}$)

$$
u(r) \log r>5 v\left(r_{k}\right) \log r_{k}
$$

or by (7)

$$
\begin{equation*}
u(r)>5 n_{k-1}^{2} v\left(r_{k}\right) \tag{10}
\end{equation*}
$$

From $u\left(r^{2}\right)<c_{1} u(r)$ we have for the $u(r)$ satisfying (7)

$$
\begin{equation*}
u(r)>n_{k-1}^{-c_{2}} u\left(r_{k}\right) . \tag{11}
\end{equation*}
$$

Thus by (10) and (11) we have to show that

$$
\begin{equation*}
u\left(r_{k}\right) / v\left(r_{k}\right)>5 n_{k-1}^{c_{2}+2} . \tag{12}
\end{equation*}
$$

But (12) clearly follows from $u(r) / v(r) \rightarrow \infty$ if the r_{k} tend to infinity fast enough. Thus (6) is proved for the r 's satisfying (7).

Next we assume

$$
\begin{equation*}
r_{k-1} \leqslant r<r_{k}^{1 / n_{k-1}^{2}} . \tag{13}
\end{equation*}
$$

We have for the r 's satisfying $r \leqslant r_{k}^{1 / n_{k-1}}$

$$
a_{k} r^{n_{k}} \leqslant a_{k} r_{k} n_{k-1}^{n_{k-1}^{-1}}=r_{k}^{-r_{k}\left(r_{k} k\right.} r_{k}\left(2\left[r_{k}^{v\left(r_{k}\right)}\right]+1\right) n_{k-1}^{-1}<1 .
$$

Thus we have for the $r^{\prime} s$ satisfying (13), if the r_{k} tend to infinity fast enough

$$
f(r)<2 a_{k-1} r^{n_{k-1}}<r^{n_{k-1}}
$$

and

$$
f f(r)<f\left(r^{n_{k-1}}\right)<2 a_{k-1} r^{n_{k-1}^{2}}<r^{n_{k-1}^{2}}
$$

Thus to complete our proof we only have to show that

$$
\exp \left(r^{u(r)}\right)>r^{n_{k-1}^{2}}
$$

Taking logarithms twice we obtain

$$
u(r) \log r>2 \log n_{k-1}+\log \log r
$$

or by (5) it will suffice to show that

$$
\begin{equation*}
u(r) \log r>4 v\left(r_{k-1}\right) \log r_{k-1} \tag{14}
\end{equation*}
$$

But (14) immediately follows from (13) and $u(r) / v(r) \rightarrow \infty$, hence the proof of our theorem is complete.

It is clear from our construction that for every $\alpha>0$ and $\beta>0$ we can find two entire functions $f(z)$ and $g(z)$ of orders α and β so that

$$
M(f(g(z)), r)<\exp r^{u(r)}
$$

for all sufficiently large r.
Furthor it is clear that by the same argument me can prove the following theorem: Let $u\left(r^{2}\right)<c u(r), u(r) \rightarrow \infty, u(r) / v(r) \rightarrow \infty$ as $r \rightarrow \infty$. Let $f(z)=\sum_{k=1}^{\infty} a_{k} z^{k}$ and assume that $\mathbb{M}(f(z), r)<\exp \left(r^{v(r)}\right)$ for a.ll
sufficiently large r. Then by omitting sufficiently many terms from the power series development of $f(z)$ we obtain

$$
f_{1}(z)=\sum_{i=1}^{\infty} a_{n_{i}}{ }^{n_{i}}
$$

and

$$
\operatorname{II}\left(f_{1}\left(f_{1}(z)\right), r\right)<\exp \left(r^{u(r)}\right)
$$

[^0]: * Received February 6, 1353.

 1) I. N. Baker, Math. Zeitschrift 63 (1758), 121-163. The theorem in question is Theorem 5, p. 133.
 2) The order of the entire function $f(z)$ is defined as $\lim _{r=\infty} \sup \frac{\log \log \mathbb{M}(f(z), r)}{\log r}$.
 3) G. Pólya, Journal London Math. Soc. 1 (1726), 12-15.
