On a question of additive number theory

by

P. Erdös (Saskatoon) and P. Scherk (Saskatoon)

1. Let $A=\{a\}, B=\{b\}, \ldots$ denote sets of non-negative integers containing the number zero;

$$
\sum_{1}^{k} A_{\lambda}=\left\{\sum_{1}^{k} a_{\lambda}\right\} \quad\left(a_{\lambda} \in A_{\lambda}, \lambda=1,2, \ldots, k\right) .
$$

Thus $\sum A_{\lambda}$ consists of all the numbers $a_{1}+a_{2}+\ldots+a_{k}$ where each a_{λ} lies in the corresponding A_{λ}. For a given integer n let $[A]$ denote the number of positive elements of A up to and including $n . \bar{A}$ denotes the set of the integers $\leqslant n$ which do not belong to A.

It is well known and easy to see that $n \in A+B$ implies $[A]+[B]$ $\leqslant n-1$. The corresponding problem for three or more sets does not lead to anything new. For then

$$
\begin{equation*}
n \in \sum_{1}^{k} A_{\lambda} \tag{1}
\end{equation*}
$$

implies $n \epsilon A_{\lambda}+A_{\mu}$ and thus $\left[A_{\lambda}\right]+\left[A_{\mu}\right] \leqslant n-1 ; 1 \leqslant \lambda<\mu \leqslant k$. Adding these $\frac{1}{2} k(k-1)$ inequalities we readily obtain

$$
\begin{equation*}
\sum_{1}^{k}\left[A_{\lambda}\right] \leqslant \frac{1}{2} k(n-1) . \tag{2}
\end{equation*}
$$

That (2) cannot be improved can be seen by taking $A_{1}=A_{2} \ldots=A_{k}=$ $=$ set of integers between $\left[\frac{1}{2} n\right]+1$ and $n-1$ together with 0 .

This question becomes more interesting if we require n to be the smallest number not in $\sum A_{\lambda}$. For $k=3$ and $n<15$ one can show ${ }^{1}$) that

$$
\left[A_{1}\right]+\left[A_{2}\right]+\left[A_{3}\right] \leqslant n-1 .
$$

[^0]However this estimate becomes false if $n \geqslant 15$.
Surprisingly enough, (2) is asymptotically correct. Put

$$
\begin{equation*}
f_{k}(n)=\max \sum_{1}^{k}\left[A_{\lambda}\right] \tag{3}
\end{equation*}
$$

where A_{1}, \ldots, A_{k} range through those sets which satisfy (1) and

$$
\begin{equation*}
\{1,2, \ldots, n-1\} \subset \sum A_{2} \tag{4}
\end{equation*}
$$

Thus $f_{2}(n)=n-1$. In the present paper we shall prove the existence of two positive constants $\alpha=\alpha_{k}$ and $\gamma=\gamma_{k}$ such that

$$
\begin{equation*}
\frac{1}{2} / k n-a n^{(k-1) / k}<f_{k}(n)<\frac{1}{2} 7 n n \cdots n^{(k-1) / k} \tag{5}
\end{equation*}
$$

for every $k>2$. The first half of (5) will be proved in $\S 2$, the second in § 3 .

It would be of interest to obtain an explicit formula for $f_{k}(n)$ if $k>2$. In particular it may be true that

$$
\begin{equation*}
f_{k}(n)=\frac{1}{2} k n+(\beta+o(1)) n^{(k-1) / k} \tag{6}
\end{equation*}
$$

for some positive constant $\beta=\beta_{k}$. But we are unable to prove (6), still less to determine β.
2. Let $B_{\lambda}=\left\{b_{\lambda}\right\}$ denote the set of all integers requiring only the digits 0 and 2^{λ} in the number system with the basis $2^{k} ; \lambda=0,1, \ldots, k-1$. Thus every integer x permits a unique representation
(1)

$$
x=\sum_{0}^{k-1} b_{\lambda}
$$

Suppose that n has the representation

$$
\begin{equation*}
n=\sum_{0}^{k-1} b_{\lambda}^{0}, \quad b_{\lambda}^{0} \epsilon B_{\lambda} \tag{2}
\end{equation*}
$$

Obviously one of the b_{λ}^{0} 's must be greater than $\frac{1}{2} n$. Renumbering the B_{λ} 's if necessary, we may assume

$$
\begin{equation*}
b_{0}^{0}>\frac{1}{2} n . \tag{3}
\end{equation*}
$$

We obtain the set C_{0} by omitting the number b_{0}^{0} from B_{0}. Thus

$$
n \notin C_{0}+\sum_{1}^{k-1} B_{\lambda}
$$

and every number lies in $C_{0}+\sum_{i}^{k-1} B_{\lambda}$ except the numbers

$$
b_{0}^{0}+\sum_{i}^{k-1} b_{\lambda} .
$$

We now define
(4) $\quad C_{h}=B_{h} \cup\left\{b_{0}^{0}+b_{1}^{0}+\ldots+b_{h-1}^{0}+b_{h}\right\}, \quad b_{h} \neq b_{h}^{0} ; \quad h=1,2, \ldots, k-1$.

Let $x \neq n$; cf. (1) and (2). If $b_{0} \neq b_{0}^{0}$,

$$
x \in C_{0}+\sum_{1}^{k-1} B_{\lambda} \subset C_{0}+\sum_{1}^{k-1} C_{\lambda}=\sum_{0}^{k-1} C_{\lambda}
$$

If $b_{0}=b_{0}^{0}$, there is an $h \geqslant 1$ such that

$$
x=\sum_{0}^{h-1} b_{\lambda}^{0}+\sum_{h}^{k-1} b_{\lambda}, \quad b_{h} \neq b_{h}^{0}
$$

Hence

$$
x \in C_{h}+\sum_{h+1}^{k-1} B_{\lambda} \subset C_{h}+\sum_{h+1}^{k-1} C_{\lambda} \subset \sum_{0}^{k-1} C_{\lambda}
$$

Thus every number $\neq n$ lies in $\sum_{0}^{k-1} C_{\lambda}$.
We next show

$$
\begin{equation*}
n \notin \sum_{0}^{k-1} C_{\lambda} \tag{5}
\end{equation*}
$$

Suppose

$$
\begin{equation*}
n=\sum_{0}^{k-1} e_{\lambda}, \quad e_{\lambda} \epsilon C_{\lambda} \tag{6}
\end{equation*}
$$

Then for each $h>0$ either $c_{h}=b_{h} \epsilon B_{h}$ or

$$
\begin{equation*}
c_{h}=\sum_{0}^{n-1} b_{\lambda}^{0}+b_{h}, \quad b_{h} \neq b_{h}^{0} \tag{7}
\end{equation*}
$$

Since the representation (2) of n was unique and since $b_{0}^{0} \& C_{0}$, the first alternative cannot occur for all $h>0$. On the other hand (3) shows that (7) cannot occur more than once. Thus (7) will hold for exactly one index $h>0$. This leads to

$$
\begin{equation*}
n=\sum_{0}^{h-1} b_{\lambda}+\left(\sum_{0}^{h-1} b_{\lambda}^{0}+b_{h}\right)+\sum_{h+1}^{k-1} b_{\lambda}, \quad b_{h} \neq b_{h}^{0} \tag{8}
\end{equation*}
$$

Comparing (8) with (2) we obtain

$$
\begin{equation*}
\sum_{h}^{k-1} b_{\lambda}^{0}=\sum_{0}^{h-1} b_{\lambda}+b_{h}+\sum_{h+1}^{k-1} b_{\lambda}, \quad b_{h} \neq b_{h}^{0} \tag{9}
\end{equation*}
$$

The representation of the number (9) being unique, we obtain in particular $b_{h}^{0}=b_{h}$, a contradiction. This proves (5).

Define

$$
\begin{equation*}
D_{h}=\sum_{\substack{0 \\ \lambda \neq h}}^{k-1} C_{\lambda}, \quad h=0,1, \ldots, k-1 \tag{10}
\end{equation*}
$$

and let A_{λ} be the union of C_{λ} with the set of all the numbers

$$
n-\bar{d}_{\lambda}>\frac{1}{2} n, \quad \bar{d}_{\lambda} \in \bar{D}_{\lambda}
$$

Then

$$
n_{\ddagger} \sum_{0}^{k-1} A_{\lambda}
$$

Thus n remains the only number not in $\sum_{0}^{k-1} A_{\lambda}$.
It remains to estimate $\sum_{0}^{k-1}\left[A_{\lambda}\right]$. Let $2^{k m}<n \leqslant 2^{k(m+1)}$. Then

$$
\left[B_{\lambda}\right]<2^{m+1}=2 \cdot 2^{m}<2 n^{1 / k}, \quad \lambda=0,1, \ldots, k-1 .
$$

Therefore

$$
\left[C_{0}\right]<2 n^{1 / k} ; \quad\left[C_{\lambda}\right]<4 n^{1 / k} \quad \text { if } \quad 0<\lambda \leqslant k-1
$$

Thus

$$
\left[\sum_{1}^{k-1} C_{\lambda}\right] \leqslant \prod_{1}^{k-1}\left[C_{\lambda}\right]<4^{k-1} n^{(k-1) / k}
$$

and

$$
\left[\sum_{\substack{0 \\ \lambda \neq h}}^{k-1} C_{\lambda}\right] \leqslant \prod_{\substack{0 \\ \lambda \neq n}}^{k-1}\left[C_{\lambda}\right]<\frac{1}{2} \cdot 4^{k-1} n^{(k-1) / k}, \quad h=1, \ldots, k-1
$$

Hence

$$
\left[A_{0}\right]>\frac{1}{2} n-4^{k-1} n^{(k-1) / k}, \quad\left[A_{h}\right]>\frac{1}{2} n-\frac{1}{2} \cdot 4^{k-1} n^{(k-1) / k}, \quad h=1, \ldots, k-1
$$ and

$$
\sum_{0}^{k-1}\left[A_{\lambda}\right]>\frac{1}{2} k n-(k+1) 2^{2 k-3} n^{(k-1) / k}
$$

This proves the first part of our result with $\alpha=(k+1) 2^{2 k-3}$.
3. Let $n>0$ and $k>2$ be fixed. Let

$$
\begin{equation*}
n \notin \sum_{1}^{k} A_{\lambda}, \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\{1,2, \ldots, n-1\} \subset \sum_{i}^{k} A_{\lambda} \tag{2}
\end{equation*}
$$

In this section we construct an absolute positive constant γ_{k} such that

$$
\begin{equation*}
\sum_{i}^{k}\left[A_{\lambda}\right] \leqslant \frac{1}{2} k n-\gamma_{k} n^{(k-1) / k} \tag{3}
\end{equation*}
$$

Without loss of generality we may assume

$$
\begin{equation*}
\left[A_{1}\right] \geqslant\left[A_{2}\right] \geqslant \ldots \geqslant\left[A_{k}\right] . \tag{4}
\end{equation*}
$$

Let $\gamma>0$ be given. From now on we assume
(5)

$$
\sum_{i}^{k}\left[A_{2}\right]>\frac{1}{2} k n-\gamma n^{(k-1) / k}
$$

Lemma 1.

$$
\begin{equation*}
\left[A_{1}\right]<\frac{n}{2}+\frac{\gamma}{k-2} n^{(k-1) / k}, \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\left[A_{\lambda-1}\right] \geqslant\left[A_{\lambda}\right]>\frac{n}{2}-\frac{k-3+\lambda}{(k-2)(k-\lambda+1)} \gamma n^{(k-1) / k}, \quad \lambda=2, \ldots, k \tag{7}
\end{equation*}
$$

Proof. Since $n \notin A_{1}+A_{\lambda}$, we have $\left[A_{\lambda}\right]<n-\left[A_{1}\right]$. Thus (5) implies

$$
\frac{1}{2} k n-\gamma n^{(k-1) / k}<\left[A_{1}\right]+(k-1)\left(n-\left[A_{1}\right]\right) .
$$

This yields (6). Also by (4), (5) and (6)

$$
\begin{aligned}
\frac{1}{2} k n-\gamma n^{(k-1) / k} & <(\lambda-1)\left[A_{1}\right]+(k-\lambda+1)\left[A_{\lambda}\right] \\
& <(\lambda-1)\left(\frac{n}{2}+\frac{\gamma}{k-2} n^{(k-1) / k}\right)+(k-\lambda+1)\left[A_{\lambda}\right] .
\end{aligned}
$$

This implies (7).
We now define

$$
\begin{equation*}
B_{i}=\sum_{\substack{\lambda=1 \\ \lambda \neq i}}^{k} A_{\lambda}, \quad i=1,2, \ldots, k \tag{8}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\sum_{i}^{k} A_{\lambda}=A_{i}+B_{i}, \quad i=1,2, \ldots, k \tag{9}
\end{equation*}
$$

Acta Arithmetica v .

Lemma 2.

$$
\frac{n}{2}-\frac{\gamma}{k-2} n^{(k-1) / k}<\left[B_{i}\right]< \begin{cases}\frac{n}{2}+\frac{\gamma}{k-2} n^{(k-1) / k} & \text { if } i=1 \tag{10}\\ \frac{n}{2}+\frac{k+i-3}{(k-2)(k-i+1)} \gamma n^{(k-1) / k} & \text { if } 1<i \leqslant k\end{cases}
$$

Proof. B_{i} contains either A_{1}, or A_{2}. Thus the first estimate follows immediately from (7) with $\lambda=2$.

By (9), $n \notin A_{i}+B_{i}$. Henee $\left[B_{i}\right]<n-\left[A_{i}\right]$ and (7) also yields the second inequality.

Lemma 3.

$$
\left.\begin{array}{l}
{\left[B_{1} \cap \bar{A}_{\mu}\right]} \tag{11}\\
{\left[B_{\mu} \cap \bar{A}_{1}\right]}
\end{array}\right\}<\frac{1}{k-2}\left(1+\frac{k+\mu-3}{k-\mu+1}\right) \gamma n^{(k-1) / k} ; \quad \mu=2, \ldots, k
$$

Proof. If $\lambda \neq \mu, A_{\mu} \subset B_{\lambda}$. Thus $\left[B_{\lambda} \cap \bar{A}_{\mu}\right]=\left[B_{\lambda}\right]-\left[A_{\mu}\right]$ and (11) is a corollary of Lemmas 1 and 2.

Lemma 4.

$$
\begin{equation*}
\left[B_{1} \cup B_{2} \cup \ldots \cup B_{k}\right]<\frac{1}{2} n+3 k \gamma n^{(k-1) / k} \tag{12}
\end{equation*}
$$

Proof. If x lies in $B_{1} \cup B_{2} \cup \ldots \cup B_{k}, n-x$ lies in $\bar{A}_{1} \cup \ldots \cup \bar{A}_{k}$. Hence

$$
\begin{align*}
{\left[B_{1} \cup B_{2} \cup \ldots \cup B_{k}\right\rfloor } & \leqslant\left[\bar{A}_{1} \cup \bar{A}_{2} \cup \ldots \cup \bar{A}_{k}\right] \tag{13}\\
& =\left[\bar{A}_{k}\right]+\left[A_{k} \cap\left(\bar{A}_{1} \cup \bar{A}_{2} \cup \ldots \cup \bar{A}_{k-1}\right)\right] \\
& \leqslant\left[\bar{A}_{k}\right]+\left[A_{k} \cap \bar{A}_{1}\right]+\sum_{2}^{k-1}\left[A_{k} \cap \bar{A}_{\mu}\right] \\
& \leqslant\left[\bar{A}_{k}\right]+\left[B_{2} \cap \bar{A}_{1}\right]+\sum_{2}^{k-1}\left[B_{1} \cap \bar{A}_{\mu}\right]
\end{align*}
$$

Now by (7) and (11)

$$
\begin{aligned}
{\left[\bar{A}_{k}\right]=} & n-\left[A_{k}\right]<\frac{n}{2}+\frac{2 k-3}{k-2} \gamma n^{(k-1) / k} \leqslant \frac{n}{2}+3 \gamma n^{(k-1) / k} \\
& {\left[B_{2} \cap \bar{A}_{1}\right]<\frac{2}{k-2} \gamma n^{(k-1) / k} \leqslant 2 \gamma n^{(k-1) / k} }
\end{aligned}
$$

and

$$
\left[B_{1} \cap \bar{A}_{\mu}\right]<\frac{1}{k-2}\left(1+\frac{2 k-4}{2}\right) \gamma n^{(k-1) / k} \leqslant 2 \gamma n^{(k-1) / k}
$$

if $2 \leqslant \mu \leqslant k-1$. Thus (13) yields (12).

Let C denote the set of those elements of $\sum_{1}^{k} A_{\lambda}$ which lie in none of the B_{λ}. Lemma 4 implies

Lemina 5.

$$
\begin{equation*}
[C]>\frac{1}{2} n-3 k \gamma n^{(k-1) / k} \tag{14}
\end{equation*}
$$

For each $c \epsilon C$ we choose a canonical representation

$$
\begin{equation*}
c=\sum_{i}^{k} a_{\lambda}, \quad a_{\lambda} \in A_{\lambda} \tag{15}
\end{equation*}
$$

in the following way: First a_{1} is chosen maximally among all the representations of c. If $a_{1}, \ldots, a_{\lambda}$ have been fixed, $a_{\lambda+1}$ will be maximal among all the representations of c which use $a_{1}+a_{2}+\ldots+a_{\lambda}$.

Lemma 6. Let

$$
\begin{equation*}
e^{\prime}=\sum a_{\lambda}^{\prime} \epsilon C, \quad a_{\lambda}^{\prime} \in A_{\lambda} \tag{16}
\end{equation*}
$$

be the canonical representation of e^{\prime}. Let

$$
1 \leqslant \lambda_{1}<\lambda_{2}<\ldots<\lambda_{h} \leqslant k
$$

and suppose

$$
\begin{equation*}
\sum_{1}^{n} a_{\lambda_{\mu}}=\sum_{1}^{n} a_{\lambda_{\mu}}^{\prime} \tag{17}
\end{equation*}
$$

Then

$$
\begin{equation*}
a_{\lambda_{\mu}}=a_{\lambda_{\mu}}^{\prime}, \quad \mu=1,2, \ldots, h \tag{18}
\end{equation*}
$$

Proof. Substituting (17) in (15) we obtain another representation of c. Since $a_{\lambda_{1}}$ was maximal, we have $a_{\lambda_{1}} \geqslant a_{\lambda_{1}}^{\prime}$. Similarly, (17) and (16) imply $a_{\lambda_{1}}^{\prime} \geqslant a_{\lambda_{1}}$. Thus $a_{\lambda_{1}}=a_{\lambda_{1}}^{\prime}$ and (18) follows by induction.

Lemma 7. Let $1 \leqslant l \leqslant k$. The number of elements b_{i} occuring in the representation of elements $c=a_{i}+b_{i}$ of C is less than

$$
2 \frac{k-1}{k-2} \gamma n^{(k-1) / k} \leqslant 4 \gamma n^{(k-1) / k}
$$

This remark is obvious. If b_{i} occurs in the representation of numbers of C, b_{i} cannot occur in any A_{μ} with $\mu \neq i$. Hence the number of these b_{i} 's is $\leqslant\left[B_{i} \cap \bar{A}_{\mu}\right]$. Choosing $\mu=1$ if $i>1$ and μ arbitrarily if $i=1$, we obtain our estimate from (11).

We now construct a sequence of subsets

$$
C=D_{0} \supset D_{1} \supset D_{2} \supset \ldots \supset D_{k-1}
$$

of C in the following fashion: Let $\delta>0$ be given. D_{h} consists of those elements

$$
\begin{equation*}
c^{*}=\sum_{1}^{k} a_{\lambda}^{*}=b_{\mu}^{*}+a_{\mu}^{*} \quad\left(a_{\lambda}^{*} \epsilon A_{\lambda}, \lambda=1, \ldots, k\right) \tag{19}
\end{equation*}
$$

of D_{h-1} such that for every $i>h$ there are not less than $\delta 2^{1-h} n^{1 / k}$ elements of D_{h-1} of the form $b_{i}^{*}+a_{i}(h=1, \ldots, k)$.

Lemma 8.

$$
\begin{equation*}
\left[D_{0} \cap \bar{D}_{1}\right]<4(k-1) \gamma \delta n . \tag{20}
\end{equation*}
$$

Proof. Let C_{i} denote the set of those numbers (19) of D_{0} such that there are fewer than $\delta n^{1 / k}$ elements of D_{0} of the form $b_{i}^{*}+a_{i}(i=2, \ldots, k)$. Thus

$$
D_{0} \cap \bar{D}_{1}=\bigcup_{2}^{k} C_{i} .
$$

Let $1<i \leqslant k$ be fixed. By Lemma 7 there are less than $4 \gamma n^{(k-1) / k}$ numbers b_{i} occuring in the representation of elements $c=a_{i}+b_{i}$ of C. In particular there are fewer than $4 \gamma n^{(k-1) / k}$ numbers b_{i}^{*}. Each of them occurs in fewer than $\delta n^{1 / k}$ elements of C_{i} and each $c^{*} \epsilon C_{i}$ has a representation $c^{*}=b_{i}^{*}+a_{i}^{*}$. Hence

$$
\left[C_{i}\right]<4 \gamma n^{(k-1) / k} \cdot \delta n^{1 / k}=4 \gamma \delta n
$$

and

$$
\left[D_{0} \cap \bar{D}_{1}\right] \leqslant \sum_{2}^{k}\left[C_{i}\right]<4(k-1) \gamma \delta n .
$$

Lemma 9.

$$
\begin{equation*}
\left[D_{h} \cap \bar{D}_{h+1}\right]<(k-h-1)\left[D_{h-1} \cap \bar{D}_{h}\right], \quad h=1,2, \ldots, k-2 \tag{21}
\end{equation*}
$$

Proof. Let C_{i} denote the set of those elements (19) of $D_{h} \cap \bar{D}_{h+1}$ such that there are fewer than $\delta 2^{-h} n^{1 / k}$ elements of D_{h} of the form $b_{i}^{*}+a_{i}(i=h+2, \ldots, k)$. Thus

$$
D_{h} \cap \bar{D}_{h+1}=\bigcup_{h+2}^{k} C_{i} .
$$

Let i be fixed; $h+1<i \leqslant k$. If b_{i}^{*} occurs in the representation of some $c^{*} \epsilon C_{i}$, there are not less than $\delta 2^{1-h} n^{1 / k}$ elements of D_{h-1} of the form $b_{i}^{*}+a_{i}$ while fewer than $\delta 2^{-h} n^{1 / k}$ of them belong to D_{h}. Hence more than $\delta 2^{-h} n^{1 / k}$ of them will lie in $D_{h-1} \cap \bar{D}_{h}$. The number of these b_{i}^{*} is therefore less than

$$
\left[D_{h-1} \cap \bar{D}_{h}\right] /\left(\delta 2^{-h} n^{1 / k}\right)
$$

Each of these b_{i}^{*} 's gives rise to less than $\delta 2^{-h} n^{1 / k}$ elements of C_{i}. Conversely each element of C_{i} has a representation $c^{*}=b_{i}^{*}+a_{i}$. Hence

$$
\left[C_{i}\right]<\delta 2^{-h} n^{1 / k}\left(\left[D_{h-1} \cap \bar{D}_{h}\right] /\left(\delta 2^{-h} n^{1 / k}\right)\right)=\left[D_{h-1} \cap \bar{D}_{h}\right]
$$

This yields (21).
Lemma 10. Let $0<h \leqslant k-1$ be given,

$$
\begin{equation*}
c^{*}=\sum a_{\lambda}^{*}=b_{i}^{*}+a_{i}^{*} \epsilon D_{h} . \tag{22}
\end{equation*}
$$

Let i_{1}, \ldots, i_{h} be any h-tuple of distinct indices satisfying $i_{\lambda}>\lambda$; $\lambda=1,2, \ldots, h$. Then there are at least

$$
\delta^{h} 2^{-\binom{h}{2}} n^{h / k}
$$

numbers

$$
\begin{equation*}
\left(c^{*}-\sum_{1}^{n} a_{i_{\lambda}}^{*}\right)+\sum_{1}^{n} a_{i_{\lambda}} \epsilon C . \tag{23}
\end{equation*}
$$

Proof. For $h=1$ our assertion follows from the definition of D_{1}. Suppose it is proved for $h-1$ and assume (22). From the definition of D_{h} there are at least $\delta 2^{1-h} n^{1 / k}$ numbers $a_{i_{h}}$ such that $b_{i_{h}}^{*}+a_{i_{h}} \epsilon D_{h-1}$. By induction assumption there are to each of them not less than

$$
\delta^{h-1} 2^{-\left(c_{2}^{h-1}\right)} n^{(h-1) / k}
$$

numbers

$$
\left(b_{i_{h}}^{*}+a_{i_{h}}-\sum_{1}^{h-1} a_{i_{\lambda}}^{*}\right)+\sum_{1}^{h-1} a_{i_{\lambda}}=\left(c^{*}-\sum_{1}^{n} a_{i_{\lambda}}^{*}\right)+\sum_{1}^{n} a_{i_{\lambda} \epsilon C} .
$$

Altogether we have at least

$$
\left(\delta 2^{1-h} n^{1 / k}\right)\left(\delta^{h-1} 2^{-\binom{h-1}{2}} n^{(h-1) / k}\right)=\delta^{h} 2^{-\binom{h}{2}} n^{h / k}
$$

numbers (23). By Lemma 6 they are mutually distinct.
Lemma 11. Let

$$
\begin{equation*}
\delta=\sqrt[k-1]{4 \gamma} 2^{k / 2-1} \tag{24}
\end{equation*}
$$

Then $D_{k_{-1}}$ is empty.
Proof. The case $h=k-1$ of Lemma 10 yields: If there is a number $c^{*}=\sum a_{i}^{*} \in D_{k_{-1}}$, then there are at least

$$
\delta^{k-1} 2^{-\binom{k-1}{2}} n^{(k-1) / k}
$$

elements $a_{1}^{*}+b_{1}$ of C. By Lemma 7 fewer than $4 \gamma n^{(k-1) / k}$ numbers b_{1} can occur. Thus

$$
\delta^{k-1} 2^{-\left(\frac{k-1}{2}\right)} n^{(k-1) / k}<4 \gamma n^{(k-1) / k}
$$

This contradicts (24).

Lemma 12. Let

$$
\begin{equation*}
\gamma_{k}=\gamma=\frac{1}{2^{k / 2+4}} \cdot \frac{1}{(k-1)!} \tag{25}
\end{equation*}
$$

Define δ through (24). Then

$$
(1-8 e(k-1)!\gamma \delta) n^{1 / k}>6 k \gamma
$$

for every n.
Proof. Since $\sqrt[k-1]{4 \gamma}<1$, we have

$$
\begin{aligned}
8 e(k-1)!\gamma \delta+\dot{6} k \gamma & <8 e(k-1)!2^{k / 2-1} \gamma+8(4-e)(k-1)!2^{k / 2-1} \gamma \\
& =2^{k / 2+4}(k-1)!\gamma=1
\end{aligned}
$$

Hence

$$
(1-8 e(k-1)!\gamma \delta) n^{1 / k} \geqslant 1-8 e(k-1)!\gamma \delta>6 k \gamma .
$$

We are now ready to show that the constant (25) satisfies (3).
Lemmas 8 and 9 imply by induction

$$
\left[D_{h} \cap \bar{D}_{h+1}\right]<4 \cdot \frac{(k-1)!}{(k-h-2)!} \gamma \delta n, \quad h=0,1, \ldots, k-2
$$

Thus by Lemmas 5 and 11

$$
\begin{aligned}
\frac{1}{2} n-3 k \gamma n^{(k-1) / k} & <[C]=\sum_{0}^{k-2}\left[D_{h} \cap \bar{D}_{h_{+1}}\right] \\
& <4(k-1)!\gamma \delta n \sum_{0}^{k-2} \frac{1}{(k-h-2)!} \\
& <4 e(k-1)!\gamma \delta n
\end{aligned}
$$

Hence

$$
(1-8 e(k-1)!\gamma \delta) n^{1 / k}<6 k \gamma
$$

Thus Lemma 12 shows that our assumption (5) leads to a contradiction if γ is chosen according to (25).
4. If n is a given integer and if S and $C=\{c\}$ are sets of non-negative integers, the set $S-C$ consists of all the integers $x \geqslant 0$ such that $x+c \in S$ for every c with $x+c \leqslant n$.

Let $h>1$,

$$
n \notin S, \quad 0 \in A_{\lambda} \quad(\lambda=1,2, \ldots, h)
$$

and let

$$
S-\sum_{1}^{h} A_{\lambda}=\{0\} \quad\left(\text { thus } \sum_{1}^{h} A_{\lambda} \subset S\right)
$$

Then there are two positive constants $\gamma_{1}=\gamma_{1}(h)$ and $\gamma_{2}=\gamma_{2}(h)$ which are independent of $n, S, A_{1}, \ldots, A_{h}$ such that always

$$
\sum_{1}^{h}\left[A_{\lambda}\right]<[S]+\frac{1}{2}(h-1) n-\gamma_{1} n^{h /(h+1)}
$$

and that for a suitable $(h+1)$-tuple A_{1}, \ldots, A_{h}, S

$$
\sum_{1}^{h}\left[A_{2}\right]>[S]+\frac{1}{2}(h-1) n-\gamma_{2} n^{h /(h+1)}
$$

These results follow at once from the preceding sections if we put $h=k-1$ and choose for A_{k} the set of all the numbers of the form $n-\bar{s}$ where $0 \leqslant \bar{s} \leqslant n, \bar{s} \notin S$.

UNIVERSITY OF SASKATCHEWAN
ASKATOON, SASK. CANADA

[^0]: $\left.{ }^{(}\right)$Written communication from Professor H. B
 B. Mann.

