ON CANTOR'S SERIES WITH CONVERGENT $\sum \frac{1}{q_{i n}}$

By

P. ERDÖS and A. RÉNYI
Mathematical Institute, Eötvös Loránd University, Budapest

(Received 6 April, 1959)

Introduction

Let $\left\{q_{n}\right\}$ be an arbitrary sequence of positive integers subjected only to the restriction $q_{n} \geqq 2(n=1,2, \ldots)$. Then every real number $x(0 \leqq x<1)$ can be represented in the form of Cantor's series

$$
\begin{equation*}
x=\sum_{n=1}^{\infty} \frac{\varepsilon_{n}(x)}{q_{1} q_{2} \ldots q_{n}} \tag{1}
\end{equation*}
$$

where the n-th "digit" $\varepsilon_{n}(x)$ may have the values $0,1, \ldots, q_{n}-1$. The digits $\varepsilon_{i \prime}(x)$ can be obtained successively starting with $r_{0}(x)=x$, by the algorithm

$$
\begin{equation*}
\varepsilon_{u}(x)=\left[q_{n} r_{n-1}(x)\right], \quad r_{n}(x)=\left(q_{n} r_{n-1}(x)\right) \tag{2}
\end{equation*}
$$

where $[t$] denotes the integral part, and (t) the fractional part of the real number t.

In some previous papers ([1], [2], [3]) the statistical properties of the digits $\varepsilon_{n}(x)$ valid for almost all x, have been discussed, for the cases when $\sum_{n=1}^{\infty} \frac{1}{q_{n}}$ is divergent and when it is convergent. (See also [4] and [5]). In the present paper we consider mainly the case when $\sum_{n=1}^{\infty} \frac{1}{q_{n}}$ is convergent. This case has been considered in [2] from another point of view. The point of view adopted in the present paper is to consider properties of the infinite sequence $\left\{\varepsilon_{i}(x)\right\}$ as a whole; this point of view has led to the formulation and solution of a quite surprising number of questions, which have not been investigated up to now. Most of these questions are interesting only in the case, when $\sum \frac{1}{q_{n}}<+\infty$; some of them can be raised only under this condition.

Our main tool will be a generalization of the Borel-Cantelli lemma, which is proved in $\S 1$. Our results on Cantor's series are contained in $\S \S 2$, 3,4 , and 5 .

§ 1. Generalization of the Borel-Cantelli lemma

Let $[X, \mathcal{Q}, \mathrm{P}]$ be a probability space in the sense of Kolmogorov [6], i. e. X an arbitrary set, whose elements are called "elementary events" and denoted by x, \mathcal{A} a σ-algebra of subsets of X, whose elements are denoted by capital letters (e. g. A, B, etc.), and called events, and $\mathbf{P}(A)(A \in \mathcal{Q})$ a probability measure in X and on \mathfrak{G}. We shall denote by $A+B$ resp. $A B$ the union resp. the intersection of the sets A and B, and by \bar{A} the complementary set of A. We shall denote random variables (i. e. functions defined on X and measurable with respect to \mathfrak{G}) by greek letters, and denote by $\mathbf{M}(\xi)$ resp. $\mathbf{D}^{2}(\xi)$ the mean value resp. variance of the random variable $\xi=\xi(x)$. i. e. we put $\mathbf{M}(\xi)=\int_{X} \xi(x) d \mathbf{P}$ and $\mathbf{D}^{2}(\xi)=\mathbf{M}\left(\xi^{2}\right)-\mathbf{M}^{2}(\xi)$. If $A_{n} \subset X$ $(n=1,2, \ldots)$, we denote as usual by $\varlimsup_{n \rightarrow+\infty} A_{n}$ the set consisting of those elements x of X which belong to infinitely many A_{n}, and by $\underset{n \rightarrow+\infty}{\lim } A_{n}$ the set of those elements x of X which belong to A_{n} for all $n \geqq n_{0}(x)$.

The events A and B are called independent if $\mathbf{P}(A B)=\mathbf{P}(A) \mathbf{P}(B)$. A finite or infinite sequence $\left\{A_{n}\right\}$ of events such that any two events of the sequence are independent, is called a sequence of pairwise independent events. If moreover we have $\mathbf{P}\left(A_{n_{1}} A_{n_{2}} \ldots A_{n_{r}}\right)=\mathbf{P}\left(A_{n_{1}}\right) \mathbf{P}\left(A_{n_{r}}\right) \ldots \mathbf{P}\left(A_{n_{r}}\right)$ for any r-tuple of different events $A_{n_{1}}, \ldots, A_{n_{r}}$ chosen from the sequence A_{n} for all $r=2,3, \ldots$, we call the sequence $\left\{A_{n}\right\}$ a sequence of completely independent events.

We shall often use the following well-known
Lemma A. If $\left\{A_{u}\right\}$ is an arbitrary sequence of events belonging to a probability space $[X, \mathfrak{Q}, \mathbf{P}]$ such that $\sum_{n=1}^{\infty} \mathbf{P}\left(A_{n}\right)<+\infty$, then with probability 1 only a finite number of the events A_{n} occur simultaneously, i. e. $\mathbf{P}\left(\overline{\lim }_{n \rightarrow+\infty} A_{n}\right)=0$.

Lemma A is nothing else as a special case of Beppo Levi's theorem. As a matter of fact, if ϵ_{n} is a random variable which is equal to 1 if A_{n} occurs and to 0 if A_{n} does not occur, then the assertion, that only a finite number of the A_{n} occur with probability 1 is equivalent with the statement that $\sum_{n=1}^{\infty} \omega_{n}$ converges with probability 1 and the condition $\sum_{n=1}^{\infty} \mathbf{P}\left(A_{n}\right)<+\infty$ can be written in the form $\sum_{n=1}^{\infty} \mathbf{M}\left(\epsilon_{n}\right)<+\infty$.

The condition $\sum_{n=1}^{\infty} \mathbf{P}\left(A_{n}\right)<+\infty$ of Lemma A is under certain restric-
tions not only sufficient but also necessary for $\mathbf{P}\left(\varlimsup_{n \rightarrow+\infty} A_{n}\right)=0$. For example the following result is classical:

Lemma B. If $\left\{A_{i}\right\}$ is a sequence of completely independent events and $\sum_{n=1}^{\infty} \mathbf{P}\left(A_{n}\right)=+\infty$, then with probability 1 infinitely many among the events A_{i} occur simultaneously, i.e. $\mathbf{P}\left(\varlimsup_{n \rightarrow+\infty} A_{n}\right)=1$.

Lemma A and B together are known under the name: the lemma of Borel-Cantelli ([7], [8]).

In this § we shall prove the following generalization of Lemma B.
Lemma C. Let $\left\{A_{n}\right\}$ be a sequence of events such that $\sum_{n=1}^{\infty} \mathbf{P}\left(A_{n}\right)=+\infty$ and

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \frac{\sum_{k=1}^{n} \sum_{k=1}^{n} \mathbf{P}\left(A_{k} A_{l}\right)}{\left(\sum_{k=1}^{n} \mathbf{P}\left(A_{k}\right)\right)^{2}}=1 \tag{1.1}
\end{equation*}
$$

It follows that with probability 1 infinitely many among the events A_{n} occur simultaneously, i. e. $\mathbf{P}\left(\varlimsup_{n \rightarrow+\infty} A_{n}\right)=1$.

Proof of Lemma C. Let us define ϵ_{n} as above, i. e. $\epsilon_{n}=1$ or $=0$ according to which the event A_{n} occurs or not. Then we have $\mathbf{M}\left(\boldsymbol{\omega}_{k}\right)=\mathbf{P}\left(A_{k}\right)$ and $\mathbf{M}\left(\boldsymbol{c}_{k} \boldsymbol{c}_{l}\right)=\mathbf{P}\left(A_{k} A_{l}\right)$ and thus putting $r_{n}=\sum_{k=1}^{n} \boldsymbol{c}_{k}$ we have

$$
\frac{\sum_{k=1}^{n} \sum_{i=1}^{n} \mathbf{P}\left(A_{k} A_{i}\right)}{\left(\sum_{k=1}^{n} \mathbf{P}\left(A_{k}\right)\right)^{2}}=\frac{\mathbf{M}\left(r_{r_{k}^{2}}^{2}\right)}{\mathbf{M}^{2}\left(r_{i n}\right)}
$$

Thus condition (1.1) can be written in the equivalent form

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \frac{\mathbf{M}\left(r_{n}^{2}\right)}{\mathbf{M}^{2}\left(\eta_{n}\right)}=1 \tag{1.2}
\end{equation*}
$$

or as $\boldsymbol{M}\left(r_{i n}^{2}\right)=\mathbf{D}^{2}\left(r_{i n}\right)+\mathbf{M}^{2}\left(r_{i_{n}}\right)$, also in the form

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \frac{\mathbf{D}^{2}\left(r_{i n}\right)}{\mathbf{M}^{2}\left(r_{n}\right)}=0 \tag{1.3}
\end{equation*}
$$

Now by the inequality of Chebyshev according to which for any random
variable η we have

$$
\begin{equation*}
\mathbf{P}\left(\left|r_{i}-\mathbf{M}(\eta)\right| \geqq i \mathbf{D}(\eta)\right) \leqq \frac{1}{\lambda^{2}} \quad \text { if } \quad \lambda>1, \tag{1.4}
\end{equation*}
$$

we have for any ε with $0<\varepsilon<1$

$$
\begin{equation*}
\mathbf{P}\left(r_{i^{\prime}} \leqq(1-\varepsilon) \mathbf{M}\left(r_{i^{\prime}}\right)\right) \leqq \frac{\mathbf{D}^{2}\left(r_{i^{\prime}}\right)}{\varepsilon^{2} \mathbf{M}^{2}\left(r_{i^{\prime}}\right)} \tag{1.5}
\end{equation*}
$$

If (1.3) holds, we can find a sequence $n_{i}\left(n_{1}<n_{2}<\cdots\right)$ such that

$$
\begin{equation*}
\sum_{k_{i}=1}^{\infty} \frac{\mathbf{D}^{2}\left(v_{i_{k}}\right)}{\mathbf{M}^{2}\left(\eta_{n_{k}}\right)}<+\infty \tag{1.6}
\end{equation*}
$$

It follows from (1.5) and (1.6) that

$$
\begin{equation*}
\sum_{k=1}^{\infty} \mathbf{P}\left(r_{i_{k}} \leqq(1-\varepsilon) \mathbf{M}\left(r_{i_{k}}\right)\right)<+\infty . \tag{1.7}
\end{equation*}
$$

Using Lemma A it follows that with probability $1 r_{i m_{k}} \geqq(1-\varepsilon) \boldsymbol{M}\left(\boldsymbol{r}_{i k_{k}}\right)$ except for a finite number of values of k. As by supposition $\lim _{k \rightarrow+\infty} \mathbf{M}\left(r_{m_{k}}\right)=+\infty$, it follows that $r_{i_{k}}$ tends to $+\infty$ with probability 1 , which implies that $\mathbf{P}\left(\varlimsup_{n \rightarrow-\infty} A_{n}\right)=1$, what was to be proved.

Remark. Clearly the condition (1.1) is satisfied if the events A_{n} are pairwise independent and $\sum_{n=1}^{\infty} \mathbf{P}\left(A_{n}\right)=+\infty$, because in this case

$$
\begin{equation*}
\sum_{k=1}^{n} \sum_{i=1}^{n} \mathbf{P}\left(A_{k} A_{i}\right)=\left(\sum_{k=1}^{n} \mathbf{P}\left(A_{k}\right)\right)^{2}+\sum_{k=1}^{n} \mathbf{P}\left(A_{k}\right)\left(1-\mathbf{P}\left(A_{i}\right)\right) \tag{1.8}
\end{equation*}
$$

for all n. Thus condition (1.1) can be regarded as a condition ensuring that the events A_{n} should be in a certain sense pairwise weakly dependent and Lemma C contains as a particular case the following

Corollary 1. If the events $A_{\prime \prime}$ are pairwise independent, and $\sum \mathbf{P}\left(A_{n}\right)=+\infty$, then with probability 1 infinitely many of the events A_{n} occur simultaneously.

Corollary 2. If $\mathbf{P}\left(A_{k} A_{i}\right) \leqq \mathbf{P}\left(A_{k}\right) \mathbf{P}\left(A_{i}\right)$ for $k \neq l$ (i. e. if the events A_{n} are pairwise negatively correlated) and $\sum_{n=1}^{\infty} \mathbf{P}\left(A_{n}\right)=+\infty$ then with probability 1 infinitely many of the events A_{n} occur simultaneously.

Proof of Corollary 2. If $\left.\mathbf{P}\left(A_{k} A_{i}\right) \leqq \mathbf{P}\left(A_{k}\right) \mathbf{P} A_{i}\right)$ for $k \neq l$ we have

$$
\begin{equation*}
\sum_{k=1}^{n} \sum_{i=1}^{n} \mathbf{P}\left(A_{k} A_{i}\right) \leqq\left(\sum_{k=1}^{n} \mathbf{P}\left(A_{k}\right)\right)^{2}+\sum_{k=1}^{n} \mathbf{P}\left(A_{k}\right)\left(1-\mathbf{P}\left(A_{k}\right)\right) \tag{1.9}
\end{equation*}
$$

thus condition (1.1) is satisfied provided that the series $\sum_{n=1}^{\infty} \mathbf{P}\left(A_{n}\right)$ is divergent.

§ 2. On the frequency of the digits in Cantor's series

Let us consider the probability space $[X, \mathfrak{Q}, \mathbf{P}]$ where X is the interval $[0,1), \mathfrak{Q}$ the family of Lebesgue measurable subsets of X and $\mathbf{P}(A)$ the ordinary Lebesgue measure of $A \in \mathcal{A}$. Thus the Lebesgue measure of a measurable subset A of the interval $[0,1)$ is interpreted as the probability of a random point falling into A. With this interpretation the digits $\varepsilon_{n}(x)$ as well as any other measurable functions $f(x)$ of x will be considered as random variables. Clearly we have

$$
\begin{equation*}
\mathbf{P}\left(\varepsilon_{n}(x)=k\right)=\frac{1}{q_{n}} \quad \text { for } \quad k=0,1, \ldots, q_{n}-1 \tag{2.1}
\end{equation*}
$$

further if $n_{1}<n_{2}<\cdots<n_{r} .(r=1,2, \ldots)$

$$
\begin{gather*}
\mathbf{P}\left(\varepsilon_{n_{1}}(x)=k_{1}, \ldots, \varepsilon_{n_{r}}(x)=k_{r}\right)=\frac{1}{q_{n_{1}} q_{n_{2}} \ldots q_{r_{r}}} \tag{2.2}\\
\quad \text { if } \quad 0 \leqq k_{j} \leqq q_{n_{j}}-1 \quad \text { for } j=1, \ldots, r
\end{gather*}
$$

(2.2) expresses the fact, that the random variables $\varepsilon_{\|}(x)$ are completely independent.

Let us suppose from now on that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{q_{n}}<+\infty \tag{2.3}
\end{equation*}
$$

except when the contrary is explicitly stated.
By (2.2) and (2.3) it follows that for any $k=0,1, \ldots$ we have

$$
\begin{equation*}
\sum_{n=1}^{\infty} \mathbf{P}\left(\varepsilon_{n}(x)=k\right)<+\infty \tag{2.4}
\end{equation*}
$$

Moreover it follows from (2.3) that for any positive integer N

$$
\begin{equation*}
\sum_{n=1}^{\infty} \mathbf{P}\left(\varepsilon_{n}(x)<N\right)=\sum_{q_{n} \leq N} 1+\sum_{N=q_{n}} \frac{N}{q_{n}}<+\infty \tag{2.5}
\end{equation*}
$$

Thus the sequence $\varepsilon_{n}(x)$ tends to $+\infty$ for almost all x. As a matter of fact, by Lemma A for almost all x and for any $N \varepsilon_{n}(x)<N$ only for a finite number of values of n, which is equivalent with the assertion that $\lim _{n \rightarrow+\infty} \varepsilon_{n}(x)=+\infty$ for almost all x.

By Lemma A it follows from (2.4) that for almost all x each number k occurs only a finite number of times in the sequence $\varepsilon_{n}(x)$; thus if we denote by $v_{k, n}(x)(k=0,1, \ldots ; n=1,2, \ldots)$ the number of occurrences of the number k in the sequence $\varepsilon_{n}(x), \varepsilon_{n+1}(x), \ldots$ then $r_{i, n}(x)$ is an almost everywhere finite and measurable function, i. e. a well defined random variable. We shall write for the sake of simplicity $\boldsymbol{r}_{k, 1}(x)=\boldsymbol{v}_{l i}(x)$.

It is quite easy to determine the probability distribution of $v_{k, a}(x)$. Putting

$$
\begin{equation*}
\mathbf{P}_{k, n}(s)=\mathbf{P}\left(v_{k, n}(x)=s\right) \tag{2.6}
\end{equation*}
$$

we have evidently by (2.2)

$$
\begin{equation*}
\mathrm{P}_{k, n}(s)=\sum_{\substack{\left.n \leq n_{1}<n_{2}<\ldots, n_{s} \\ q_{n},>k=1,2, \ldots, s\right)}} \frac{1}{q_{n_{1}} q_{n_{2}} \ldots q_{n_{s}}} \prod_{\substack{\left.j \neq n_{,}, 1 \leq r \leq s\right) \\ q_{j}>k \\ j \leq n}}\left(1-\frac{1}{q_{j}}\right) . \tag{2,7}
\end{equation*}
$$

It follows from (2.7) that

$$
\begin{equation*}
\mathrm{P}_{k, .}(s)=\prod_{\substack{\eta_{j} k \\ j=n}}\left(1-\frac{1}{q_{j}}\right)\left(\sum_{\substack{n \leqq n_{1} \\ q_{n_{r}} k}} \sum_{\substack{\left.n_{2}, 1,2, \ldots, \ldots s\right)}} \frac{1}{\left(q_{n_{1}}-1\right) \ldots\left(q_{n_{s}}-1\right)}\right) \tag{2.8}
\end{equation*}
$$

and thus we obtain for the generating function of the random variable $r_{k, n}$ the simple formula

$$
\begin{equation*}
\sum_{x=0}^{\infty} P_{k, n}(s) z^{s}=\prod_{\substack{q_{j} \\ j \leq n}}\left(1+\frac{z-1}{q_{j}}\right) \tag{2.9}
\end{equation*}
$$

(The special case $n=1$ of formula (2.9) is given already in [2].) Clearly

$$
\begin{equation*}
\mathbf{M}\left(v_{k, n}(x)\right)=\sum_{j=n}^{\infty} \mathbf{P}\left(\varepsilon_{j}(x)=k\right)=\sum_{\substack{q_{j}>k \\ j=n}} \frac{1}{q_{j}}<+\infty . \tag{2.10}
\end{equation*}
$$

Thus the mean value of the occurrence of each digit $k(k=0,1, \ldots)$ is finite. Now let us put

$$
\begin{equation*}
m_{n}(x)=\sup _{(k)} \nu_{k, \ldots}(x) \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
m(x)=\lim _{n \rightarrow-\infty} m_{n}(x) \tag{2.12}
\end{equation*}
$$

(As $m_{n}(x) \geqq m_{n+1}(x) \geqq 0$ the limit (2. 12) always exists.) $m_{n}(x)$ and $m(x)$ are generalized random variables in the sense that they may take on the value $+\infty$ on a set of positive measure. Clearly $m(x)$ is a Baire-function of the independent random variables $\varepsilon_{n}(x)(n=1,2, \ldots)$ which does not change its value if a finite number of the $\varepsilon_{n}(x)$ change their value. Thus, according to the law of 0 or 1 (see [6]) the probability $\mathbf{P}(m(x)=s)$ is for any $s=1,2, \ldots$ either 0 or 1 . Similarly the probability $P(m(x)=+\infty)$ is either 0 or 1 .

Our first result decides when these two possibilities occur.

THEOREM 1. Let us suppose that $q_{n} \leqq q_{u+1}$ and $\sum_{n=1}^{\infty} \frac{1}{q_{n}}<+\infty$ and put

$$
\begin{equation*}
R_{n}=\sum_{j=n}^{\infty} \frac{1}{q_{j}} \quad(n=1,2, \ldots) \tag{2.13}
\end{equation*}
$$

If $\sum_{n=1}^{\infty} R_{n}^{v-1}=+\infty$ but $\sum_{n=1}^{\infty} R_{n}^{s}<+\infty$ for some positive integer s, then we have

$$
\begin{equation*}
\mathbf{P}(m(x)=s)=1 \tag{2.14}
\end{equation*}
$$

We have

$$
\begin{equation*}
\mathbf{P}(m(x)=+\infty)=1 \tag{2.15}
\end{equation*}
$$

if and only if $\sum_{n=1}^{\infty} R_{n}^{s}=+\infty$ for all $s=1,2, \ldots$.
REmark 1. First of all, the assumption that $q_{n} \geqq q_{n+1}$ does not restrict the generality, as clearly this condition can be fulfilled always by reordening the q_{n} according to their size, and this reordening, though affects the expansion (1), does not affect the joint distribution of the random variables $s_{n}(x)$ and thus does not influence such properties of the sequence $\varepsilon_{n}(x)$ which depend only on the values and not on the arrangement of these variables. Especially such a reordening does not affect the distribution of the variable $m(x)$, because $m(x)=s$ means that there can be found an infinity of s-tuples of different positive integers $n_{1}, n_{2}, \ldots, n_{s}$ such that $\varepsilon_{n_{1}}(x)=\varepsilon_{n_{2}}(x)=$ $=\cdots=\varepsilon_{n_{s}}(x)$ but only a finite number of $s+1$-tuples $m_{1}, m_{2}, \ldots, m_{x+1}$ such that $\varepsilon_{m_{1}}(x)=\varepsilon_{m_{2}}(x)=\cdots=\varepsilon_{m_{s+1}}(x)$.

Remark 2. Let us put $\mu(x)=\varlimsup_{k \rightarrow-\infty} \nu_{h}(x)$. It is easy to see that $\mathbf{P}(m(x)=\mu(x))=1$. As a matter of fact, if $m(x) \geqq s$, there are an infinity of s-tuplet, n_{1}, \ldots, n_{s} such that $\varepsilon_{n_{1}}(x)=\varepsilon_{n_{2}}(x)=\cdots=\varepsilon_{n_{s}}(x)$; as we have $\lim _{n \rightarrow+\infty} \varepsilon_{n}(x)=+\infty$ for ahmost all x, this means that $\mu(x) \geqq s$. Conversely, if $u(x) \geqq s$ then there are an infinity of s-tuples of equal digits, and so $m(x) \geqq s$. Thus the assertions of Theorem 1 hold for $u(x)$ instead of $m(x)$ too.

Proof of Theorem 1. Clearly to show that

$$
\begin{equation*}
\sum_{n=1}^{\infty} R_{n}^{s}<+\infty \tag{2.16}
\end{equation*}
$$

implies $m(x) \leqq s$ for almost all x, it suffices to prove that the series

$$
\begin{equation*}
\sum_{1 \equiv n_{1}<n_{z}} \mathbf{P}\left(\varepsilon_{n_{1}}(x)=\varepsilon_{n_{2}}(x)=\cdots=\varepsilon_{n_{k+1}}(x)\right) \tag{2.17}
\end{equation*}
$$

converges. As a matter of fact, if the series (2.17) converges, then by

Lemma A for almost all x only a finite number of the events $\varepsilon_{n_{1}}(x)=\cdots=$ $=\varepsilon_{u_{s+1}}(x)$ will occur, which implies $m(x) \leqq s$. But if $n_{\mathrm{t}}<n_{2}<\cdots<n_{s+1}$, then

$$
\begin{equation*}
\mathbf{P}\left(\varepsilon_{u_{1}}(x)=\varepsilon_{n_{2}}(x)=\cdots=\varepsilon_{n_{s+1}}(x)\right)=\frac{1}{q_{n_{2}} q_{n_{3}} \ldots q_{n_{s}-1}} \tag{2.18}
\end{equation*}
$$

and thus the series (2.17) is equal to the series

$$
\begin{equation*}
\sum_{1} \frac{n_{2}-1}{q_{n_{2}} \ldots q_{n_{s-1}}} \tag{2.19}
\end{equation*}
$$

Now we have clearly

$$
\begin{equation*}
\sum_{1, n_{3}} \frac{n_{1}-1}{q_{n_{2}} \ldots q_{n_{s+1}}} \leqq \frac{1}{s!} \sum_{n=1}^{\infty} R_{n}^{*} \tag{2.20}
\end{equation*}
$$

Thus if (2.16) holds, then the series (2.17) converges, which proves our assertion, that $(2,16)$ implies $m(x) \leqq s$ for almost all x. Let us suppose now that

$$
\begin{equation*}
\sum_{n=1}^{\infty} R_{n}^{s-1}=+\infty \tag{2.21}
\end{equation*}
$$

Let us denote by $A_{\nu_{1} n_{2} \ldots \mu_{s}}$ the event $\varepsilon_{n_{1}}(x)=\varepsilon_{n_{9}}(x)=\cdots=\varepsilon_{n_{s}}(x)$ $\left(1 \leqq n_{1}<n_{2}<\cdots<n_{s}\right)$. Then as above, it follows that

$$
\begin{equation*}
\sum_{1 \equiv n_{1},=} \mathbf{P}\left(A_{n_{1}, n_{2} \ldots n_{s}}\right)=\sum_{n=2}^{\infty} \sum_{n \equiv n_{2}} \frac{n_{s}}{} \frac{1}{q_{n_{2}} \ldots q_{n_{s}}} . \tag{2.22}
\end{equation*}
$$

Now we use the inequality

$$
\begin{equation*}
\sum_{1 \leqq i_{1}<i_{2}<\ldots} a_{i_{1} \leqq n} a_{i_{2}} \ldots a_{i_{k}} \geqq \frac{1}{k!}\left(\sum_{i=1}^{N} a_{i}\right)^{k}\left(1-\binom{k}{2} \frac{\sum_{i=1}^{N} a_{i}^{2}}{\left(\sum_{i=1}^{N} a_{i}\right)^{2}}\right) \tag{2.23}
\end{equation*}
$$

valid for any sequence a_{i} of positive numbers and for $k=1,2, \ldots$ (2. 23) is trivial for $k=1$ and $k=2$ and follows for arbitrary k easily by induction. It follows that

$$
\begin{equation*}
\sum_{n \equiv n_{2}} \frac{1}{n_{3} \ldots n_{s}} \triangleq \frac{R_{n}^{s-1}}{(s-1)!} \quad \text { if } \quad s=2 \tag{2.24a}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n \leqq n_{2}<\eta_{s} \ldots<n_{s}} \frac{1}{q_{n_{s}} q_{n_{s}} \ldots q_{n_{s}}} \geqq \frac{R_{n}^{s-1}}{(s-1)!}\left(1-\binom{s-1}{2} \frac{\sum_{j=\prime \prime}^{\infty} \frac{1}{q^{2}}}{R_{n}^{2}}\right) \quad \text { if } s \geqq 3 . \tag{2.24b}
\end{equation*}
$$

As evidently

$$
\sum_{n=1}^{\infty} R_{n}^{s-3} \cdot \sum_{j=n}^{\infty} \frac{1}{q_{j}^{2}} \leqq R_{1}^{s-3} \sum_{j=1}^{\infty} \frac{j}{q_{j}^{2}}
$$

and the series $\frac{\sum j}{q_{j}^{0^{j}}}$ is convergent, because

$$
\sum_{j=1}^{\infty} \frac{j}{q_{j}^{2}}=\sum_{n=1}^{\infty} \sum_{j=n}^{\infty} \frac{1}{q_{j}^{2}} \leqq \sum_{n=1}^{\infty} \frac{1}{q_{n}} \sum_{j=n}^{\infty} \frac{1}{q_{j}} \leqq\left(\sum_{n=1}^{\infty} \frac{1}{q_{n}}\right)^{2}
$$

it follows from (2.21), (2.22) and (2.24a) resp. (2.24b) that

$$
\begin{equation*}
\sum_{n_{2}} \sum_{1} \mathbf{P}\left(A_{n_{1}, n_{2} \ldots n_{s}}\right)=+\infty . \tag{2.25}
\end{equation*}
$$

We shall apply now Lemma C For this purpose we have to verify the fulfillment of condition (1.1).

Let us arrange the s-tuples of positive integers $n_{1}<n_{2}<\cdots<n_{s}$ in lexicographic order. We have evidently, putting

$$
\begin{equation*}
B_{N}^{(s)}=\sum_{n_{3}, n_{4}} \geq{ }_{n_{s} \equiv x} \mathbf{P}\left(A_{\left.n_{1}, n_{2} \ldots n_{3}\right)}\right), \tag{2.26}
\end{equation*}
$$

Thus we have
which shows, that condition (1.1) is satisfied, because by supposition $\lim _{x \rightarrow+\infty} B_{N}^{(s)}=+\infty$.

Thus we may apply Lemma C and it follows, that with probability 1 an infinity of the events $A_{v_{1}, \ldots n_{s}}$ occur simultaneously. But this means that $\mathbf{P}(m(x) \geqq s)=1$. Thus if (2.16) and (2.21) both hold, we have $\mathbf{P}(m(x) \leqq s)=$ $=\mathbf{P}(m(x) \geqq s)=1$ and thus $\mathbf{P}(m(x)=s)=1$.

On the other hand if (2.21) holds, for $s=2,3, \ldots$ then $\mathbf{P}(m(x) \geqq s)=1$ for $s=2,3, \ldots$ and thus $\mathbf{P}(m(x)=+\infty)=1$.

An other question, related with Theorem 1 is the following: how many of the first N digits $\varepsilon_{i}(x), \ldots, \varepsilon_{N}(x)$ are different? If we denote this number by $D_{v}(x)$ and by $C_{v, k}(x)$ the number of equal k-tuples among the first N digits, we have clearly

$$
\begin{equation*}
N-C_{N, 2}(x) \leqq D_{N}(x) \leqq N . \tag{2.29}
\end{equation*}
$$

It follows by what has been proved above that $\frac{D_{N}(x)}{N}$ tends stochastically to 1 .

By a somewhat more refined argument it can be proved that $\frac{D_{N}(x)}{N}$ tends almost everywhere to 1 , i. e. the following theorem is valid:

Theorem 2. Suppose $\sum_{\lambda=1}^{\infty} \frac{1}{q_{n}}<+\infty$. Let $D_{N}(x)$ denote the number of different numbers in the sequence $\varepsilon_{1}(x), \ldots, \varepsilon_{s}(x)$. Then for almost every x we have

$$
\begin{equation*}
\lim _{x \rightarrow+\infty} \frac{D_{N}(x)}{N}=1 \tag{2.30}
\end{equation*}
$$

Proof. With regards to (2.29) to prove Theorem 2 it suffices to show that

$$
\begin{equation*}
\lim _{N \rightarrow+\infty} \frac{C_{N ; 2}(x)}{N}=0 \tag{2.31}
\end{equation*}
$$

for almost every x. Now we have $\mathbf{M}\left(C_{x, 2}(x)\right)=\sum_{n=1}^{x} \frac{n}{q_{n}}=N h_{x}$ where $\lim h_{N}=0$ further $\mathbf{D}^{2}\left(C_{N: 2}(x)\right) \leqq K N h_{N}$ where K is a constant. It follows
 we have

$$
\begin{equation*}
\mathbf{P}\left(C_{S, 2}(x)>\varepsilon N\right)<\frac{2 K h_{s}}{\varepsilon N} \tag{2.32}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \mathbf{P}\left(C_{n, 2}(x)>\varepsilon n^{2}\right)<+\infty \tag{2.33}
\end{equation*}
$$

It follows by Lemma A that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \frac{C_{n} n_{2}(x)}{n^{2}}=0 \tag{2.34}
\end{equation*}
$$

for almost every x, and therefore by (2.29)

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \frac{D_{n^{2}}(x)}{n^{2}}=1 \tag{2.35}
\end{equation*}
$$

for almost every x. But clearly if $n^{2}<N<(n+1)^{2}$ we have

$$
\begin{equation*}
\frac{D_{n}(x)}{n^{2}} \cdot\left(\frac{n}{n+1}\right)^{2} \leqq \frac{D_{N}(x)}{N} \leqq 1 \tag{2.36}
\end{equation*}
$$

and thus it follows that (2.30) holds for almost all x. This proves Theorem 2.
Remark. For the validity of Theorem 2 it is sufficient - as can be seen from the above proof - to suppose instead of the convergence of $\sum_{n=1}^{\infty} \frac{1}{q_{n}}$ only that $\lim _{x \rightarrow+\infty} \frac{1}{N} \sum_{n=1}^{N} \frac{n}{q_{n}}=0$.

§ 3. Some other statistical properties of the digits

It seems plausible that if q, tends very rapidly to $+\infty$ the sequence $\varepsilon_{i n}(x)$ of digits will be increasing from some point onwards. This is in fact true, as is shown by the following

Theorem 3. The necessary and sufficient condition for the sequence $\varepsilon_{n}(x)$ to be increasing for $n \geqq n_{0}(x)$ for almost all x is that the condition

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{q_{n}}{q_{n+1}}<+\infty \tag{3.1}
\end{equation*}
$$

should hold.
Proof. Clearly

$$
\begin{equation*}
\mathbf{P}\left(\varepsilon_{n+1}(x) \leqq \varepsilon_{n}(x)\right)=\sum_{j=1}^{n_{n}-1} \frac{q_{n}-j}{q_{n} q_{n+1}}=\frac{q_{n}+1}{2 q_{n-1}} . \tag{3.2}
\end{equation*}
$$

Thus if (3.1) holds, then

$$
\begin{equation*}
\sum_{n=1}^{\infty} \mathbf{P}\left(\varepsilon_{n+1}(x) \leqq \varepsilon_{n}(x)\right)<+\infty \tag{3.3}
\end{equation*}
$$

and therefore by Lemma A for almost all $x, \varepsilon_{i+1}(x)>\varepsilon_{n}(x)$ except for a finite number of values of n. This proves the first part of Theorem 3.

As regards the second part, let us suppose

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{q_{n}}{q_{n+1}}=+\infty \tag{3.4}
\end{equation*}
$$

In this case

$$
\begin{gather*}
\sum_{n=1}^{N} \sum_{n=1}^{N} \mathbf{P}\left(\varepsilon_{n+1}(x) \leqq \varepsilon_{n}(x), \varepsilon_{i n+1}(x) \leqq \varepsilon_{i n}(x)\right) \leqq\left(\sum_{n=1}^{N-1} \mathbf{P}\left(\varepsilon_{n+1}(x) \leqq \varepsilon_{n}(x)\right)^{2}+\right. \tag{3.5}\\
+2 \sum_{n=1}^{N-\frac{1}{1}} \mathbf{P}\left(\varepsilon_{n+2}(x) \leqq \varepsilon_{n+1}(x) \leqq \varepsilon_{n}(x)\right)
\end{gather*}
$$

As

$$
\begin{equation*}
\mathbf{P}\left(\varepsilon_{n+2}(x) \leqq \varepsilon_{n+1}(x) \leqq \varepsilon_{n}(x)\right)=\sum_{j=0}^{\eta_{n}-1} \sum_{k=j}^{q_{n}-1} \frac{q_{n}-k}{q_{n} q_{n+1} q_{n+2}} \leqq \frac{q_{n}}{3 q_{n+1}} \tag{3.6}
\end{equation*}
$$

it follows that condition (1.1) of Lemma C is fulfilled. This implies that for almost all $x \quad \varepsilon_{i+1}(x) \leqq \varepsilon_{n}(x)$ for an infinity of values of n; thus Theorem 3 is proved.

We have seen, that $\varepsilon_{n}(x)$ tends for almost all x to $+\infty$. One may ask what can be said about the speed with which $\varepsilon_{n}(x)$ increases. In this direction one can easily prove results of the following type:

THEOREM 4. $\sum_{n=1}^{\infty} \frac{1}{1+\varepsilon_{n}(x)}<+\infty$ for almost all x if and only if $\sum_{n=1}^{\infty} \frac{\log q_{n}}{q_{n}}<+\infty$.

Proof of Theorem 4. The proof of the sufficiency is immediate by the theorem of B. Levi, taking into account that

$$
\begin{equation*}
\mathbf{M}\left(\frac{1}{1+\varepsilon_{n}(x)}\right)=\frac{1}{q_{n}} \sum_{k=1}^{q_{n}} \frac{1}{k} \tag{3.7}
\end{equation*}
$$

As the variables $\varepsilon_{n}(x)$ are completely independent, the necessity follows from the three-series theorem of Kolmogorov [6].

§ 4 . On the set of all digits

In this \S we consider the following question: what can be said about the set $S(x)$ of those positive integers, which occur at least once in the sequence $\left\{\varepsilon_{n}(x)\right\}$. Clearly the probability that a given number k is not contained in $S(x)$ is equal to $\prod_{k=q_{n}}\left(1-\frac{1}{q_{n}}\right)$ and is thus positive for all k. Moreover, it is not difficult to find an infinite sequence of integers $k_{j}(j=1,2, \ldots)$ such that with probability 1 only a finite number of elements of the sequence k_{j} are contained in the sequence $\varepsilon_{n}(x)$. As a matter of fact

$$
\begin{equation*}
\mathbf{P}(k \in S(x))=1-\prod_{k<q_{u}}\left(1-\frac{1}{q_{n}}\right) \tag{4.1}
\end{equation*}
$$

and thus

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} \mathbf{P}(k \in S(x))=0 \tag{4.2}
\end{equation*}
$$

Therefore an infinite sequence $k_{1}<k_{2}<\cdots<k_{j}<\cdots$ can be found (depending of course on the sequence q_{n}) such that

$$
\begin{equation*}
\sum_{i=1}^{\infty} \mathbf{P}\left(k_{j} \in S(x)\right)<+\infty . \tag{4.3}
\end{equation*}
$$

By Lemma A our assertion follows.
Clearly we have also by the general formula

$$
\begin{equation*}
\mathbf{P}(A B)=\mathbf{P}(A)+\mathbf{P}(B)-\mathbf{P}(A+B) \tag{4.4}
\end{equation*}
$$

and by (4.1) if $k<j$

$$
\begin{align*}
& \mathbf{P}(k \in S(x), j\in S(x))=1+\prod_{k}\left(1-\frac{1}{q_{n}}\right) \prod_{j \leqslant q_{n}}\left(1-\frac{2}{q_{n}}\right)- \tag{4.5}\\
&-\prod_{q_{n}}\left(1-\frac{1}{q_{n}}\right)-\prod_{q_{n}}\left(1-\frac{1}{q_{n}}\right)
\end{align*}
$$

As $\left(1-\frac{2}{q_{n}}\right) \leqq\left(1-\frac{1}{q_{n}}\right)^{2}$

$$
\begin{equation*}
\mathbf{P}(k \in S(x), j \in S(x)) \leqq \mathbf{P}(k \in S(x)) \mathbf{P}(j \in S(x)) \tag{4.6}
\end{equation*}
$$

if $j \neq k$, and therefore if $\left\{k_{j}\right\}$ is such a sequence that (4.3) holds then by Corollary 2 of Lemma C with probability $1 S(x)$ contains an infinity of elements of the sequence $\left\{k_{j}\right\}$. Clearly if k is sufficiently large so as to ensure

$$
\begin{equation*}
\sum_{q_{n}} \frac{1}{q_{n}}<\frac{1}{2} \tag{4.7}
\end{equation*}
$$

we have

$$
\begin{equation*}
\sum_{q_{n}} \frac{1}{q_{n}} \geqq 1-\prod_{q_{n}}\left(1-\frac{1}{q_{n}}\right) \geqq \frac{1}{2} \sum_{q_{n}} \frac{1}{q_{n}} \tag{4.8}
\end{equation*}
$$

and thus putting

$$
\begin{equation*}
K(x)=\sum_{k_{j} x} 1 \tag{4.9}
\end{equation*}
$$

with respect to (4.1) and (4.8) the series (4.3) is convergent or divergent according to whether the series

$$
\begin{equation*}
\sum_{j=1}^{\infty} \sum_{k_{j} q_{n}} \frac{1}{q_{n}}=\sum_{n=1}^{\infty} \frac{K\left(q_{n}\right)}{q_{n}} \tag{4.10}
\end{equation*}
$$

is convergent or divergent.
Thus we have proved the following
THEOREM 5. Let $k_{1}<k_{2}<\cdots<k_{j}<\cdots$ be an arbitrary infinite sequence of positive integers and define $K(x)$ by (4.9). The set $S(x)$ of all positive integers occurring at least once in the sequence $\left\{\varepsilon_{n}(x)\right\}$ contains for almost all x either a finite or an infinite number of elements of the sequence $k_{;}$according to whether the series

$$
\begin{equation*}
\sum_{\mu=1}^{\infty} \frac{K\left(q_{n}\right)}{q_{n}} \tag{4.11}
\end{equation*}
$$

converges or diverges.
Example. If $q_{n}=n^{2}$, then $S(x)$ contains for almost all x only a finite number of elements of the sequence $k_{j}=j^{3}$, but an infinite number of elements of the sequence $k_{j}=j^{2}$.

It follows easily from Theorem 5 that if the sequence $\left\{k_{j}\right\}$ has positive lower density, i. e. if

$$
\begin{equation*}
\lim _{x \rightarrow+\infty} \frac{K(x)}{x}=c>0 \tag{4.12}
\end{equation*}
$$

then $S(x)$ contains with probability 1 an infinite number of elements of the
sequence $\left\{k_{j}\right\}$, because in this case $\frac{K\left(q_{n}\right)}{q_{u}}$ does not tend to 0 , and thus the series (4.11) is divergent. If $q_{\text {, }}$ does not increase too rapidly, for instance if $\frac{q_{n+1}}{q_{n}} \leqq C$ where $C>0$ is a constant, then the same holds also under the weaker assumption that

$$
\begin{equation*}
\varlimsup_{x \rightarrow+\infty} \frac{K(x)}{x}=\beta>0 \tag{4.13}
\end{equation*}
$$

i. e. that the sequence $\left\{k_{j}\right\}$ has positive upper density, because in this case if $q_{n-1} \leqq x<q_{n}$ then

$$
\frac{K\left(q_{n}\right)}{q_{n}} \geqq \frac{K(x)}{q_{n}} \geqq \frac{1}{C} \frac{K(x)}{x}
$$

and thus (4.13) implies $\varlimsup_{n \rightarrow+\infty} \frac{K\left(q_{n}\right)}{q_{n}} \geqq \frac{\rho}{A}>0$ and thus the divergence of the series (4.11). If however $q_{n}=2^{2^{n}}$ and $\left\{k_{j}\right\}$ consists of the numbers $2^{2^{n}}+1, \ldots, 2^{2^{n}+1}$ then the upper density of the sequence $\left\{k_{i}\right\}$ is $1 / 2$ but (4.11) is convergent.

Now we prove the following
THEOREM 6. The density of $S(x)$ is with probability 1 equal to 0.
Proof. Let $\epsilon_{N}(x)$ denote the number of those $\varepsilon_{n}(x)(n=1,2, \ldots)$ which are $\leqq N$. Clearly if we prove that

$$
\begin{equation*}
\mathbf{P}\left(\lim _{x \rightarrow+\infty} \frac{e_{x}(x)}{N}=0\right)=1 \tag{4.14}
\end{equation*}
$$

then the assertion of Theorem 6 follows. To prove (4.14), by Lemma A is sufficient to show that the series

$$
\begin{equation*}
\sum_{k=1}^{\infty} \mathbf{P}\left(\frac{\epsilon_{2 k}(x)}{2^{k}} \geqq \varepsilon\right) \tag{4.15}
\end{equation*}
$$

is convergent for any $\varepsilon>0$. As a matter of fact the convergence of the series (4.15) implies that for almost all x

$$
\begin{equation*}
\lim _{k \rightarrow-\infty} \frac{\varrho_{2 k}(x)}{2^{k}}=0 \tag{4.16}
\end{equation*}
$$

and as for $2^{k} \leqq N<2^{k+1}$, we have $\frac{\epsilon_{x}(x)}{N} \leqq 2 \cdot \frac{\epsilon_{2^{k-1}}(x)}{2^{k+1}}$ it follows that

$$
\begin{equation*}
\lim _{x \rightarrow+\infty} \frac{a_{x}(x)}{N}=0 \tag{4.17}
\end{equation*}
$$

for almost all x. As

$$
\begin{equation*}
\mathbf{M}\left(\kappa_{N}(x)\right)=\sum_{q_{n} \leqq N} 1+\sum_{N q_{n}} \frac{N}{q_{n}}=N d_{N} \tag{4.18}
\end{equation*}
$$

where $\lim _{N \rightarrow+\infty} d_{N}=0$ and

$$
\begin{equation*}
\mathbf{D}^{2}\left(\alpha_{N}(x)\right)=\sum_{q_{n}>N} \frac{N}{q_{n}}\left(1-\frac{N}{q_{n}}\right) \leqq N d_{N} \tag{4.19}
\end{equation*}
$$

it follows by the inequality of Chebyshev that if N is so large that $d_{N}<\varepsilon 2$, then

$$
\begin{equation*}
\mathbf{P}\left(\epsilon_{N}(x) \geqq N \varepsilon\right) \leqq \frac{4 d_{N}}{N \varepsilon^{2}}<\frac{2}{N \varepsilon} . \tag{4.20}
\end{equation*}
$$

It follows that the series (4.15) converges, which, as has been pointed out above, proves Theorem 6 .

§ 5. On the order of magnitude of $\nu_{k}(x)$

We denote again by $\nu_{k}(x)$ the number of occurrences of the number k ($k=0,1, \ldots$) in the sequence $\left\{\varepsilon_{n}(x)\right\}$.

In this \S we prove
THEOREM 7. Let $\left\{q_{n}\right\}$ be an arbitrary sequence of integers $\left(q_{n} \geqq 2\right)$ for which $\sum_{k=1}^{\infty} \frac{1}{q_{n}}<+\infty$. If C is an arbitrary positive number, then for almost all x

$$
\begin{equation*}
v_{k}(x) \geqq \frac{\log k}{\log \log k}+\frac{\log k \cdot \log \log \log k}{(\log \log k)^{2}}-C \frac{\log k}{(\log \log k)^{2}} \tag{5.1}
\end{equation*}
$$

holds at most for a finite number of values of k.
REMARK. It is remarkable, that the growth of $v_{k}(x)$ depends only so weakly on the order of magnitude of q_{n}, that such an estimate as furnished by Theorem 7 can be given for all sequences q_{n}. The result of Theorem 7 is best possible as is shown by

THEOREM 8. If $g(k)$ is an arbitrary sequence of numbers tending to $+\infty$, one can choose the sequence $\left\{q_{n}\right\}$ so that $\sum_{u=1}^{\infty} \frac{1}{q_{n}}<+\infty$ and

$$
\begin{equation*}
v_{k}(x) \geqq \frac{\log k}{\log \log k}+\frac{\log k \cdot \log \log \log k}{(\log \log k)^{2}}-g(k) \frac{\log k}{(\log \log k)^{2}} \tag{5.2}
\end{equation*}
$$

is satisfied for almost all x for an infinity of values of k.

Proof of Theorem 7. We have by (2.7) for $N \geqq 1$
and thus putting

$$
\begin{equation*}
r_{k}=\sum_{\prime_{n} * k} \frac{1}{q_{n}} \tag{5.4}
\end{equation*}
$$

we have

$$
\begin{equation*}
\mathbf{P}\left(y_{k}(x) \geqq N\right) \geqq \sum_{k=N}^{\infty} \frac{r_{k}^{*}}{S!} . \tag{5.5}
\end{equation*}
$$

Let $d>0$ be an arbitrary positive number, and choose k_{l} so large that for $k \geqq k_{d}$ we should have $r_{k} \leqq e^{-\lambda}$; then we obtain for $k \geqq k_{d}$

$$
\begin{equation*}
\mathbf{P}\left(v_{k}(x) \geqq N\right) \leqq \frac{2 e^{-x_{d}}}{N!} . \tag{5.6}
\end{equation*}
$$

Thus if

$$
\begin{equation*}
N(k)=\frac{\log k}{\log \log k}+\frac{\log k \cdot \log \log \log k}{(\log \log k)^{2}}-\frac{C \log k}{(\log \log k)^{2}} \tag{5.7}
\end{equation*}
$$

we have

$$
\begin{equation*}
\sum_{k=k_{d}}^{\infty} \mathbf{P}\left(v_{k}(x) \geqq N(k)\right) \leqq 2 \sum_{k=k_{i}}^{\infty} \frac{e^{-\lambda x(k)}}{N(k)!} . \tag{5.8}
\end{equation*}
$$

As by Stirling's formula

$$
\begin{equation*}
\log N(k)!=\log k-\frac{(C+1) \log k}{\log \log k}+O\left(\frac{\log k(\log \log \log k)^{2}}{(\log \log k)^{2}}\right) \tag{5.9}
\end{equation*}
$$

it follows

$$
\begin{equation*}
\mathbf{P}\left(\nu_{k}(x) \geqq N(k)\right) \leqq \frac{e^{\left((\kappa+1-k) \frac{\log k}{\log \log k}+o\left(\frac{\log k(\log \log \log k))^{2}}{(\log \log k)^{k}}\right)\right.}}{k} . \tag{5,10}
\end{equation*}
$$

It follows by choosing $d>C+1$ that the series (5.8) converges. Thus we may apply Lemma A, and Theorem 7 is proved.

Proof of Theorem 8. It is easy to see that for $k \neq l$

$$
\begin{equation*}
\mathbf{P}\left(v_{l}(x) \geqq N, v_{l}(x) \geqq M\right) \leqq \mathbf{P}\left(v_{k}(x) \geqq N\right) \mathbf{P}\left(v_{l}(x) \geqq M\right) \tag{5.11}
\end{equation*}
$$

It follows by Corollary 2 to Lemma C that if $N_{1}(k)$ is chosen in such a manner that the series

$$
\begin{equation*}
\sum_{k=1}^{\infty} \mathbf{P}\left(r_{k}(x) \geqq N_{1}(k)\right) \tag{5.12}
\end{equation*}
$$

diverges, then $\nu_{k}(x) \geqq N_{\mathrm{t}}(k)$ for almost all x for an infinity of values of k.

But if

$$
\begin{equation*}
N_{1}(x)=\frac{\log k}{\log \log k}+\frac{\log k(\log \log \log k)}{(\log \log k)^{2}}-g(k) \frac{\log k}{(\log \log k)^{2}} \tag{5.13}
\end{equation*}
$$

then

$$
\begin{equation*}
\mathbf{P}\left(v_{k}(x) \geqq N_{1}(k)\right) \geqq L_{1} \cdot \frac{r_{k}^{N_{i}\left(k_{k}\right)}}{N_{1}(k)!} \geqq L_{2} \frac{e^{\frac{\mu(k) \log k}{\log \log k}} r_{k}^{X_{i}(k)}}{k} \tag{5.14}
\end{equation*}
$$

where L_{1}, L_{2} are positive constants. Thus the series (5.12) is divergent provided that

$$
\begin{equation*}
g(k)>2 \log \frac{1}{r_{k}} . \tag{5.15}
\end{equation*}
$$

But clearly if $g(k)$ is given such that $g(k) \rightarrow+\infty$, the sequence $\left\{q_{n}\right\}$ can be chosen so that $r_{l i}$ should tend to 0 arbitrarily slowly, e. g. that we should have

$$
\begin{equation*}
r_{k} \geqq e^{-\frac{\eta(k)}{\underline{2}}} \tag{5.16}
\end{equation*}
$$

which implies (5.15). Thus Theorem 8 is proved.

References

[1] A. Rényı, A new axiomatic theory of probability, Acta Math. Acad. Sci. Hung., 6 (1955), 185-336.
[2] A. Rényı, On the distribution of the digits in Cantor's series, Matematikai Lapok, 7 (1956), $77-100$. (In Hungarian with summaries in English and Russian.)
[3] P. Erlös-A. Rényı, Some further statistical picperties of the digits in Cantor's series, Acta Math. Acad. Sci. Hung., 10 (1959), 21-29.
[4] P. Turán, On the distribution of "digits" in Cantor-systems, Matematikai Lapok, 7 (1956), 71-76. (In Hungarian with summaries in English and Russian.)
[5. E. Marczewski, Remarks on the Cantor-expansions of real numbers, Matematikai Lapok, 7 (1956), 212-213. (In Hungarian.)
[6] A. Kolmogoroff, Grundbegriffe der Wahrscheinlichkeitsrechnung, Ergebnisse der Mathematik, (Springer, Berlin, 1933).
[7] É. Borel, Sur les probabilités dénombrables et leurs appications arithmétiques, Rendiconti del Circolo Matematico di Palermo, 26 (1909), 247-271.
[8] F. P. Cantelli, La tendenza ad un limite nel senzo del calcolo della probabilita, Rendiconti del Circolo Matematico di Palermo, 16 (1916), 191-201.

