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1. Let A ={u}, B=(b),... denote sets of non-negative integers 
containing the number zero; 

24 = (ia,) (a,cA,, I = 1, 2, . . . , k). 
1 1 

Thus CA, consists of all the numbers a, + da+-. . . f C%k where each at 
lies in the corresponding A,. For a given integer n let [A] denote the num- 
ber of positive elements of A up to and including n. d denotes the set 
of the integers < n which do not belong to A. 

It is well known and easy to see that m+A +B implies [A J +[B J 
< n-l. The corresponding problem for three or more sets does not lead 
to anything new. For then 

(1) 
k 

n B A, 

implies n$A,+A, and thus [A,]+[A,] <m-l; 1 ,< 1~ p< k. Adding 
these Qk (k-l) inequ~alities we readily obtain 

(2) 

k 

2 
[A,] < +kW-1). 

1 

That (2) cannot be improved can be seen by taking A1 = A, . . , = Ak = 
= set of integers between [@I+1 and a-1 together with 0. 

This question becomes more interesting if we require n to be the 
smallest number not in GA,. For k = 3 and n < 15 one can show(l) that 

[&J+~41+[&1 < n--l. 

(1) Written communicatiou from Professor H. B, &km. 
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However this estimate becomes false if 12 >, 15. 
Surprisingly enough, (2) is asymptotically correct. Put 

where A,, . . . . Ak range through those sets which satisfy (1) and 

Thus f*(n) = m-1. In the present paper we shall prove the existence 
of two positive constants a = (xk and y = ok such that 

(4 pm- an(k-l)‘k < fk (n) < +kn I- pn (k-W 

for every k > 2. The first half of (5) will be proved iu $2, the second 
in $3. 

It would be of interest to obtain an explicit formula for fk(%) if k > 2. 
In particular it may be true that 

(6) fk(,%) = +k?%+ (~+o(l))dk-‘)‘k 

for some positive Constant /? = pk. But we are unable to prove (6), still 
less to determine #?. 

2. Let B, = {bl} d enote the set of all integers requiring only the 
digits 0 and 2” in the number system with the basis Zk; iz = 0, 1, . . . , k-l. 
Thus every integer m permits a unique representation 

k-l 

(1) O= 
c 

b a* 
0 

Suppose that 12 has the representation 

(2) 
k-1 

n = c bi, b!eB,. 
0 

Obviously one of the b’fs must be greater than @. Renumbering the 
Ba’s if necessary, we may assume 

(3) b: > 4%. 

We obtain the set C, by omitting the number bi from B,. Thus 



k-l 

and every number lies in C,+ 2 BA except the numbers 
1 

b;+ Zb,. 

1 

We now define 

(4) Ch=Bhu{b~+bO,+...+b~~l+bh}, bh#b;; h=1,2 ,..., k-l. 

Let IC # 12; cf. (1) and (2). If b, # bi, 
k-l k--1 k--l 

X47,+- Jpac CofCC, =cq. 
1 1 0 

If b. = bi, there is an h & 1 such that 
h-l k-l 

x = zb;+ xbl, bh # ht. 
0 h 

k--1 k--l k--1 

XcCh+ 1 B, G c,+cc, cI&. 
h+l h+l 0 

k--l 
#n. lies in CC,. 

0 
Thus every number 

We next show 

(5) 

Suppose 

(61 

k-l 

nffc Ca. 
0 

k-l 
n = 

2 ca7 CJ'C,. 
0 

Then for each h > 0 either CA = bh B Bh or 

(7) 

h-l 

ch = c bO,+ bar h # bib 
0 

Since the representation (2) of 12 was unique and since bz#Co, the East 
alternative cannot occur for all h > 0. On the other hand (3) shows that 
(7) cannot occur more than once. Thus (7) will hold for exactly one index 
h > 0. This leads to 

h-l h--l k-l 

w n = cba+(c b’:+b)+c b,, bn # bf. 
0 0 h+l 
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Comptig (8) with (2) we obtain 

(9) xb: = z&+b,+Fb,, bh # b;. 
h 0 h+l 

The representation of the number (9) being unique, we obtain in particulax 
bj: = bh, a contradiction. This proves (5). 

Define 
k-1 

w Dh=cC1, h=O,l,..., k-l 

A 

and let A, be the union of C, with the set of aJl the numbers 

k-1 

Thus rz remains the only number not in 2 A,. 
0 

It remains to estimate 2 [AJ. Let 2M < n. < 2k(mf’). Then 
0 

Therefore 

[Co] < 2rP; [C,] < 4d/k if 0 < 1 < k-l. 

Thus 
k--l k-l 

[,r CA] < n [C,] < 4k-ldk--l)lk 
1 1 

a,nd 
k-l k-l 

[C CA] <n [C,] < g4k--1dk-1)‘k, h = 1, ..,‘I k-l. 

A:h &h 

Hence 

[A,] >~n-4k-‘n~k-1)‘k, [-4h] ~9n--.rk-1,~l(k-1)lk, h = l,..,, k-l, 

and 
k-1 

c 
[A,] > &km- (k$-1)22k-3.(k-1)‘k. 

0 

This proves the first part of our result with a = (k +l) 22k-3. 
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3. Let R > 0 and k > 2 be fixed. Let 

In this section we construct an absolute positive constant yk such that 
k 

(3) c [A>,1 G *km-- ykdk-‘)/k. 
1 

Without loss of generalit we may sssume 

(4) C4 2 r&l 2 * ‘. 2 [&l. 
Let y > 0 be given. From now on we assume 

k 

(6) 

LEMMa 1. 

2 [A,] > *7c12- ydk-‘)‘k. 
1 

(6) 

(7) [A,-,] z [A,] > ; - 
k-3+;1 

(k-2)(k--l+l) 
yn(k-1)@, ;z = 2 

9 l *-9 
k, 

Proof. Since n&4,+AA, we have [A,] < ra-[A,]. Thu.8 (6) implies 

+ kn. - ,,y~j~--l)i~ c [il,l+e--l)(1~-rA,Yn. 

This yields (6). Also by (41, (5) and (6) 

Q kn - yn(k-‘)‘k < (~-1)[A,l+(k--lel,[a,l 

-=-E (A-1) dk--l)‘k f (k - 2 j-1.) [A,] . 

This implies (7). 
We now define 

(8) 

Thus 

(9) 

Bi = 2 A,, 
A=1 

i - .L,2, . . . . k. 
I#i 

k 

c 
A, = Ai+Bi, i = 1,2 ? “‘? k. 

1 

Acta Arithmetica V. 4 
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LEM%A~A 2. 

(10) 
if i=l, 

n Y _ - -nW--lVk < [BJ < 

s; + -!?-n(Wlk 
k-2 

2 k-2 
I 

kj-i-3 
(k--2)(k--i-Cl) 

ynnlk-Wk if l<i<k* 

Proof. Bi contains either A,, or A,. Thus the first estimate follows 
immediately from (7) with A = 2. 

By (9), m#Asj-Bi. Henee [BJ < n-[Ai] and (7) also yields the 
second inequality. 

LElfMA 3, 

Proof. If ;I # ,u, A,C B,. Thus [B, n B,] = [BJ -[A,] and (11) 
is 8 corollary of Lemmas 1 and 2. 

LEMMA 4. 

WV [B,uB,v . . . W &] < @‘b+ 3kyF+k-‘)‘k. 

Proof. If $lies in BlwBzw.~.uBk~rt-~~ieSin~l~~~.~~k~ Hence 

(13) 

Now by (7) and (11) 

&I = ‘-[&I < ; + 
2k-3 k--2 y&Wk < ; +. q,nIk--l)lk, 

and 

LB, * &I -=c & (1+ .?!$t) ynV+‘)lk < 2ya(Wlk 

if 2 < ,U ,( k-l. Thus (13) yields (12). 
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Let C denote the set of those elements of iA, which lie in none of 
1 

the. B,. Lemma 4 implies 
LEMXA 5. 

(14) [C-j > Qn- 3kydk-1”“. 

For each c EC we choose a canonical representation 

in the following way: First a, is chosen maximally among all the repre- 
sentations of c. If a,, . . . , aA have been fixed, Q~+~ will be maximal among 
all the representations of c which use a, + a2 +. . . + a,. 

LEMMA 6. Let 

and suppose 
h h 

Proof. Substituting (17) in (15) we obtain another representation 
of c. Since aAl was maximal, we have aA 3 alI. Similarly, (1’7) and (16) 
imply ai > aAl. Thus aA = a;i and (18) follows by induction. 

LEMSA 7. Let 1 < 1 < k. The number of elements bi occwing in the 
representation of elements c = aif bi of C is less than 

This remark is obvious. If bi occurs in the representation of numbers 
of C, bc cannot’ occur in any A, with ,u # i. Hence the number of these 
hi’s is < [Bin A,]. Choosing p = 1 if i > 1 and p arbitrarily if i = 1, 
we obta,in our estimate from (11). 
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We now construct a sequence of subsets 

c =Do ID1 302 I... ID,-, 

of 0 in the following fashion: Ilet S > 0 be &-en. II, consists of those ele- 
ments 

k 
(19) c* zz 

c ai = bz+aE (alcAn, 1 = 1, . . . . k) 
1 

of &e-l such that for every i > h there are not less than S2’-li# 
elements of Dhm1 of the form bi f a,i (h = 1, . . . , k). 

IJEW 8. 

(20) [D,, n D,] < P(k-l)yblpt. 

Proof. Let Ci denote the set of t’hose numbers (19) of Do such that 
there are fewer than &a Ilk e,lements of D, of the form bf+ a, (i = 2, . . . , k). 
Thus 

Let 1 < i < k be fixed. By Lemma 7 there are less than 4yn(k-1)‘k 
numbers bi occuring in the representation of elements G = ai+ bi of C. 
In particula,r there are fewer than 4y~@-‘)‘~ numbers bz. Each of them 
occurs in fewer than &a Ilk elements of C+ and each c* E C, has a represen- 
tation d = b; + a;. Hence 

[Q-J < 4yn,@-‘)/k * &P = 478% 
and 

(21) [Dj&f-&+J < (k-Ih-l)[Dn-1 nB,], h = I, 2, .“, k-2. 

Proof. Let C, denote the set of those elements (19) of DI,nBh+l 
such that there are fewer than 82-h121/k elements of Dh of the form 
b;+a; (i = fi+2, . . . . k). Thus 

Ir 

Let i be fixed; h+l ( i < k. If b: occurs in the representation 
of some c* cC~, there are not less than 821-h~1’k elements of Dhvl of 
the form b: + ai while fewer than 82-h%1/k of them belong to Dh. Hence 
more than d2-hn1fk of them will lie in Dhsl r\ &. The number of these b: 
is therefore less than 

[Dhsl n Dh]/( S 2-h,/L”k). 
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Each of these bi+‘s gives rise to less than ~52-~9%“” elements of 0;. Con- 
versely each element of 0, has a representation cc = b: -I- ai. Hence 

[C,] < 62-%*‘k([Dh-l n B,] /( d2-wk)) = [D&--l A z&J. 

This yields (21). 
LEilfIfA IO. Let 0 < h < k-l be giutW, 

(22) c* = c aIt* = hi*J--nt~D~. 

Let i, , . . . , .ih be any h-tuple of ai8tilzct indices satisfying iA > Iz ; 
i! = 1,2 , . . ., h. Then there aye at least 

&4p 
numbers 

(23) 

Pro of, For 12 = 1 our assertion follows from the definition of D, . 
Suppose it is proved for h-l and assume (22). From the definition of Dh 
there are at least 821--h?z1’k numbers Uih such that bib+ aihc Dhml. By 
induction assumption there are to each of Ohem not less than 

p+) ,,(h-1)/k 

numbers 
h--l 

Altogether we have at least 
(g21-hn’lk)(~h-‘2-(k~‘)~(h-~~,k~ = ,h,-(3&k 

numbers (23). By Lemma 6 they are mutually distinct. 
L~itfiaA 11. Let 

(24) 

Then Dk-1 6 empty. 
Proof. The case h = k--l of Lemma 10 yields: If there is a number 

c* = ~tx~ E Dkhl, then there are at least 

gk-12-(k”1) n(k--l),k 

elements a:+ b, of C’. By Lemma 7 fewer than 4yvL(k-1)‘k numbers b, cm 
occur. Thus 

dk-1 2 -tk?) n(k-‘),k < +&k-1)/k 
. 

This contradicts (24). 
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LEMMA 12. Let 

(25) 

.Defim S through (24). The% 

(l-Se(?i-l)!yd)n’~k > 6ky 
for every n. 

k-l - 

Proof. Since d4y < 1, we have 

&(k-l)!yS+6ky < 8e(k-l)!2”~2-‘y+8(4-e)(k-l)!2k~-1y 

= 2k/2+4(&1)!y = 1. 

Hence 
(1-8e(k-l)!yB)~~1/” > l-8e(k-l)!y6 > 6ky. 

We are now ready to show that the constant (25) satisfies (3). 
Lemmas 8 and 9 imply by induction 

Thus by Lemmas 5 and 11 
k-2 

1 
- n 3kyn,P-l)lk - = 
2 

-=c [Cl 2 rai A a&+11 
0 

k-2 
-c 4(k-l)!ydn c 

1 
- 

o (k--h-2)! 

Hence 
-=c 4e(k-l)!y&. 

(l-8e(k-l)!y~)~1~k < 6ky. 

Thus Lemma 12 shows that our assumption (5) leads to cl contradiction 
if y is chosen according to (25). 

4. If n is a given integer and if AS’ and 0 = {c) are sets of non-negative 
integers, the set i3 -C consists of all the integers x > 0 such that x+ c E ~!3 
for every c with xfo < n. 

Let h > lT 

n$B, Or A, (A = 1, 2, . . . . h) 
and let 

h h 

S-?A1 = {o} (thus zA,C 8). 
1 
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Then there are two positive constants y1 = yI(h) and yB = yd(h) which 
are independent of n, Es, A,, . . ., Ah such that always 

2 ’ I-41 < [s]+~(h-~)rz--~,nh’(~fl) 
1 

and that for a suitable (h+l)-tuple Ai, . . . , Ah, ii3 

h 

c 
[A,] > [S]fg(h-l)~---y,~hl(h+l). 

1 

These results follow at once from the preceding sections if we put 
h = k-l and choose for Ak the set of all the numbers of the form 72-S 
where 0 < 3 <m, a#L3. 
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