ON CANTOR'S SERIES WITH CONVERGENT $\sum \frac{1}{a_{i}}$

By

P. ERDŐS and A. RÉNYI Mathematical Institute, Eötvös Loránd University, Budapest (Received 6 April, 1959)

Introduction

Let $\{q_n\}$ be an arbitrary sequence of positive integers subjected only to the restriction $q_n \ge 2$ (n = 1, 2, ...). Then every real number x $(0 \le x < 1)$ can be represented in the form of *Cantor's series*

(1)
$$x = \sum_{n=1}^{\infty} \frac{\varepsilon_n(x)}{q_1 q_2 \dots q_n}$$

where the *n*-th "digit" $\varepsilon_n(x)$ may have the values $0, 1, \ldots, q_n - 1$. The digits $\varepsilon_n(x)$ can be obtained successively starting with $r_n(x) = x$, by the algorithm

(2)
$$\varepsilon_n(x) = [q_n r_{n-1}(x)], \quad r_n(x) = (q_n r_{n-1}(x))$$

where [t] denotes the integral part, and (t) the fractional part of the real number t.

In some previous papers ([1], [2], [3]) the statistical properties of the digits $\varepsilon_n(x)$ valid for almost all x, have been discussed, for the cases when $\sum_{n=1}^{\infty} \frac{1}{q_n}$ is divergent and when it is convergent. (See also [4] and [5]). In the present paper we consider mainly the case when $\sum_{n=1}^{\infty} \frac{1}{q_n}$ is convergent. This case has been considered in [2] from another point of view. The point of view adopted in the present paper is to consider properties of the infinite sequence $\{\varepsilon_n(x)\}$ as a whole; this point of view has led to the formulation and solution of a quite surprising number of questions, which have not been investigated up to now. Most of these questions are interesting only in the case, when $\sum_{n=1}^{\infty} \frac{1}{q_n} < +\infty$; some of them can be raised only under this condition.

Our main tool will be a generalization of the *Borel*—*Cantelli* lemma, which is proved in § 1. Our results on *Cantor*'s series are contained in §§ 2, 3, 4, and 5.

§ 1. Generalization of the Borel-Cantelli lemma

Let $[X, \mathfrak{A}, \mathbf{P}]$ be a probability space in the sense of KOLMOGOROV [6], i. e. X an arbitrary set, whose elements are called "elementary events" and denoted by x, \mathfrak{A} a σ -algebra of subsets of X, whose elements are denoted by capital letters (e. g. A, B, etc.), and called events, and $\mathbf{P}(A)$ ($A \in \mathfrak{A}$) a probability measure in X and on \mathfrak{A} . We shall denote by A + B resp. ABthe union resp. the intersection of the sets A and B, and by \overline{A} the complementary set of A. We shall denote random variables (i. e. functions defined on X and measurable with respect to \mathfrak{A}) by greek letters, and denote by $\mathbf{M}(\xi)$ resp. $\mathbf{D}^2(\xi)$ the mean value resp. variance of the random variable $\xi = \xi(x)$. i. e. we put $\mathbf{M}(\xi) = \int_{X} \xi(x) d\mathbf{P}$ and $\mathbf{D}^2(\xi) = \mathbf{M}(\xi^2) - \mathbf{M}^2(\xi)$. If $A_n \subset X$ (n = 1, 2, ...), we denote as usual by $\lim_{n \to +\infty} A_n$ the set consisting of those elements x of X which belong to infinitely many A_n , and by $\lim_{n \to +\infty} A_n$ the set of those elements x of X which belong to A_n for all $n \ge n_0(x)$.

The events A and B are called independent if $\mathbf{P}(AB) = \mathbf{P}(A)\mathbf{P}(B)$. A finite or infinite sequence $\{A_n\}$ of events such that any two events of the sequence are independent, is called a sequence of pairwise independent events. If moreover we have $\mathbf{P}(A_{n_1}A_{n_2}...A_{n_r}) = \mathbf{P}(A_{n_1})\mathbf{P}(A_{n_2})...\mathbf{P}(A_{n_r})$ for any *r*-tuple of different events $A_{n_1}, ..., A_{n_r}$ chosen from the sequence A_n for all r = 2, 3, ..., we call the sequence $\{A_n\}$ a sequence of completely independent events.

We shall often use the following well-known

LEMMA A. If $\{A_n\}$ is an arbitrary sequence of events belonging to a probability space $[X, \mathfrak{A}, \mathbf{P}]$ such that $\sum_{n=1}^{\infty} \mathbf{P}(A_n) < +\infty$, then with probability 1 only a finite number of the events A_n occur simultaneously, i. e. $\mathbf{P}(\overline{\lim} A_n) = 0$.

LEMMA A is nothing else as a special case of *Beppo Levi*'s theorem. As a matter of fact, if α_n is a random variable which is equal to 1 if A_n occurs and to 0 if A_n does not occur, then the assertion, that only a finite number of the A_n occur with probability 1 is equivalent with the statement that $\sum_{n=1}^{\infty} \alpha_n$ converges with probability 1 and the condition $\sum_{n=1}^{\infty} \mathbf{P}(A_n) < +\infty$ can be written in the form $\sum_{n=1}^{\infty} \mathbf{M}(\alpha_n) < +\infty$.

The condition $\sum_{n=1}^{\infty} \mathbf{P}(A_n) < +\infty$ of Lemma A is under certain restric-

ON CANTOR'S SERIES WITH CONVERGENT
$$\sum \frac{1}{q_n}$$
 95

tions not only sufficient but also necessary for $\mathbf{P}(\lim_{n\to+\infty}A_n)=0$. For example the following result is classical:

LEMMA B. If $\{A_n\}$ is a sequence of completely independent events and $\sum_{n=1}^{\infty} \mathbf{P}(A_n) = +\infty$, then with probability 1 infinitely many among the events A_n occur simultaneously, i. e. $\mathbf{P}(\varlimsup A_n) = 1$.

Lemma A and B together are known under the name: the lemma of Borel-Cantelli ([7], [8]).

In this § we shall prove the following generalization of Lemma B.

LEMMA C. Let $\{A_n\}$ be a sequence of events such that $\sum_{n=1}^{\infty} \mathbf{P}(A_n) = +\infty$ and

(1.1)
$$\lim_{n \to +\infty} \frac{\sum_{k=1}^{n} \sum_{l=1}^{n} \mathbf{P}(A_{l}, A_{l})}{\left(\sum_{k=1}^{n} \mathbf{P}(A_{k})\right)^{2}} = 1.$$

It follows that with probability 1 infinitely many among the events A_n occur simultaneously, i. e. $\mathbf{P}(\overline{\lim_{n \to +\infty}} A_n) = 1$.

PROOF OF LEMMA C. Let us define α_n as above, i. e. $\alpha_n = 1$ or = 0 according to which the event A_n occurs or not. Then we have $\mathbf{M}(\alpha_k) = \mathbf{P}(A_k)$ and $\mathbf{M}(\alpha_k \alpha_l) = \mathbf{P}(A_k A_l)$ and thus putting $\eta_n = \sum_{k=1}^n \alpha_k$ we have

$$\frac{\sum_{k=1}^{n}\sum_{l=1}^{n}\mathbf{P}(A_{k}A_{l})}{\left(\sum_{k=1}^{n}\mathbf{P}(A_{k})\right)^{2}}=\frac{\mathbf{M}(\eta_{a}^{2})}{\mathbf{M}^{2}(\eta_{a})}$$

Thus condition (1.1) can be written in the equivalent form

(1.2)
$$\lim_{n \to +\infty} \frac{\mathbf{M}(\eta_n^2)}{\mathbf{M}^2(\eta_n)} = 1$$

or as $\mathbf{M}(\eta_n^2) = \mathbf{D}^2(\eta_n) + \mathbf{M}^2(\eta_n)$, also in the form

(1.3)
$$\lim_{n \to +\infty} \frac{\mathbf{D}^2(\eta_n)}{\mathbf{M}^2(\eta_n)} = 0.$$

Now by the inequality of Chebyshev according to which for any random

variable η we have

(1.4)
$$\mathbf{P}(|\eta - \mathbf{M}(\eta)| \ge \lambda \mathbf{D}(\eta)) \le \frac{1}{\lambda^2} \quad \text{if} \quad \lambda > 1,$$

we have for any ε with $0 < \varepsilon < 1$

(1.5)
$$\mathbf{P}(\eta_n \leq (1-\varepsilon)\mathbf{M}(\eta_n)) \leq \frac{\mathbf{D}^2(\eta_n)}{\varepsilon^2 \mathbf{M}^2(\eta_n)}$$

If (1.3) holds, we can find a sequence n_k $(n_1 < n_2 < \cdots)$ such that

(1.6)
$$\sum_{k=1}^{\infty} \frac{\mathbf{D}^2(\eta_{n_k})}{\mathbf{M}^2(\eta_{n_k})} < + \infty.$$

It follows from (1.5) and (1.6) that

(1.7)
$$\sum_{k=1}^{\infty} \mathbf{P}(\eta_{n_k} \leq (1-\varepsilon) \mathbf{M}(\eta_{n_k})) < +\infty.$$

Using Lemma A it follows that with probability $1 r_{n_k} \ge (1-\epsilon)\mathbf{M}(r_{n_k})$ except for a finite number of values of k. As by supposition $\lim_{k \to +\infty} \mathbf{M}(r_{n_k}) = +\infty$, it follows that r_{n_k} tends to $+\infty$ with probability 1, which implies that $\mathbf{P}(\overline{\lim_{n \to +\infty}} A_n) = 1$, what was to be proved.

REMARK. Clearly the condition (1.1) is satisfied if the events A_n are pairwise independent and $\sum_{n=1}^{\infty} \mathbf{P}(A_n) = +\infty$, because in this case

(1.8)
$$\sum_{k=1}^{n} \sum_{l=1}^{n} \mathbf{P}(A_k A_l) = \left(\sum_{k=1}^{n} \mathbf{P}(A_k)\right)^2 + \sum_{k=1}^{n} \mathbf{P}(A_k) \left(1 - \mathbf{P}(A_k)\right)$$

for all *n*. Thus condition (1, 1) can be regarded as a condition ensuring that the events A_n should be in a certain sense pairwise weakly dependent and Lemma C contains as a particular case the following

COROLLARY 1. If the events A_n are *pairwise* independent, and $\sum \mathbf{P}(A_n) = +\infty$, then with probability 1 infinitely many of the events A_n occur simultaneously.

COROLLARY 2. If $\mathbf{P}(A_k A_l) \leq \mathbf{P}(A_k) \mathbf{P}(A_l)$ for $k \neq l$ (i. e. if the events A_n are pairwise negatively correlated) and $\sum_{n=1}^{\infty} \mathbf{P}(A_n) = +\infty$ then with probability 1 infinitely many of the events A_n occur simultaneously.

PROOF OF COROLLARY 2. If $\mathbf{P}(A_k A_l) \leq \mathbf{P}(A_k) \mathbf{P}(A_l)$ for $k \neq l$ we have

(1.9)
$$\sum_{k=1}^{n} \sum_{l=1}^{n} \mathbf{P}(A_{k}A_{l}) \leq \left(\sum_{k=1}^{n} \mathbf{P}(A_{k})\right)^{2} + \sum_{k=1}^{n} \mathbf{P}(A_{k}) (1-\mathbf{P}(A_{k}))$$

thus condition (1.1) is satisfied provided that the series $\sum_{n=1}^{\infty} \mathbf{P}(A_n)$ is divergent.

§ 2. On the frequency of the digits in Cantor's series

Let us consider the probability space $[X, \mathcal{A}, \mathbf{P}]$ where X is the interval [0, 1), \mathcal{A} the family of Lebesgue measurable subsets of X and $\mathbf{P}(A)$ the ordinary Lebesgue measure of $A \in \mathcal{A}$. Thus the Lebesgue measure of a measurable subset A of the interval [0, 1) is interpreted as the probability of a random point falling into A. With this interpretation the digits $\varepsilon_n(x)$ as well as any other measurable functions f(x) of x will be considered as random variables. Clearly we have

(2.1)
$$\mathbf{P}(\varepsilon_n(x) = k) = \frac{1}{q_n} \text{ for } k = 0, 1, \dots, q_n - 1,$$

further if $n_1 < n_2 < \cdots < n_r$ ($r = 1, 2, \ldots$)

(2.2)
$$\mathbf{P}(\varepsilon_{n_{1}}(x) = k_{1}, \dots, \varepsilon_{n_{r}}(x) = k_{r}) = \frac{1}{q_{n_{1}}q_{n_{2}}\dots q_{n_{r}}}$$
if $0 \leq k_{j} \leq q_{n_{j}} - 1$ for $j = 1, \dots, r$.

(2.2) expresses the fact, that the random variables $\varepsilon_u(x)$ are completely independent.

Let us suppose from now on that

$$\sum_{n=1}^{\infty} \frac{1}{q_n} < +\infty$$

except when the contrary is explicitly stated.

By (2.2) and (2.3) it follows that for any $k = 0, 1, \ldots$ we have

(2.4)
$$\sum_{n=1}^{\infty} \mathbf{P}(\varepsilon_n(x) = k) < +\infty.$$

Moreover it follows from (2, 3) that for any positive integer N

(2.5)
$$\sum_{n=1}^{\infty} \mathbf{P}(\varepsilon_n(x) < N) = \sum_{q_n \leq N} 1 + \sum_{N < q_n} \frac{N}{q_n} < +\infty.$$

Thus the sequence $\varepsilon_n(x)$ tends to $+\infty$ for almost all x. As a matter of fact, by Lemma A for almost all x and for any $N \varepsilon_n(x) < N$ only for a finite number of values of n, which is equivalent with the assertion that $\lim_{n \to +\infty} \varepsilon_n(x) = +\infty$ for almost all x.

By Lemma A it follows from (2. 4) that for almost all x each number k occurs only a finite number of times in the sequence $\varepsilon_n(x)$; thus if we denote by $v_{k,n}(x)$ (k = 0, 1, ...; n = 1, 2, ...) the number of occurrences of the number k in the sequence $\varepsilon_n(x), \varepsilon_{n+1}(x), ...$ then $v_{k,n}(x)$ is an almost everywhere finite and measurable function, i. e. a well defined random variable. We shall write for the sake of simplicity $v_{k,-1}(x) = v_k(x)$.

It is quite easy to determine the probability distribution of $v_{k,a}(x)$. Putting

(2.6)
$$P_{k,n}(s) = \mathbf{P}(\nu_{k,n}(x) = s)$$

we have evidently by (2.2)

(2.7)
$$P_{k,n}(s) = \sum_{\substack{u \leq u_1 < u_2 < \ldots < u_s \\ q_{u_r} > k}} \frac{1}{q_{u_1} q_{u_2} \ldots q_{u_s}} \prod_{\substack{j \neq u_r, 1 \leq r \leq s \\ q_j > k}} \left(1 - \frac{1}{q_j} \right).$$

It follows from (2.7) that

(2.8)
$$P_{k,n}(s) = \prod_{\substack{q_j = k \\ j \ge n}} \left(1 - \frac{1}{q_j} \right) \left(\sum_{\substack{n \le u_1 \\ q_{n_r} = k \\ (r=1, 2, \dots, n)}} \frac{1}{(q_{u_1} - 1) \dots (q_{n_s} - 1)} \right)$$

and thus we obtain for the generating function of the random variable $r_{k,n}$ the simple formula

(2.9)
$$\sum_{s=0}^{\infty} \mathsf{P}_{k,s}(s) \, z^s = \prod_{\substack{q_j > k \\ j \ge n}} \left(1 + \frac{z-1}{q_j} \right).$$

(The special case n = 1 of formula (2.9) is given already in [2].) Clearly

(2.10)
$$\mathbf{M}(\nu_{k,n}(\mathbf{x})) = \sum_{j=n}^{\infty} \mathbf{P}(\varepsilon_j(\mathbf{x}) = k) = \sum_{\substack{q_j > k \\ j \ge n}} \frac{1}{q_j} < +\infty.$$

Thus the mean value of the occurrence of each digit k (k=0, 1, ...) is finite. Now let us put

$$(2.11) m_n(x) = \sup_{(k)} v_{k,n}(x)$$

$$(2.12) m(x) = \lim_{u \to +\infty} m_u(x).$$

(As $m_n(x) \ge m_{n+1}(x) \ge 0$ the limit (2.12) always exists.) $m_n(x)$ and m(x) are generalized random variables in the sense that they may take on the value $+\infty$ on a set of positive measure. Clearly m(x) is a Baire-function of the independent random variables $\varepsilon_n(x)$ (n = 1, 2, ...) which does not change its value if a finite number of the $\varepsilon_n(x)$ change their value. Thus, according to the law of 0 or 1 (see [6]) the probability $\mathbf{P}(m(x) = s)$ is for any s = 1, 2, ... either 0 or 1. Similarly the probability $\mathbf{P}(m(x) = +\infty)$ is either 0 or 1.

Our first result decides when these two possibilities occur.

THEOREM 1. Let us suppose that $q_u \leq q_{u+1}$ and $\sum_{n=1}^{\infty} \frac{1}{q_n} < +\infty$ and put

(2.13)
$$R_n = \sum_{j=n}^{\infty} \frac{1}{q_j} \qquad (n = 1, 2, \ldots)$$

If $\sum_{n=1}^{\infty} R_n^{s-1} = +\infty$ but $\sum_{n=1}^{\infty} R_n^s < +\infty$ for some positive integer s, then we have (2.14) $\mathbf{P}(m(x) = s) = 1.$

We have

(2.15) $P(m(x) = +\infty) = 1$

if and only if $\sum_{n=1}^{\infty} R_n^s = +\infty$ for all $s = 1, 2, \ldots$.

REMARK 1. First of all, the assumption that $q_n \ge q_{n+1}$ does not restrict the generality, as clearly this condition can be fulfilled always by reordening the q_n according to their size, and this reordening, though affects the expansion (1), does not affect the joint distribution of the random variables $\varepsilon_n(x)$ and thus does not influence such properties of the sequence $\varepsilon_n(x)$ which depend only on the values and not on the arrangement of these variables. Especially such a reordening does not affect the distribution of the variable m(x), because m(x) = s means that there can be found an infinity of s-tuples of different positive integers n_1, n_2, \ldots, n_s such that $\varepsilon_{n_1}(x) = \varepsilon_{n_s}(x) =$ $= \cdots = \varepsilon_{n_s}(x)$ but only a finite number of s + 1-tuples $m_1, m_2, \ldots, m_{s+1}$ such that $\varepsilon_{m_1}(x) = \varepsilon_{m_s}(x) = \cdots = \varepsilon_{m_{s+1}}(x)$.

REMARK 2. Let us put $\mu(x) = \overline{\lim_{k \to +\infty}} v_k(x)$. It is easy to see that $\mathbf{P}(m(x) = \mu(x)) = 1$. As a matter of fact, if $m(x) \ge s$, there are an infinity of s-tuplet, n_1, \ldots, n_s such that $\varepsilon_{n_1}(x) = \varepsilon_{n_2}(x) = \cdots = \varepsilon_{n_s}(x)$; as we have $\lim_{k \to +\infty} \varepsilon_{n_s}(x) = +\infty$ for almost all x, this means that $\mu(x) \ge s$. Conversely, if $\mu(x) \ge s$ then there are an infinity of s-tuples of equal digits, and so $m(x) \ge s$. Thus the assertions of Theorem 1 hold for $\mu(x)$ instead of m(x) too.

PROOF OF THEOREM 1. Clearly to show that

$$(2.16) \qquad \qquad \sum_{n=1}^{\infty} R_n^s < +\infty$$

implies $m(x) \leq s$ for almost all x, it suffices to prove that the series

(2.17)
$$\sum_{1 \leq n_1 < n_2 < \dots < n_{k+1}} \mathbf{P}(\varepsilon_{n_1}(x) = \varepsilon_{n_2}(x) = \dots = \varepsilon_{n_{k+1}}(x))$$

converges. As a matter of fact, if the series (2.17) converges, then by 7*

Lemma A for almost all x only a finite number of the events $\varepsilon_{n_1}(x) = \cdots = \varepsilon_{n_{s+1}}(x)$ will occur, which implies $m(x) \leq s$. But if $n_1 < n_2 < \cdots < n_{s+1}$, then

(2.18)
$$\mathbf{P}(\varepsilon_{n_1}(x) = \varepsilon_{n_2}(x) = \cdots = \varepsilon_{n_{s+1}}(x) = \frac{1}{q_{n_2}q_{n_3}\cdots q_{n_{s-1}}}$$

and thus the series (2.17) is equal to the series

(2.19)
$$\sum_{1 \le v_2 = v_3 + \dots \le v_{s+1}} \frac{n_2 - 1}{q_{u_2} \dots q_{u_{s+1}}}$$

Now we have clearly

(2.20)
$$\sum_{1 \ldots n_2 \cdots n_{s+1}} \frac{n_2 \cdots 1}{q_{n_2} \cdots q_{n_{s+1}}} \leq \frac{1}{s!} \sum_{n=1}^{\infty} R_n^s.$$

Thus if (2.16) holds, then the series (2.17) converges, which proves our assertion, that (2.16) implies $m(x) \leq s$ for almost all x. Let us suppose now that

(2.21)
$$\sum_{n=1}^{\infty} R_n^{n+1} = +\infty.$$

Let us denote by $A_{n_1n_2...n_8}$ the event $\varepsilon_{n_1}(x) = \varepsilon_{n_2}(x) = \cdots = \varepsilon_{n_8}(x)$ $(1 \le n_1 < n_2 < \cdots < n_8)$. Then as above, it follows that

N

(2.22)
$$\sum_{1 \leq u_1 < u_2 < \ldots < u_s} \mathbf{P}(A_{u_1 u_2 \ldots u_s}) = \sum_{u=2}^{\infty} \sum_{u \leq u_2 < u_3 < \ldots < u_s} \frac{1}{q_{u_2} \ldots q_{u_s}}.$$

Now we use the inequality

(2.23)
$$\sum_{1 \le i_1 < i_2 < \ldots < i_k \le N} a_{i_1} a_{i_2} \ldots a_{i_k} \ge \frac{1}{k!} \left(\sum_{i=1}^N a_i \right)^k \left(1 - \binom{k}{2} \frac{\sum_{i=1}^N a_i^2}{\left(\sum_{i=1}^N a_i \right)^2} \right)$$

valid for any sequence a_i of positive numbers and for k = 1, 2, ... (2.23) is trivial for k = 1 and k = 2 and follows for arbitrary k easily by induction. It follows that

(2.24a)
$$\sum_{n \leq u_2 < v_3 < \ldots < u_s} \frac{1}{q_{n_2} \ldots q_{n_s}} \geq \frac{R_n^{s-1}}{(s-1)!} \quad \text{if } s=2$$

and

(2. 24b)
$$\sum_{n \leq u_2 < u_3 < \ldots < u_s} \frac{1}{q_{u_2} q_{u_3} \ldots q_{u_s}} \geq \frac{R_n^{s-1}}{(s-1)!} \left(1 - \binom{s-1}{2} \frac{\sum_{j=u}^{\infty} \frac{1}{q_j^2}}{R_n^2} \right) \quad \text{if } s \geq 3.$$

As evidently

$$\sum_{n=1}^{\infty} R_n^{s-3} \cdot \sum_{j=n}^{\infty} \frac{1}{q_j^2} \le R_1^{s-3} \sum_{j=1}^{\infty} \frac{j}{q_j^2}$$

ON CANTOR'S SERIES WITH CONVERGENT $\sum \frac{1}{q_n}$

and the series $\sum_{j=1}^{\infty} \frac{j}{q_j^2}$ is convergent, because $\sum_{j=1}^{\infty} \frac{j}{q_j^2} = \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \frac{1}{2} \le \sum_{j=1}^{\infty} \frac{1}{2} \le \left(\sum_{j=1}^{\infty} \frac{1}{2}\right)^2$

$$\sum_{j=1}^{n} \frac{j}{q_{j}^{2}} = \sum_{n=1}^{n} \sum_{j=n}^{n} \frac{1}{q_{j}^{2}} \leq \sum_{n=1}^{n} \frac{1}{q_{n}} \sum_{j=n}^{n} \frac{1}{q_{j}} \leq \left(\sum_{n=1}^{n} \frac{1}{q_{n}}\right)^{2}$$

it follows from (2.21), (2.22) and (2.24a) resp. (2.24b) that

(2.25)
$$\sum_{1\leq n_2,\dots,n_s} \mathbf{P}(A_{n_1n_2\dots,n_s}) = +\infty.$$

We shall apply now Lemma C For this purpose we have to verify the fulfillment of condition (1.1).

Let us arrange the s-tuples of positive integers $n_1 < n_2 < \cdots < n_s$ in lexicographic order. We have evidently, putting

(2.26)
$$B_N^{(s)} = \sum_{n_1 \cdots n_2} \sum_{\dots \cdots \dots \dots n_s \leq N} \mathbf{P}(A_{n_1 n_2 \dots n_s}),$$

(2.27)
$$\sum_{\substack{a_1 \leq a_2 \leq \ldots \leq n_s \leq N \\ m_1 \leq m_2 \leq \ldots \leq m_s \leq N}} \mathbf{P} \left(A_{a_1 \ldots a_s} A_{m_1 \ldots m_s} \right) \leq (B_N^{(s)})^2 + \sum_{k=1}^s \binom{s}{k} \binom{2s-k}{s} B_N^{(2s-k)}.$$

Thus we have

(2.28)
$$\frac{\sum_{\substack{n_1 \dots n_s \leq N \\ m_1 \dots m_s \leq N}} \mathbf{P}(A_{n_1 \dots n_s} A_{m_1 \dots m_s})}{\left(\sum_{n_1 \dots n_s \leq N} \mathbf{P}(A_{n_1 \dots A_{n_s}})\right)^2} \leq 1 + \frac{\sum_{k=1}^s \binom{s}{k} \binom{2s-k}{s}}{B_N^{(s)}} \frac{R_1^{2s-k}}{(2s-k)!}}{B_N^{(s)}}$$

which shows, that condition (1.1) is satisfied, because by supposition $\lim_{N \to \infty} B_N^{(s)} = +\infty$.

Thus we may apply Lemma C and it follows, that with probability 1 an infinity of the events $A_{n_1...n_s}$ occur simultaneously. But this means that $\mathbf{P}(m(x) \ge s) = 1$. Thus if (2. 16) and (2. 21) both hold, we have $\mathbf{P}(m(x) \le s) =$ $= \mathbf{P}(m(x) \ge s) = 1$ and thus $\mathbf{P}(m(x) = s) = 1$.

On the other hand if (2. 21) holds, for s = 2, 3, ... then $P(m(x) \ge s) = 1$ for s = 2, 3, ... and thus $P(m(x) = +\infty) = 1$.

An other question, related with Theorem 1 is the following: how many of the first N digits $\varepsilon_i(x), \ldots, \varepsilon_N(x)$ are different? If we denote this number by $D_N(x)$ and by $C_{N,k}(x)$ the number of equal k-tuples among the first N digits, we have clearly

$$(2.29) N-C_{N,2}(\mathbf{x}) \leq D_N(\mathbf{x}) \leq N.$$

It follows by what has been proved above that $\frac{D_N(x)}{N}$ tends stochastically to 1.

By a somewhat more refined argument it can be proved that $\frac{D_N(x)}{N}$ tends almost everywhere to 1, i. e. the following theorem is valid:

THEOREM 2. Suppose $\sum_{n=1}^{\infty} \frac{1}{q_n} < +\infty$. Let $D_N(x)$ denote the number of different numbers in the sequence $\varepsilon_1(x), \ldots, \varepsilon_N(x)$. Then for almost every x we have

(2.30)
$$\lim_{N\to+\infty}\frac{D_N(x)}{N}=1.$$

PROOF. With regards to (2.29) to prove Theorem 2 it suffices to show that

(2.31)
$$\lim_{N \to +\infty} \frac{C_{N,2}(x)}{N} = 0$$

for almost every x. Now we have $\mathbf{M}(C_{N,2}(x)) = \sum_{n=1}^{N} \frac{n}{q_n} = Nh_N$ where $\lim_{N \to +\infty} h_N = 0$ further $\mathbf{D}^2(C_{N,2}(x)) \leq KNh_N$ where K is a constant. It follows by the inequality of *Chebyshev* that if $\varepsilon > 0$ and N is so large that $h_N < \varepsilon/2$, we have

(2.32)
$$\mathbf{P}(C_{N,2}(x) > \varepsilon N) < \frac{2Kh_N}{\varepsilon N}.$$

It follows that

(2.33)
$$\sum_{n=1}^{\infty} \mathbf{P}(C_{n^2,2}(x) > \varepsilon n^2) < +\infty.$$

It follows by Lemma A that

(2.34)
$$\lim_{n \to +\infty} \frac{C_{n^2, 2}(x)}{n^2} = 0$$

for almost every x, and therefore by (2.29)

(2.35)
$$\lim_{n \to +\infty} \frac{D_{n^2}(x)}{n^2} = 1$$

for almost every x. But clearly if $n^2 < N < (n+1)^2$ we have

(2.36)
$$\frac{D_{n^2}(\mathbf{x})}{n^2} \cdot \left(\frac{n}{n+1}\right)^2 \leq \frac{D_N(\mathbf{x})}{N} \leq 1$$

and thus it follows that (2.30) holds for almost all x. This proves Theorem 2.

REMARK. For the validity of Theorem 2 it is sufficient — as can be seen from the above proof — to suppose instead of the convergence of $\sum_{n=1}^{\infty} \frac{1}{q_n}$ only that $\lim_{N \to +\infty} \frac{1}{N} \sum_{n=1}^{N} \frac{n}{q_n} = 0$.

§ 3. Some other statistical properties of the digits

It seems plausible that if q_{μ} tends very rapidly to $+\infty$ the sequence $\varepsilon_{\mu}(x)$ of digits will be increasing from some point onwards. This is in fact true, as is shown by the following

THEOREM 3. The necessary and sufficient condition for the sequence $\varepsilon_n(x)$ to be increasing for $n \ge n_0(x)$ for almost all x is that the condition

$$(3.1) \qquad \qquad \sum_{n=1}^{\infty} \frac{q_n}{q_{n+1}} < + \infty$$

should hold.

PROOF. Clearly

(3.2)
$$\mathbf{P}(\varepsilon_{n+1}(x) \leq \varepsilon_n(x)) = \sum_{j=0}^{q_n-1} \frac{q_n-j}{q_nq_{n+1}} = \frac{q_n+1}{2q_{n+1}}.$$

Thus if (3.1) holds, then

(3.3)
$$\sum_{n=1}^{\infty} \mathbf{P}(\varepsilon_{n+1}(x) \leq \varepsilon_n(x)) < +\infty$$

and therefore by Lemma A for almost all x, $\varepsilon_{n+1}(x) > \varepsilon_n(x)$ except for a finite number of values of *n*. This proves the first part of Theorem 3.

As regards the second part, let us suppose

$$(3.4) \qquad \qquad \sum_{n=1}^{\infty} \frac{q_n}{q_{n+1}} = +\infty$$

In this case

$$(3.5) \qquad \sum_{n=1}^{N}\sum_{m=1}^{N}\mathbf{P}(\varepsilon_{n+1}(x) \leq \varepsilon_n(x), \varepsilon_{m+1}(x) \leq \varepsilon_m(x)) \leq \left(\sum_{n=1}^{N-1}\mathbf{P}(\varepsilon_{n+1}(x) \leq \varepsilon_n(x)\right)^2 + \\ + 2\sum_{n=1}^{N-2}\mathbf{P}(\varepsilon_{n+2}(x) \leq \varepsilon_n(x)) \leq \varepsilon_n(x)).$$

As

$$(3.6) \qquad \mathbf{P}(\varepsilon_{n+2}(x) \le \varepsilon_{n+1}(x) \le \varepsilon_n(x)) = \sum_{j=0}^{q_n-1} \sum_{k=j}^{q_n-1} \frac{q_n-k}{q_n q_{n+1} q_{n+2}} \le \frac{q_n}{3q_{n+1}}$$

it follows that condition (1.1) of Lemma C is fulfilled. This implies that for almost all $x \ \varepsilon_{n+1}(x) \leq \varepsilon_n(x)$ for an infinity of values of n; thus Theorem 3 is proved.

We have seen, that $\varepsilon_n(x)$ tends for almost all x to $+\infty$. One may ask what can be said about the speed with which $\varepsilon_n(x)$ increases. In this direction one can easily prove results of the following type:

THEOREM 4. $\sum_{n=1}^{\infty} \frac{1}{1+\epsilon_n(x)} < +\infty \text{ for almost all } x \text{ if and only if}$ $\sum_{n=1}^{\infty} \frac{\log q_n}{q_n} < +\infty.$

PROOF OF THEOREM 4. The proof of the sufficiency is immediate by the theorem of B. Levi, taking into account that

(3.7)
$$\mathbf{M}\left(\frac{1}{1+\varepsilon_n(x)}\right) = \frac{1}{q_n} \sum_{k=1}^{q_n} \frac{1}{k}$$

As the variables $\varepsilon_n(x)$ are completely independent, the necessity follows from the three-series theorem of *Kolmogorov* [6].

§ 4. On the set of all digits

In this § we consider the following question: what can be said about the set S(x) of those positive integers, which occur at least once in the sequence $\{\varepsilon_n(x)\}$. Clearly the probability that a given number k is not contained in S(x) is equal to $\prod_{k < q_n} \left(1 - \frac{1}{q_n}\right)$ and is thus positive for all k. Moreover, it is not difficult to find an infinite sequence of integers k_j (j = 1, 2, ...)such that with probability 1 only a finite number of elements of the sequence k_j are contained in the sequence $\varepsilon_n(x)$. As a matter of fact

(4.1)
$$\mathbf{P}(k \in S(x)) = 1 - \prod_{k < q_n} \left(1 - \frac{1}{q_n}\right)$$

and thus

$$\lim_{k \to \infty} \mathbf{P}(k \in S(x)) = 0.$$

Therefore an infinite sequence $k_1 < k_2 < \cdots < k_j < \cdots$ can be found (depending of course on the sequence q_n) such that

(4.3)
$$\sum_{j=1}^{\infty} \mathbf{P}(k_j \in S(x)) < +\infty.$$

By Lemma A our assertion follows.

Clearly we have also by the general formula

$$\mathbf{P}(AB) = \mathbf{P}(A) + \mathbf{P}(B) - \mathbf{P}(A+B)$$

and by (4.1) if k < j

(4.5)
$$\mathbf{P}(k \in S(x), j \in S(x)) = 1 + \prod_{k = q_n \leq j} \left(1 - \frac{1}{q_n}\right) \prod_{j < q_n} \left(1 - \frac{2}{q_n}\right) - \prod_{k = q_n} \left(1 - \frac{1}{q_n}\right) - \prod_{j = q_n} \left(1 - \frac{1}{q_n}\right).$$

ON CANTOR'S SERIES WITH CONVERGENT $\sum \frac{1}{q_{e}}$

As
$$\left(1-\frac{2}{q_n}\right) \leq \left(1-\frac{1}{q_n}\right)^2$$

(4.6) $\mathbf{P}(k \in S(x), j \in S(x)) \leq \mathbf{P}(k \in S(x))\mathbf{P}(j \in S(x))$

if $j \neq k$, and therefore if $\{k_j\}$ is such a sequence that (4.3) holds then by Corollary 2 of Lemma C with probability 1 S(x) contains an infinity of elements of the sequence $\{k_j\}$. Clearly if k is sufficiently large so as to ensure

(4.7)
$$\sum_{q_n \to k} \frac{1}{q_n} < \frac{1}{2}$$

we have

(4.8)
$$\sum_{q_n=k} \frac{1}{q_n} \ge 1 - \prod_{q_n=k} \left(1 - \frac{1}{q_n}\right) \ge \frac{1}{2} \sum_{q_n=k} \frac{1}{q_n}$$

and thus putting

$$K(x) = \sum_{k_j < .x} 1$$

with respect to (4.1) and (4.8) the series (4.3) is convergent or divergent according to whether the series

(4.10)
$$\sum_{j=1}^{\infty} \sum_{k_j = q_n} \frac{1}{q_n} = \sum_{n=1}^{\infty} \frac{K(q_n)}{q_n}$$

is convergent or divergent.

Thus we have proved the following

THEOREM 5. Let $k_1 < k_2 < \cdots < k_j < \cdots$ be an arbitrary infinite sequence of positive integers and define K(x) by (4.9). The set S(x) of all positive integers occurring at least once in the sequence $\{\varepsilon_n(x)\}$ contains for almost all x either a finite or an infinite number of elements of the sequence k_j according to whether the series

(4.11)
$$\sum_{n=1}^{\infty} \frac{K(q_n)}{q_n}$$

converges or diverges.

EXAMPLE. If $q_n = n^2$, then S(x) contains for almost all x only a finite number of elements of the sequence $k_j = j^3$, but an infinite number of elements of the sequence $k_j = j^2$.

It follows easily from Theorem 5 that if the sequence $\{k_i\}$ has positive lower density, i. e. if

(4. 12)
$$\lim_{x \to +\infty} \frac{K(x)}{x} = a > 0$$

then S(x) contains with probability 1 an infinite number of elements of the

sequence $\{k_j\}$, because in this case $\frac{K(q_n)}{q_n}$ does not tend to 0, and thus the series (4.11) is divergent. If q_n does not increase too rapidly, for instance if $\frac{q_{n+1}}{q_n} \leq C$ where C > 0 is a constant, then the same holds also under the weaker assumption that

(4.13)
$$\overline{\lim_{x \to +\infty} \frac{K(x)}{x}} = \beta > 0$$

i. e. that the sequence $\{k_j\}$ has positive upper density, because in this case if $q_{n-1} \leq x < q_n$ then

$$rac{K(q_n)}{q_n} \cong rac{K(x)}{q_n} \cong rac{1}{C} rac{K(x)}{x}$$

and thus (4.13) implies $\lim_{n \to +\infty} \frac{K(q_n)}{q_n} \ge \frac{\beta}{A} > 0$ and thus the divergence of the series (4.11). If however $q_n = 2^{2^n}$ and $\{k_j\}$ consists of the numbers $2^{2^n} + 1, \ldots, 2^{2^{n+1}}$ then the upper density of the sequence $\{k_j\}$ is 1/2 but (4.11) is convergent.

Now we prove the following

THEOREM 6. The density of S(x) is with probability 1 equal to 0.

PROOF. Let $\alpha_N(x)$ denote the number of those $\varepsilon_n(x)$ (n = 1, 2, ...) which are $\leq N$. Clearly if we prove that

(4.14)
$$\mathbf{P}\left(\lim_{N \to +\infty} \frac{\alpha_N(x)}{N} = 0\right) = 1$$

then the assertion of Theorem 6 follows. To prove (4.14), by Lemma A is sufficient to show that the series

(4.15)
$$\sum_{k=1}^{\infty} \mathsf{P}\left(\frac{\alpha_{2^k}(x)}{2^k} \ge \epsilon\right)$$

is convergent for any $\varepsilon > 0$. As a matter of fact the convergence of the series (4.15) implies that for almost all x

(4. 16)
$$\lim_{k \to +\infty} \frac{\alpha_{2^k}(x)}{2^k} = 0$$

and as for $2^k \leq N < 2^{k+1}$, we have $\frac{\alpha_N(x)}{N} \leq 2 \cdot \frac{\alpha_{2^{k-1}}(x)}{2^{k+1}}$ it follows that

(4.17)
$$\lim_{N \to +\infty} \frac{\alpha_N(x)}{N} = 0$$

on cantor's series with convergent
$$\sum \frac{1}{q_n}$$
 107

for almost all x. As

(4.18)
$$\mathbf{M}(\alpha_N(\mathbf{x})) = \sum_{q_n \leq N} 1 + \sum_{N=q_n} \frac{N}{q_n} = N d_N$$

where $\lim_{N \to +\infty} d_N = 0$ and

(4.19)
$$\mathbf{D}^{2}(\alpha_{N}(\mathbf{x})) = \sum_{q_{n} > N} \frac{N}{q_{n}} \left(1 - \frac{N}{q_{n}} \right) \leq N d_{N}$$

it follows by the inequality of *Chebyshev* that if N is so large that $d_N < \varepsilon/2$, then

(4. 20)
$$\mathbf{P}(\alpha_N(x) \ge N\varepsilon) \le \frac{4d_N}{N\varepsilon^2} < \frac{2}{N\varepsilon}$$

It follows that the series (4.15) converges, which, as has been pointed out above, proves Theorem 6.

§ 5. On the order of magnitude of $v_k(x)$

We denote again by $v_k(\mathbf{x})$ the number of occurrences of the number k $(k=0,1,\ldots)$ in the sequence $\{\varepsilon_n(\mathbf{x})\}$.

In this § we prove

THEOREM 7. Let $\{q_n\}$ be an arbitrary sequence of integers $(q_n \ge 2)$ for which $\sum_{n=1}^{\infty} \frac{1}{q_n} < +\infty$. If C is an arbitrary positive number, then for almost all x

(5.1)
$$v_k(\mathbf{x}) \ge \frac{\log k}{\log \log k} + \frac{\log k \cdot \log \log \log \log k}{(\log \log k)^2} - C \frac{\log k}{(\log \log k)^2}$$

holds at most for a finite number of values of k.

REMARK. It is remarkable, that the growth of $v_k(x)$ depends only so weakly on the order of magnitude of q_n , that such an estimate as furnished by Theorem 7 can be given for all sequences q_n . The result of Theorem 7 is best possible as is shown by

THEOREM 8. If g(k) is an arbitrary sequence of numbers tending to $+\infty$, one can choose the sequence $\{q_n\}$ so that $\sum_{n=1}^{\infty} \frac{1}{q_n} < +\infty$ and

(5.2)
$$r_k(x) \ge \frac{\log k}{\log \log k} + \frac{\log k \cdot \log \log \log k}{(\log \log k)^2} - g(k) \frac{\log k}{(\log \log k)^2}$$

is satisfied for almost all x for an infinity of values of k.

P. ERDÖS AND A. RÉNYI

PROOF OF THEOREM 7. We have by (2.7) for $N \ge 1$

(5.3)
$$\mathbf{P}(\nu_{k}(x) \geq N) = \sum_{s=N}^{\infty} \sum_{\substack{u_{1} \leq u_{2} \leq \dots \leq u_{s} \\ q_{u_{r}} \leq k \ (r=1, 2, \dots, s)}} \frac{1}{q_{u_{1}}q_{u_{2}} \dots q_{u_{s}}} \prod_{\substack{j \neq u_{r} \\ q_{j} > k}} \left(1 - \frac{1}{q_{j}}\right)$$

and thus putting

$$(5.4) r_k = \sum_{q_n > k} \frac{1}{q_n}$$

we have

(5.5)
$$\mathbf{P}(\nu_k(x) \ge N) \ge \sum_{s=N}^{\infty} \frac{r_k^s}{S!}.$$

Let d > 0 be an arbitrary positive number, and choose k_d so large that for $k \ge k_d$ we should have $r_k \le e^{-d}$; then we obtain for $k \ge k_d$

(5.6)
$$\mathbf{P}(r_k(x) \ge N) \le \frac{2e^{-Xd}}{N!}.$$

Thus if

(5.7)
$$N(k) = \frac{\log k}{\log \log k} + \frac{\log k \cdot \log \log \log k}{(\log \log k)^2} - \frac{C \log k}{(\log \log k)^2}$$

we have

(5.8)
$$\sum_{k=k_d}^{\infty} \mathbf{P}(\nu_k(x) \ge N(k)) \le 2 \sum_{k=k_d}^{\infty} \frac{e^{-dN(k)}}{N(k)!}$$

As by Stirling's formula

4

(5.9)
$$\log N(k)! = \log k - \frac{(C+1)\log k}{\log\log k} + O\left(\frac{\log k (\log\log\log k)^2}{(\log\log k)^2}\right)$$

it follows

(5.10)
$$\mathbf{P}(r_k(x) \ge N(k)) \le \frac{e^{\frac{(r_{+1-d})\log \log k + O\left(\frac{\log x}{\log \log k}\right)^2}{(\log \log k)^2}}}{k}.$$

It follows by choosing d > C+1 that the series (5.8) converges. Thus we may apply Lemma A, and Theorem 7 is proved.

PROOF OF THEOREM 8. It is easy to see that for $k \neq l$

(5.11)
$$\mathbf{P}(\nu_k(x) \ge N, \nu_l(x) \ge M) \le \mathbf{P}(\nu_k(x) \ge N) \mathbf{P}(\nu_l(x) \ge M).$$

It follows by Corollary 2 to Lemma C that if $N_1(k)$ is chosen in such a manner that the series

(5. 12)
$$\sum_{k=1}^{\infty} \mathbf{P}(\nu_k(x) \ge N_1(k))$$

diverges, then $v_k(x) \ge N_1(k)$ for almost all x for an infinity of values of k.

on cantor's series with convergent
$$\sum \frac{1}{q_n}$$
 109

But if

(5.13)
$$N_1(x) = \frac{\log k}{\log \log k} + \frac{\log k (\log \log \log k)}{(\log \log k)^2} - g(k) \frac{\log k}{(\log \log k)^2}$$
then

(5. 14)
$$\mathbf{P}(\nu_{k}(x) \ge N_{1}(k)) \ge L_{1} \cdot \frac{r_{k}^{N_{1}(k)}}{N_{1}(k)!} \ge L_{2} \frac{e^{\frac{\eta(k)\log k}{\log\log k}} r_{k}^{N_{1}(k)}}{k}$$

where L_1 , L_2 are positive constants. Thus the series (5.12) is divergent provided that

(5.15)
$$g(k) > 2 \log \frac{1}{r_k}$$

But clearly if g(k) is given such that $g(k) \rightarrow +\infty$, the sequence $\{q_n\}$ can be chosen so that r_k should tend to 0 arbitrarily slowly, e. g. that we should have

$$(5.16) r_k \ge e^{-\frac{g(\alpha)}{2}}$$

which implies (5. 15). Thus Theorem 8 is proved.

References

- [1] A. Rényi, A new axiomatic theory of probability, Acta Math. Acad. Sci. Hung., 6 (1955), 185-336.
- [2] A. RÉNYI, On the distribution of the digits in Cantor's series, Matematikai Lapok, 7 (1956), 77-100. (In Hungarian with summaries in English and Russian.)
- [3] P. ERLÖS—A. RÉNYI, Some further statistical properties of the digits in Cantor's series, Acta Math. Acad. Sci. Hung., 10 (1959), 21-29.
- [4] P. TURÁN, On the distribution of "digits" in Cantor-systems, *Matematikai Lapok*, 7 (1956), 71–76. (In Hungarian with summaries in English and Russian.)
- [5. E. MARCZEWSKI, Remarks on the Cantor-expansions of real numbers, Matematikai Lapok, 7 (1956), 212-213. (In Hungarian.)
- [6] A. KOLMOGOROFF, Grundbegriffe der Wahrscheinlichkeitsrechnung, Ergebnisse der Mathematik, (Springer, Berlin, 1933).
- [7] É. BOREL, Sur les probabilités dénombrables et leurs applications arithmétiques, Rendiconti del Circolo Matematico di Palermo, 26 (1909), 247–271.
- [8] F. P. CANTELLI, La tendenza ad un limite nel senzo del calcolo della probabilita, Rendiconti del Circolo Matematico di Palermo, 16 (1916), 191-201.