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1. Let A = {a}, B = {b},... denote sets of non-negative integers
containing the number zero;

k k
DA, ={Da) (ted;, 1=1,2,..,b).
1 1

Thus }'4, consists of all the numbers a4 a,+...4a; where each a,
lies in the corresponding 4,. For a given integer n let [4] denote the num-
ber of positive elements of 4 up to and including n. 4 denotes the set
of the integers < » which do not belong to A.

It is well known and easy to see that ne¢d 4B implies [4]4[B]
< n—1. The corresponding problem for three or more sets does not lead
to anything new. For then

k
(1) n-eZA,‘
1

implies n¢d,+A4, and thus [4,]+[4,] <n—1; 1 <4< p <k Adding
these }k(k—1) inequalities we readily obtain
k

(2) D [4,]1 < fk(n—1).

1

That (2) cannot be improved can be seen by taking 4, = A;... = 4; =
= get of integers between [4n]+1 and n—1 together with 0.

This question becomes more interesting if we require » to be the
smallest number not in }'4,. For k¥ = 3 and n < 15 one can show(!) that

[4:]4[4:]+[4s] <n—1.

() Written communication from Professor H. B. Mann.
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However this estimate becomes false if n > 15.
Surprisingly enough, (2) is asymptotically correct. Put
k
(3) fu(n) = max Y'[4,]
1

where 4,,..., A; range through those sets which satisfy (1) and

(4) (1,2, ...,n—1) C D'4,.

Thus fa(n) = n—1. In the present paper we shall prove the existence
of two positive constants a = a; and y = y, such that

(5) Fen—an®* < fr(n) < Plon - yn®-OF

for every k > 2. The first half of (5) will be proved in § 2, the second

in §3.
It would be of interest to obtain an explicit formula for f.(n) if £ > 2.

In particular it may be true that

(6) fu(n) = Fen+ (B+o(1)) n®*—D

for some positive constant § = f,. But we are unable to prove (6), still
less to determine 3.

2, Let B, = {b;} denote the set of all integers requiring only the
digits 0 and 27 in the number system with the basis 2*; 1 = 0,1,..., k—1.
Thus every integer @ permits a unique representation

1) o= Y b,

E—1
0
Suppose that » has the representation

k—1
(2) n = Zb‘}., beB,.
0

Obviously one of the b}’s must be greater than jn. Renumbering the
B,’s if necessary, we may assume

(3) by > in.
We obtain the set ¢, by omitting the number %, from B,. Thus

k-1

¢ Co+ Z B,
1
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k-1
and every number lies in C,+ ) B, except the numbers
1

k=1
B+ Db,
1
We now define
(4)  Cp = BB+ +...+bh_1+ba}, ba#by; h=1,2,...,k—1.

Let @ % n; cf. (1) and (2). If b, b3,
k-1 k-1 k-1

méCn+ZBAC Gﬂ+201 EZGJ.
1 1 0
If b, = by, there is an k > 1 such that

h-1 k-1
@ = %‘bﬁ—k ;‘b“ by # b,

Hence
k-1 k-1 k=1
xeCh+ Z‘ B,C O,‘+ZOR CZG;-
h+1 h+1 []
k—1

Thus every number s n lies in }'C,.
]

We next show

k-1
(5) m‘z 0,.
1]
Suppose
k-1
(6) n = 2 c;, GiE O’a.

Then for each h > 0 either ¢, = bye By or
A—1

(7 o= D B+by, by~ B
0

Since the representation (2) of » was unique and since 5)¢C,, the first
alternative cannot occur for all # > 0. On the other hand (3) shows that
(7) cannot occur more than once. Thus (7) will hold for exactly one index
h > 0. This leads to

h—1 k-1

h—1
8) n='h+() bi+bh)+g’ biy  ba 7 b
0 +1
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Comparing (8) with (2) we obtain

k-1 h—1 k-1
9) D 0= bitbat D by by E B
h

0 b1

The representation of the number (9) being unique, we obtain in particular
by = by, a contradiction. This proves (5).
Define

k=1
(10) Dy=)0C, h=0,1,...,k-1
sk

and let A4, be the union of €, with the set of all the numbers

n—d; > in, d,eD,.

k-1
n¢2 4,.
0
k—1
Thus n remains the only number not in » A,.
(]

Then

k-1

It remains to estimate > [4,]. Let oFm - p < MM+ Mhen
0

[B;] < 2™ w2:2% g™, 1 =0,1,..., k-1
Therefore
[C,1< 20 [C] < am¥ it 0 <A< k-—1.
Thus
k—1 k-1
[E (YA.I ,_: n[(:";] < 4k—ln{k—1]jk
1 . 1
and
k-1 k-1
i | 2 i
[X o] <[]0 < d-4"n®0% h=1,.., k-1
a:h agau
Hence

[4,] > dn—451a®VF (4] s gn—p 450, p =1, k-1,

and
k-1

2 (4] > %kn—(k_!_.l)gzkhsn(k_mk.

This proves the first part of our result with a = (k-+1)2%".
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3. Let » > 0 and % > 2 be fixed. Let

k
(1) ng D) A,
1

k
(2) {1,2,...,m—1}C D' 4,.
1

In this section we construct an absolute positive constant y; such that

k

(3) D 4;] < Fon— yn®0k,

1

Without loss of generality we may assume

(4) (4,] = [4:] = ... = [4].

Let y > 0 be given. From now on we assume

k
(6) D) [4;]1 > fhn—yn®-DE,
1
LEmmaA 1.
-1
(6) [4,] e D T 21:
n k—3+4+4 (e=1yjk _
(7) (4,1 = [4,]> 3 (k—2)(h—AF1) Vs y AdA=2,....k

Proof. Since n¢A,+4,, we have [4,] < n—[4,]. Thus (5) implies
Fhn— yn®E < (A4 14 (k—1) (n—[4,).
This yields (6). Also by (4), (3) and (6)
Thn—yn* % < (A —1)[A4,]+ (k—A+1)[4,]

< (A—1) (g + }E{—Q n("“'”‘f) + (k—241)[4,].

This implies (7).
We now define

(8) Bi=§A“ i=1,2,.., k.
Azt
Thus
k
o SaymActBy i=1,2,k
1

Acta Arithmetica V. 4
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LEMmA 2.
(10)
ol + _?_n(k—l)ﬂ‘ if i=1,
.. ___y_,n(k—l}lk ' h] & 2 w2
2 k-2 n k+i—3

a ®=1k o G4 B
2 G- F—ir ) if 1<i<

Proof. B; contains either 4,, or 4,. Thus the first estimate follows
immediately from (7) with 1 = 2.

By (9), né¢ A;+B;. Henee [B;] <n—[4;] and (7) also yields the
second inequality.

LEMMA 3.

[B,~ 4,1\ 1 (1_{_ k+p~3)}m{k_1"k_ o By s
[B,~4,]) " k=2 k—p+1 ’ S
Proof. If 4 #pu, A4,CB,. Thus [B;~4,] = [B,]-[4,] and (11)

is a corollary of Lemmas 1 and 2.
LemmaA 4.
(12) [Byv Byv...v Byl < dn+3kyn®-0E,

(11)

Proof. If x lies in B,w Byw...wB,, n—a liesin 4,v ...w4;. Hence
(13) [Biv Byv ...v By < [Ayv Ao v 4y
= [A,]+ Ay~ (Aivdyo...v 4 y)]

k-1
< [Ar]4[4e~ 42+ 2 (A~ A,]
2

k-1
<[4+ [Bo~n A1+ Y [Bin 4]
2

Now by (7) and (11)

2k—3 n
yn(k—l)fk <& - +3?n(k—l)fk’

i 1
[4e] = n—[4:] < 5 + 3

- 2
[Byn 4] < m ’yﬂ(k_mk = 21}%“’_1)-”‘,

and

- 1 2k—4
[Bind,]< 5 (1-1,-— 5 )yn(k—lﬂk < Zyn(kwl)fk

if 2 <p<k—1. Thus (13) yields (12).
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k
Let C denote the set of those elements of )4, which lie in none of
1

the B,. Lemma 4 implies
LemMma 5.
(14) [C] > }n—3kyn— D,

For each ¢eC we choose a canonical representation

k
(15} ¢C = aa, a'aeAl
2 ;

in the following way: First a, is chosen maximally among all the repre-
sentations of ¢. If @y, ..., a; have been fixed, a,,, will be maximal among
all the representations of ¢ which use a;+a,+...+a;.

LemmaA 6. Let
(16) ¢ = Z‘a;eo, ajed,
be the eanonical representation of ¢'. Let

1 H<__h21<22<-.-<;bhgk
and suppose

h h
(17) Dday, = Ya.

1 1
Then

(18) a; =af‘”, PR B Eam—

Proof. Substituting (17) in (15) we obtain another representation
of ¢. Since a; was maximal, we have a, > a,; . Similarly, (17) and (16)
imply @; = a,. Thus a, = a; and (18) follows by induction.

Lemwma 7. Let 1 <1 <k. The number of elements b; occuring in the
representation of elements ¢ = a;+ by of C is less than

2 fcj—l— }f}i(k_ g -Lyn(k_l)-"",
kE—2

This remark is obvious. If b; occurs in the representation of numbers
of €, b; cannot oceur in any A, with u # 4. Hence the number of these
b’s is < [B;nA,]. Choosing y =1 if 4> 1 and u arbitrarily if i =1,
we obtain our estimate from (11).
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We now construct a sequence of subsets
O=Dy 2Dy DDy D... JDy,

of € in the following fashion: Tet 4§ > 0 be given. I, consists of those ele-
ments

k
(19) e‘=2‘a;=b;+a; (a5ed;, A=1,..., k)
1

of D,_, such that for every ¢ > h there are not less than &2'*n'*
elements of D,_, of the form b; +a; (h =1, ..., k).

LEMmA 8.
(20) [Dy ~ D] < 4(k—1)yon.

Proof. Let C; denote the set of those numbers (19) of D, such that
there are fewer than 67 elements of D, of the form b} 4+a; (i =2, ..., k).
Thus

k
D,~D, =0,
2

Let 1 < i < k be fixed. By Lemma 7 there are less than 4yn®-1/*
numbers b; oceuring in the representation of elements ¢ = a;+b; of C.
In particular there are fewer than 4yn®~"* numbers b;. Each of them
occurs in fewer than én'* elements of C; and each ¢”¢ C; has a represen-
tation ¢ = b; | a;. Hence

[C;] < 4yn®—DE. sulk — 4y 6m
and

k
[Dy ~ D1 < D) [0 < 4(k—1)yén.

LEmma 9.
21) [Da~Dyal < (k—h—1)[Dy_,~Dyl, h=1,2,..,k=2.
Proof. Let C; denote the set of those elements (19) of Dy~ Dy,

such that there are fewer than 62 "n'® elements of D, of the form
bi+a; (t =h+2,...,%k). Thus

k
-thDh+I = U Cg.
h2

Let i be fixed; h+1 < i < k. If b; occurs in the representation
of some ¢*¢C;, there are not less than 62" *n'* elements of D, , of
the form b} +a; while fewer than 62 *n'#* of them belong to D;. Hence
more than 62~"*»** of them will lie in D;_, ~ D,. The number of these b}
is therefore less than

[Du_y ~ Dp1/(827 0%,
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Each of these b{’s gives rise to less than 62 *n'* elements of ;. Con-
versely each element of ¢; has a representation ¢® = bf -+ a;. Hence

[C:] < 827"n'*([Dy_y ~ Da1/(827*n'¥)) = [Dy_y ~ Dy).

This yields (21).

LEMMA 10. Let 0 < h << k—1 be given,
(22) ¢* = Z‘a; = Bt e Dy

Let iy, ...,i be any h-tuple of distinct indices satisfying 1, > A;
A=1,2,..., k. Then there are at least

5’*2—(2)%#!*

numbers

h h
(23) ("= Xab) + Yay<0.
1 1

Proof. For h = 1 our assertion follows from the definition of D,.
Suppose it is proved for h—1 and assume (22). From the definition of D,
there are at least 62'"»'* numbers a;, such that bj +a;eDy_y. By
induetion assumption there are to each of them not less than

h=
éh—lz_( 21)}“'(?&—1];’}:

numbers
h—1

A1 [ »
{b;h‘{_a“h'_ Z a:‘) i ZJ iy, = (c'-— ;a“a) + Za;le(].

Altogether we have at least
( 621 —knlfk) ( 6?;—1 2 ‘(h;l) n(?&—l]fk) = 632_{2) ﬂhfk

numbers (23). By Lemma 6 they are mutually distinet.
LEMMA 11, Let

(24) 5= "Yagar,

Then Dy_, is empty.

Proof. The case h = k—1 of Lemma 10 yields: If there is a number
¢" = YMajeD;_,, then there are at least

k—
ak-l 2_( 2 ! ) n{k-mk

k—1)jk

elements a; +b, of ¢. By Lemma 7 fewer than 4yn numbers b, can

k—l (kz 1) k—-1)jk (k—l k

This contradicts (24).
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LEmMwmA 12. Let

1 1
(25) YE =¥ =

R+ (1)t

Define & through (24). Then

(1—8e(k—1)ly8)n'* > 6ky
for every n.

: E-1,—
Proof. Since 4y < 1, we have
8e(k—1)!y8+ 6ky < 8e(k—1)1252"1y | 8(4—e)(k—1)12521y

= PR+ 1)y =1.
Hence
(1—8e(k—1)lyd)n'* = 1—8e(k—1)!yd = 6ky.

We are now ready to show that the constant (25) satisfies (3).
Lemmas 8 and 9 imply by induction

(A—1)!
[D,,nﬁh+1]<4-my6n, h:O,l,...,k—i}.
Thus by Lemmas 5 and 11
k-2
1 . —
5%—3?@}!?@‘"‘”’" <[C]= S [Dn ~ Dy ]

0

k—2
1
Cdlb—Dlpdn ¥ e
Z (k—h—2)!

< de(k—1)!ydn.
Hence
(1—8e(k—1)!ys)nt* < 6ky.

Thus Lemma 12 shows that our assumption (5) leads to a contradiction
if y is chosen according to (25).

4. If n is a given integer and if 8 and (' = {¢} are sets of non-negative
integers, the set 8 —C consists of all the integers # > 0 such that o ceS
for every ¢ with #+¢ < n.

Let h > 1,

ng¢8, 0ed, (A=1,2,...,h)
and let

h h
8— D4, ={0} (thus }'4,C%).
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Then there are two positive constants y; = y,(#) and y, = y,(k) which
are independent of n, S, 4,,..., 4, such that always

h
Z [4,] < [8]1+3(h—1)n—y oM+
1
and that for a suitable (h--1)-tuple 4,,..., 4;, 8
h
Z [4,] > [81+3(h—1)n— yn™E+D,
1

These results follow at once from the preceding sections if we put
h = k—1 and choose for 4; the set of all the numbers of the form n—3
where 0 <3 < n, §¢8.
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